2. Asteroids, Comets, and Planet Formation

Total Page:16

File Type:pdf, Size:1020Kb

2. Asteroids, Comets, and Planet Formation ASTEROIDS, COMETS, AND PLANET FORMATION Michael H. Carr INTRODUCTION Asteroids have been classified in two ways. The first is according to their orbits, which is of interest to those The solar system includes numerous small objects, attempting to estimate the rate of impact on the generally classifiable as asteroids, comets, or inter- various planets. The Amor asteroids, for example, planetary dust. Asteroids and comets are of consider- have perihelia (the point in the orbit closest to the Sun) able importance in the study of the terrestrial planets. inside Mars' orbit but outside Earth's. Clearly, ob- The impacts of these bodies with the planets have jects of this class can impact Mars but not Earth. In repeatedly reshaped the planets' surfaces, redistributed contrast, the Apollo asteroids have perihelia inside the the surface materials and changed their chemistry and Earth's orbit and so can impact both Earth and Mars. mineralogy. In addition, impacts leave scars which Alternatively, the asteroids are also grouped accord- provide a means of assessing ages. Asteroids, and ing to their albedo and spectral reflectivity. This classi- possibly old comet nuclei, continually rain on the fication is useful in that the reflectivity gives some indi- Earth, and many thousands are preserved and are cation of composition, and tentative correlations have displayed in our museums as meteorites. In this been made between the asteroid groupings and various chapter the nature of comets and asteroids is briefly types of meteorites. reviewed.The formation of planets is also examined Comets have also impacted the planets throughout here because most of the evidence as to how the planets their history and affected their geology much in the formed comes from meteorites. The discussion is short same way as asteroids. Comets appear to be agglom- and general. The chapter is included mainly to pro- erations of ice and dust that have spent most of their vide background for the subsequent more detailed lifetime far beyond the orbits of the planets (Whipple, treatment of the planets. 1974). They are believed to reside in large numbers (1011-1012)in the most distant reaches of the solar ASTEROIDS AND COMETS system, in the so-called Oort cloud, which is estimated to be about 100 000 AU across. The cloud is believed Over 2000 asteroids are known (Chapman, 1975); to have formed early in the history of the solar system the largest being Ceres, about 1000 km in diameter. by ejection of material from the region of the planets, They appear star-like on telescopic photographs, and outward, almost to the edge of the Sun's influence. are recognized as a result of their motions relative to Ejection resulted from orbit perturbations induced by the stars. Their shapes are not known, but variations close passes by a planet. Distances from the Sun in in brightness suggest that they are irregular. Most the Oort cloud are so great, and motions of the comets asteroids are in orbits with relatively low eccentricities in the cloud so slow, that perturbation of their orbits (C0.3) as compared with comets, and most are in the by passing stars are occasionally sufficient to cause asteroid belt between Mars and Jupiter. a comet to plunge into the inner solar system on a THE GEOLOGY OF THE TERRESTRIAL PLANETS near-parabolic orbit around the Sun. As the ice-dust mm across, consisting mainly of olivine and ortho- ball approaches the Sun, its surface warms and the phyroxene, but possibly with minor amounts of clino- ices start to sublime. The comet then becomes visi- pyroxene, iron sulfide and iron-nickel. The chondritic ble and develops its characteristic shape. The gases meteorites formed very early in the history of the solar given off are ionized and swept away by the solar system, while the planets were forming, and so pro- wind, along with any dust that is released. At this stage vide direct evidence of conditions at that time. three parts can generally be distinguished: a bright The most primitive meteorites are the carbonaceous head (coma) roughly spherical in shape, a tail of ion- chondrites, in which the chondrules are embedded in ized gas which streams out from the head in a straight a fine-grained, earthy matrix. This matrix consists of line radial to the Sun, and a tail of dust particles which hydrated, platey minerals such as serpentine and extend in a slightly curved arc, also roughly radial to montmorillonite, together with small amounts of mag- the Sun. netite, iron-nickel sulfide, sulfates and carbonates. Comets are of two major kinds, periodic and non- Small amounts of organic compounds are also gen- periodic. The nonperiodic comets constitute the vast erally present. The matrix is thus a low-temperature, majority. They move in parabolic orbits and make volatile-rich assembly, in contrast to the high- only one pass through the center of the solar system. temperature assemblage of the chondrules. The chon- Their inclinations are random, with prograde and drules and matrix are in disequilibrium and clearly retrograde orbits equal in number. From these char- formed under very different conditions. acteristics we can conclude that the Oort cloud, their Some carbonaceous chondrites also have small, source, is spherically disposed around the solar system irregularly-shaped inclusions composed largely of Ca- and not restricted to the plane of the planets. In con- Al-Ti-rich minerals. The minerals in the inclusions trast, the periodic comets are all in low-inclination, are those which are expected to have condensed first prograde orbits. They are believed to be former para- from the nebular gas in the early stages of cooling of bolic comets whose orbits have been perturbed by the the primitive solar nebula. Their formation had been planets, mainly Jupiter. Such perturbations are possi- predicted from thermodynamical considerations ble only for those comets which initially moved in pro- (Grossman, 1972) before they were discovered in the grade orbits with low inclinations. Periodic comets Allende meteorite. The Ca-Al-rich inclusions are have limited lifetimes in that they lose mass each time therefore samples of the most primitive matter of the they pass the Sun, indicating some asteroids may be solar system. Their irregular shape indicates that they burned out comet remnants. have never gone through a melting stage but formed directly from the nebular gas. Carbonaceous chondrites resemble the Sun in com- METEORITES position. The only significant differences are lesser amounts of hydrogen, carbon, nitrogen, and noble Meteorites provide us with samples of asteroids and gases in the carbonaceous chondrites.These elements possibly burned out comets, and are of fundamental are unlikely to have condensed in the inner solar importance for understanding the formation of the system because of their high volatility, so their lack planets. They provide the best evidence of the nature of incorporation into the carbonaceous chondrites is of the materials that accumulated to form the planets, not surprising. Because of (1) the compositional cor- as well as the processes of accumulation. Meteorites respondence between the Sun and the carbonaceous have a wide range of composition and mineralogy chondrites, (2) the presence of the Ca-Al-rich inclu- (Wood, 1979; Wasson, 1974). Some, termed differen- sions, and (3) the disequilibrium mixture represented tiated meteorites, resemble terrestrial igneous rocks. by the chondrules and matrix, the carbonaceous chon- They appear to have been part of a larger body that drites are believed to be indicative of the primitive broke up at some intermediate stage in the history of solar nebula composition, depleted somewhat in the the solar system, after having gone through a stage more volatile elements. In models of planet forma- of heating and magmatic differentiation. The other tion, therefore, carbonaceous chondrites are com- main class of meteorites, the chondrites, are distinc- monly used to represent the materials from which the tively different from any terrestrial rock. They are planets formed. AU carbonaceous chondrites have ages mostly agglomerates of fragmental debris and typically comparable to the age of the solar system (4.6 billion contain chondrules-spherical mineral aggregates, 1-2 years). ASTEROIDS, COMETS, AND PLANET FORMATION Carbonaceous chondrites represent only a small formed at depths of 30-50 km. These depths are prob- fraction of all chondrites; ordinary chondrites are much ably representative of the radius of the parent body more common. These also contain olivine-pyroxene from which the meteorite formed. chondrules but their chondrules are embedded in a In recent years the question of how bodies as small matrix of the same composition as the chondrules as a few tens of kilometers across could have heated themselves. Many of the ordinary chondrites have up and created the metamorphic and igneous textures been heated so that the boundaries between chondrules seen in meteorites has been resolved. It now appears and matrix have become diffuse, and the constituent that radioactive heating by the decay of short-lived minerals have been recrystallized to form granulitic radioisotopes, mainly 26Al(half-life of lo6years), 244P~ textures suggestive of high temperatures. Exposure (82 x lo6years) and 1291(16 x lo6years), was respon- ages for the ordinary chondrites, that is, the time the sible, since the decay products of these nuclides have meteorite has been exposed to cosmic rays, are mostly been found in the meteorites. Since these short-lived in the lo6-lo8 year range-far shorter than the age nuclides were incorporated into meteorites before they of the solar system. had decayed, the time interval between element for- The carbonaceous chondrites are agglomerations mation and meteorite formation must have been rela- of chondrules, the more primitive Ca-Al-rich inclu- tively short-no more than a few million years.
Recommended publications
  • SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter
    SL-9/JUPITER ENCOUNTER - SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter THE CONTINUATION OF A UNIQUE EXPERIENCE R.M. WEST, ESO-Garching After the Storm Six Hectic Days in July eration during the first nights and, as in other places, an extremely rich data The recent demise of comet Shoe­ ESO was but one of many profes­ material was secured. It quickly became maker-Levy 9, for simplicity often re­ sional observatories where observations evident that infrared observations, es­ ferred to as "SL-9", was indeed spectac­ had been planned long before the critical pecially imaging with the far-IR instru­ ular. The dramatic collision of its many period of the "SL-9" event, July 16-22, ment TIMMI at the 3.6-metre telescope, fragments with the giant planet Jupiter 1994. It is now clear that practically all were perfectly feasible also during day­ during six hectic days in July 1994 will major observatories in the world were in­ time, and in the end more than 120,000 pass into the annals of astronomy as volved in some way, via their telescopes, images were obtained with this facility. one of the most incredible events ever their scientists or both. The only excep­ The programmes at most of the other predicted and witnessed by members of tions may have been a few observing La Silla telescopes were also successful, this profession. And never before has a sites at the northernmost latitudes where and many more Gigabytes of data were remote astronomical event been so ac­ the bright summer nights and the very recorded with them.
    [Show full text]
  • KAREN J. MEECH February 7, 2019 Astronomer
    BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners.
    [Show full text]
  • Early Observations of the Interstellar Comet 2I/Borisov
    geosciences Article Early Observations of the Interstellar Comet 2I/Borisov Chien-Hsiu Lee NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA; [email protected]; Tel.: +1-520-318-8368 Received: 26 November 2019; Accepted: 11 December 2019; Published: 17 December 2019 Abstract: 2I/Borisov is the second ever interstellar object (ISO). It is very different from the first ISO ’Oumuamua by showing cometary activities, and hence provides a unique opportunity to study comets that are formed around other stars. Here we present early imaging and spectroscopic follow-ups to study its properties, which reveal an (up to) 5.9 km comet with an extended coma and a short tail. Our spectroscopic data do not reveal any emission lines between 4000–9000 Angstrom; nevertheless, we are able to put an upper limit on the flux of the C2 emission line, suggesting modest cometary activities at early epochs. These properties are similar to comets in the solar system, and suggest that 2I/Borisov—while from another star—is not too different from its solar siblings. Keywords: comets: general; comets: individual (2I/Borisov); solar system: formation 1. Introduction 2I/Borisov was first seen by Gennady Borisov on 30 August 2019. As more observations were conducted in the next few days, there was growing evidence that this might be an interstellar object (ISO), especially its large orbital eccentricity. However, the first astrometric measurements do not have enough timespan and are not of same quality, hence the high eccentricity is yet to be confirmed. This had all changed by 11 September; where more than 100 astrometric measurements over 12 days, Ref [1] pinned down the orbit elements of 2I/Borisov, with an eccentricity of 3.15 ± 0.13, hence confirming the interstellar nature.
    [Show full text]
  • Make a Comet Materials: Students Should First Line Their Mixing Bowls with Trash Bags
    Build Your Own Comet Prep Time: 30 minutes Grades: 6-8 Lesson Time: 55 minutes Essential Questions: • What is a comet composed of? • What gives a comet its tail? • What makes a comet different from other Near-Earth Objects (NEOs)? Objectives: • Create a physical representation of a comet and its properties. • Observe distinguishable factors between comets and other NEOs. Standards: • MS – PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. • CCSS.ELA-LITERACY.RST.6-8.3 - Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Teacher Prep: • Materials per comet: o 5 lbs. dry ice, ice chest, paper cups, towels, small container (for scooping), wooden or plastic mixing spoon, trash bag, mixing bowl, heavy work gloves, 1 tablespoon or less of starch, 1 tablespoon or less of dark corn syrup (or soda), 1 tablespoon or less of vinegar, 1 tablespoon or less of rubbing alcohol, large beaker, water, 1 c dirt/sand, 1 L of water. • Additional materials: o Hammer or mallet, paper cups, towels, flashlight, hair dryer. • Most of the dry ice needs to be in a fine powder before the students arrive, so use the hammer to do this ahead of time. There should be about 50-60% fine powder in order to hold the comet together. It is best to separate the dry ice ahead of time with towels. • This can also be done as a class demonstration. Teacher Notes/Background: • This lesson was adapted from NASA’s Make Your Own Comet activity.
    [Show full text]
  • Interstellar Comet 2I/Borisov
    Interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland 2 AGH University of Science and Technology, al. Mickiewicza 30, Kraków 30-059, Poland 3 SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, NL-3584CA Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands * These authors contributed equally to this work. Interstellar comets penetrating through the Solar System were anticipated for decades1,2. The discovery of non-cometary 1I/‘Oumuamua by Pan-STARRS was therefore a huge surprise and puzzle. Furthermore, its physical properties turned out to be impossible to reconcile with Solar System objects3-5, which radically changed our view on interstellar minor bodies. Here, we report the identification of a new interstellar object which has an evidently cometary appearance. The body was identified by our data mining code in publicly available astrometric data. The data clearly show significant systematic deviation from what is expected for a parabolic orbit and are consistent with an enormous orbital eccentricity of 3.14 ± 0.14. Images taken by the William Herschel Telescope and Gemini North telescope show an extended coma and a faint, broad tail – the canonical signatures of cometary activity. The observed g’ and r’ magnitudes are equal to 19.32 ± 0.02 and 18.69 ± 0.02, respectively, implying g’-r’ color index of 0.63 ± 0.03, essentially the same as measured for the native Solar System comets.
    [Show full text]
  • Initial Characterization of Interstellar Comet 2I/Borisov
    Initial characterization of interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, Kraków, Poland 2 AGH University of Science and Technology, Kraków, Poland 3 SRON, Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, the Netherlands * These authors contributed equally to this work; email: [email protected], [email protected] Interstellar comets penetrating through the Solar System had been anticipated for decades1,2. The discovery of asteroidal-looking ‘Oumuamua3,4 was thus a huge surprise and a puzzle. Furthermore, the physical properties of the ‘first scout’ turned out to be impossible to reconcile with Solar System objects4–6, challenging our view of interstellar minor bodies7,8. Here, we report the identification and early characterization of a new interstellar object, which has an evidently cometary appearance. The body was discovered by Gennady Borisov on 30 August 2019 UT and subsequently identified as hyperbolic by our data mining code in publicly available astrometric data. The initial orbital solution implies a very high hyperbolic excess speed of ~32 km s−1, consistent with ‘Oumuamua9 and theoretical predictions2,7. Images taken on 10 and 13 September 2019 UT with the William Herschel Telescope and Gemini North Telescope show an extended coma and a faint, broad tail. We measure a slightly reddish colour with a g′–r′ colour index of 0.66 ± 0.01 mag, compatible with Solar System comets.
    [Show full text]
  • Carbon Monoxide in Jupiter After Comet Shoemaker-Levy 9
    ICARUS 126, 324±335 (1997) ARTICLE NO. IS965655 Carbon Monoxide in Jupiter after Comet Shoemaker±Levy 9 1 1 KEITH S. NOLL AND DIANE GILMORE Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218 E-mail: [email protected] 1 ROGER F. KNACKE AND MARIA WOMACK Pennsylvania State University, Erie, Pennsylvania 16563 1 CAITLIN A. GRIFFITH Northern Arizona University, Flagstaff, Arizona 86011 AND 1 GLENN ORTON Jet Propulsion Laboratory, Pasadena, California 91109 Received February 5, 1996; revised November 5, 1996 for roughly half the mass. In high-temperature shocks, Observations of the carbon monoxide fundamental vibra- most of the O is converted to CO (Zahnle and MacLow tion±rotation band near 4.7 mm before and after the impacts 1995), making CO one of the more abundant products of of the fragments of Comet Shoemaker±Levy 9 showed no de- a large impact. tectable changes in the R5 and R7 lines, with one possible By contrast, oxygen is a rare element in Jupiter's upper exception. Observations of the G-impact site 21 hr after impact atmosphere. The principal reservoir of oxygen in Jupiter's do not show CO emission, indicating that the heated portions atmosphere is water. The Galileo Probe Mass Spectrome- of the stratosphere had cooled by that time. The large abun- ter found a mixing ratio of H OtoH of X(H O) # 3.7 3 dances of CO detected at the millibar pressure level by millime- 2 2 2 24 P et al. ter wave observations did not extend deeper in Jupiter's atmo- 10 at P 11 bars (Niemann 1996).
    [Show full text]
  • The Physical Characterization of the Potentially-‐Hazardous
    The Physical Characterization of the Potentially-Hazardous Asteroid 2004 BL86: A Fragment of a Differentiated Asteroid Vishnu Reddy1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Email: [email protected] Bruce L. Gary Hereford Arizona Observatory, Hereford, AZ 85615, USA Juan A. Sanchez1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Driss Takir1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Cristina A. Thomas1 NASA Goddard Spaceflight Center, Greenbelt, MD 20771, USA Paul S. Hardersen1 Department of Space Studies, University of North Dakota, Grand Forks, ND 58202, USA Yenal Ogmen Green Island Observatory, Geçitkale, Mağusa, via Mersin 10 Turkey, North Cyprus Paul Benni Acton Sky Portal, 3 Concetta Circle, Acton, MA 01720, USA Thomas G. Kaye Raemor Vista Observatory, Sierra Vista, AZ 85650 Joao Gregorio Atalaia Group, Crow Observatory (Portalegre) Travessa da Cidreira, 2 rc D, 2645- 039 Alcabideche, Portugal Joe Garlitz 1155 Hartford St., Elgin, OR 97827, USA David Polishook1 Weizmann Institute of Science, Herzl Street 234, Rehovot, 7610001, Israel Lucille Le Corre1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Andreas Nathues Max-Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany 1Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. Pages: 27 Figures: 8 Tables: 4 Proposed Running Head: 2004 BL86: Fragment of Vesta Editorial correspondence to: Vishnu Reddy Planetary Science Institute 1700 East Fort Lowell Road, Suite 106 Tucson 85719 (808) 342-8932 (voice) [email protected] Abstract The physical characterization of potentially hazardous asteroids (PHAs) is important for impact hazard assessment and evaluating mitigation options.
    [Show full text]
  • Detection of Exocometary CO Within the 440 Myr Old Fomalhaut Belt: a Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets
    UCLA UCLA Previously Published Works Title Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets Permalink https://escholarship.org/uc/item/1zf7t4qn Journal Astrophysical Journal, 842(1) ISSN 0004-637X Authors Matra, L MacGregor, MA Kalas, P et al. Publication Date 2017-06-10 DOI 10.3847/1538-4357/aa71b4 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Astrophysical Journal, 842:9 (15pp), 2017 June 10 https://doi.org/10.3847/1538-4357/aa71b4 © 2017. The American Astronomical Society. All rights reserved. Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets L. Matrà1, M. A. MacGregor2, P. Kalas3,4, M. C. Wyatt1, G. M. Kennedy1, D. J. Wilner2, G. Duchene3,5, A. M. Hughes6, M. Pan7, A. Shannon1,8,9, M. Clampin10, M. P. Fitzgerald11, J. R. Graham3, W. S. Holland12, O. Panić13, and K. Y. L. Su14 1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; [email protected] 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3 Astronomy Department, University of California, Berkeley CA 94720-3411, USA 4 SETI Institute, Mountain View, CA 94043, USA 5 Univ. Grenoble Alpes/CNRS, IPAG, F-38000 Grenoble, France 6 Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459, USA 7 MIT Department of Earth, Atmospheric, and
    [Show full text]
  • Cliff Collapses on Comet 67P/Churyumov-Gerasimenko Following Outbursts As Observed by the Rosetta Mission
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1727-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Cliff Collapses on Comet 67P/Churyumov-Gerasimenko Following Outbursts as Observed by the Rosetta Mission 1 1 M.R. El-Maarry , G. Driver (1) Birkbeck, University of London, WC12 7HX, London, UK ([email protected]) Abstract region. Indeed, a cliff collapse in the so-called Aswan area in the northern hemisphere reported in [3] We are undergoing an intensive search for surface and [4] suggests that it was associated with an changes on comet 67P/Churyumov-Gerasimenko outburst or a dust plume event. We are investigating making use of the wealth of data that was collected the source regions of outbursts that were reported in by the Rosetta mission over more than two years, [2] to look for surface changes that may have which could help constrain the processes that drive occurred as a result of these outbursts so we can surface evolution in comets on a seasonal, and better understand their mechanism, effect on surface possibly longer term, scales. Focusing on regions that evolution, and any potential controls the source have been subjected to strong outbursts gives us the region morphology may have on the morphology or highest chance of detecting surface changes and scale of the outbursts themselves. We focus here on better understanding the effect of sublimation-driven an outburst that occurred in mid September 2015 outgassing on cometary surfaces. Here, we focus on (Figure 1), roughly one month following perihelion. the detection of a previously unobserved cliff collapse event near the sharp boundary of the comet’s northern and southern hemispheres in the small lobe.
    [Show full text]
  • Activities and Origins of Interstellar Comet 2I/Borisov
    EPSC Abstracts Vol. 14, EPSC2020-993, 2020, updated on 28 Sep 2021 https://doi.org/10.5194/epsc2020-993 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Activities and origins of interstellar comet 2I/Borisov Ze-Xi Xing1,2, Dennis Bodewits2, John W. Noonan3, Paul D. Feldman4, Michele T. Bannister5, Davide Farnocchia6, Walt M. Harris7, Jian-Yang Li8, Kathleen E. Mandt9, and Joel Wm. Parker10 1The University of Hong Kong, Laboratory for Space Research, Department of Physics, Hong Kong, Hong Kong ([email protected]) 2Department of Physics, Leach Science Center, Auburn University, Auburn, AL, USA ([email protected]) 3Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA ([email protected]) 4Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA ([email protected]) 5School of Physical and Chemical Sciences—Te Kura Matū, University of Canterbury, Christchurch, New Zealand ([email protected]) 6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ([email protected]) 7Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA ([email protected]) 8Planetary Science Institute, Tucson, AZ, USA ([email protected]) 9Space Exploration Sector, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA ([email protected]) 10Department of Space Studies, Southwest Research Institute, Boulder, CO, USA ([email protected]) We will present the results of coordinated observations of 2I/Borisov with the Neil Gehrels-Swift observatory (Swift) and Hubble Space Telescope (HST), which allowed us to provide the first glimpse into the ice content and chemical composition of the protoplanetary disk of another star.
    [Show full text]
  • Make a Comet on a Stick Activity
    UAMN Virtual Junior Curators: Solar System Make a Comet on a Stick! Make your own comet that can fly around the room! Comets are chunks of ice, rock, and gas that orbit the Sun. When they get close to the sun, they heat up, forming a glowing tail. Materials Needed: Wooden stick (a chopstick or popsicle stick works well), aluminum foil, ribbons, scissors. Instructions: Step 1: Cut five pieces of ribbon: two long pieces (about 3 feet or 91 cm long), two medium pieces, and one short piece. Tie your ribbons around the end of your wooden stick. Step 2: Cut three square pieces of aluminum foil. Hold the ribbon pieces off to one side and gather the foil around the end of the stick, where the ribbon is tied. Step 3: Form the foil into a ball while holding the ribbon tail off to the side. Step 4: Repeat with two more sheets of foil. If you want a bigger comet, add more foil! Step 5: Take your comet on a stick and fly it around the room! Left: Example comet on a stick. Right: Comet ISON in 2013. Image: NASA/MSFC/Aaron Kingery. A ctivity and images from NASA SpacePlace: spaceplace.nasa.gov/comet-stick/en/ UAMN Virtual Junior Curators: Solar System All About Comets Comets are balls of frozen gases, rock and dust that orbit the Sun. When a comet's orbit brings it close to the Sun, it heats up and spews dust and gases, forming a tail that stretches away from the Sun for millions of miles.
    [Show full text]