Development of Diagnostic Tools for the Detection of Streptococcus Agalactiae

Total Page:16

File Type:pdf, Size:1020Kb

Development of Diagnostic Tools for the Detection of Streptococcus Agalactiae Development of Diagnostic Tools for the Detection of Streptococcus agalactiae Hannah Swinburne Thesis submitted for the degree of Doctor of Philosophy Institute of Cellular Medicine Faculty of Medical Sciences Newcastle University November 2017 Abstract Streptococcus agalactiae is a common opportunistic pathogen, which, when transmitted to the immunocompromised, elderly or newborns, can cause complications such as sepsis, pneumonia, meningitis and can also be fatal. In screening programmes expectant mothers are typically sampled at 35-37 weeks gestation to ensure microbial culture results are available prior to labour. As levels of S. agalactiae rapidly fluctuate, premature testing results in antibiotic prescription being informed by outdated information. This project aimed to develop tools for use in a sensitive, specific, point-of-care diagnostic test able to detect all strains of S. agalactiae. Three detection strategies were pursued based on peptide aptamers, antibodies and DNA amplification. A bioluminescent protein, aequorin, was selected for use as a peptide aptamer scaffold in order to link epitope detection to reporter signal. Peptide insertion into aequorin eliminated expression of soluble protein, and therefore was deemed unsuitable for aptamer library construction. A novel computer programme, IDRIS, identified peptides conserved throughout all currently sequenced S. agalactiae strains, which are also unique to the species. Through further bioinformatic analysis, three peptide sequences from SAG1474 protein were selected for in-house murine monoclonal antibody production. Antibodies targeted against one peptide (CVNLEENSQV) exhibited sensitivity to all S. agalactiae serotypes. Antibodies exhibited species specificity when tested against Streptococcus pyogenes; future work will focus on extending specificity studies, including analysis of bacteria present in the vaginal flora. Recombinase polymerase amplification is a rapid, isothermal DNA amplification technique that may enable inexpensive point-of-care testing. Target-specific primers with single stranded overhang sequences allow amplified product to hybridise to a complementary capture probe and reporter-tagged detection probe. The plate-based system can detect 3.8 x 104 copies of DNA and is able to specifically detect all S. agalactiae serotypes over S. pyogenes DNA. The test will be converted into a lateral flow assay in the future. i Declaration I hereby declare that this thesis has been composed by myself and has not been submitted in any previous application for a degree. The work presented has been performed by myself, unless otherwise stated. All sources of information have been appropriately acknowledged by means of reference. ii Acknowledgements I am grateful to the EPSRC for funding this work. I would like to thank Neil Keegan, Chris Johnson and Calum McNeil for their continual support throughout the project. Their knowledge, help, ideas, guidance and encouragement have pushed me to become a better scientist. Thanks to Julia Spoors and Rob Bolt for countless reasons, most significantly in all their work in antibody development. Thanks to Beth Lawry for her advice in every aspect of the project. I’d like to thank Keith Flanagan, Elisa Anastasi and Anil Wipat for their help using the IDRIS system, Helen Glenwright and Wendy Smith for their support whilst working in the Centre for Bacterial Cell Biology and Nicholas Jakubovics for kindly donating S. pyogenes strains. Special thanks to Cara, Emily, Gina, Katie, Suzie, Carl, Phil, Chen and all those mentioned above for their friendship; it has made the past three years wonderful. iii Contents Chapter 1 Streptococcus agalactiae: Bacteria, Disease and Diagnostics .................. 1 1.1 Streptococcus agalactiae bacterium .................................................................. 1 1.1.1 Streptococcus agalactiae ............................................................................ 1 1.1.2 Serotypes .................................................................................................... 3 1.1.3 Related bacteria belonging to the genus streptococcus .............................. 3 1.1.4 Virulence factors.......................................................................................... 6 1.2 Group B streptococcal disease .......................................................................... 8 1.2.1 Early onset disease ..................................................................................... 8 1.2.2 Late onset disease .................................................................................... 10 1.2.3 Immunocompromised ................................................................................ 11 1.2.4 Elderly ....................................................................................................... 12 1.2.5 Worldwide disease .................................................................................... 13 1.3 Treating and preventing GBS disease ............................................................. 13 1.3.1 GBS vaccine development ........................................................................ 13 1.3.2 Antibiotic treatment .................................................................................... 14 1.3.3 Maternal screening/risk- based treatment ................................................. 16 1.4 Diagnosis of S. agalactiae infection ................................................................. 18 1.4.1 Current GBS diagnostic tests .................................................................... 18 1.4.2 Rapid test .................................................................................................. 24 1.5 Project aims ..................................................................................................... 26 Chapter 2 Methods ................................................................................................... 28 2.1 Materials .......................................................................................................... 28 2.2 General techniques .......................................................................................... 29 2.2.1 Bacterial cell growth .................................................................................. 29 2.2.2 Bacterial cell storage ................................................................................. 30 2.2.3 SDS-PAGE ................................................................................................ 30 iv 2.2.4 Western blotting ........................................................................................ 31 2.2.5 Indirect enzyme linked immunosorbent assay (ELISA) ............................. 32 2.2.6 Protein concentration determination – BCA assay .................................... 33 2.2.7 Protein concentration determination – spectrophotometry ........................ 33 2.2.8 RNA extraction .......................................................................................... 33 2.2.9 cDNA synthesis ......................................................................................... 33 2.2.10 DNA extraction ........................................................................................ 34 2.2.11 Polymerase chain reaction ...................................................................... 34 2.2.12 Agarose gel ............................................................................................. 34 2.2.13 Nucleic acid concentration determination - spectrophotometry ............... 35 2.2.14 DNA purification ...................................................................................... 35 2.2.15 Statistics .................................................................................................. 35 2.3 Computing ....................................................................................................... 36 2.3.1 IDRIS ......................................................................................................... 36 2.3.2 PSORTb .................................................................................................... 37 2.3.3 SignalP ...................................................................................................... 37 2.3.4 LipoP ......................................................................................................... 37 2.3.5 TMHMM .................................................................................................... 38 2.3.6 I-TASSER .................................................................................................. 38 2.3.7 PSIPRED .................................................................................................. 38 2.3.8 Prodepth .................................................................................................... 39 2.3.9 Bcepred ..................................................................................................... 39 2.3.10 Microarray data analysis ......................................................................... 39 2.3.11 Protein BLAST (Basic local alignment tool) search ................................. 40 2.3.12 DNA alignment ........................................................................................ 40 2.3.13 Primer design: PCR and RPA ................................................................. 40 2.3.14 Band densitometry .................................................................................. 41 v 2.4 Recombinant protein
Recommended publications
  • Molecular Characterization of Streptococcus
    MOLECULAR CHARACTERIZATION OF STREPTOCOCCUS AGALACTIAE ISOLATED FROM PREGNANT WOMEN IN THE EASTERN CAPE, SOUTH AFRICA AND WINDHOEK, NAMIBIA AND ANTIBACTERIAL ACTIVITIES OF SOME MEDICINAL PLANT EXTRACTS ON THE ISOLATES MUNYARADZI MUKESI DEPARTMENT OF BIOCHEMISTRY AND MICROBIOLOGY FACULTY OF SCIENCE AND AGRICULTURE UNIVERSITY OF FORT HARE ALICE, 5700 SOUTH AFRICA 2018 i DECLARATION I, the undersigned, declare authorship of this thesis entitled “Molecular characterization of Streptococcus agalactiae isolated from pregnant women in the Eastern Cape, South Africa and Windhoek, Namibia and antibacterial activities of some medicinal plant extracts on the isolates” submitted to the University of Fort Hare for the degree of Doctor of Philosophy in Microbiology in the Faculty of Science and Agriculture. The work contained herein is my original work, with exemptions to the citations and that the work has not been submitted to any other University for the award of any degree or examination purposes. Name: Munyaradzi Mukesi Signature: ……………………………………………………………. Date: ………………………………………….. ii DECLARATION OF PLAGIARISM I, Munyaradzi Mukesi, student number: 201415927 hereby declare that I am fully aware of the University of Fort Hare’s policy on plagiarism and I have taken every precaution to comply with the regulations. Signature: ………………………………………………… Date: …………………………… iii CERTIFICATION This thesis titled “Molecular characterization of Streptococcus agalactiae isolated from pregnant women in the Eastern Cape, South Africa and Windhoek, Namibia and antibacterial
    [Show full text]
  • Colorful World of Microbes: Carotenoids and Their Applications
    Hindawi Publishing Corporation Advances in Biology Volume 2014, Article ID 837891, 13 pages http://dx.doi.org/10.1155/2014/837891 Review Article Colorful World of Microbes: Carotenoids and Their Applications Kushwaha Kirti,1 Saini Amita,1 Saraswat Priti,2 Agarwal Mukesh Kumar,2 and Saxena Jyoti3 1 Department of Bioscience and Biotechnology, Banasthali University, Jaipur, Rajasthan 304022, India 2 Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474012, India 3 Biochemical Engineering Department, BT Kumaon Institute of Technology, Dwarahat, Uttarakhand 263653, India Correspondence should be addressed to Saxena Jyoti; [email protected] Received 26 January 2014; Revised 2 March 2014; Accepted 4 March 2014; Published 10 April 2014 Academic Editor: Akikazu Sakudo Copyright © 2014 Kushwaha Kirti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Microbial cells accumulate pigments under certain culture conditions, which have very important industrial applications. Microorganisms can serve as sources of carotenoids, the most widespread group of naturally occurring pigments. More than 750 structurally different yellow, orange, and red colored molecules are found in both eukaryotes and prokaryotes with an estimated market of $ 919 million by 2015. Carotenoids protect cells against photooxidative damage and hence found important applications in environment, food and nutrition, disease control, and as potent antimicrobial agents. In addition to many research advances, this paper reviews concerns with recent evaluations, applications of microbial pigments, and recommendations for future researches with an understanding of evolution and biosynthetic pathways along with other relevant aspects.
    [Show full text]
  • Selección De Un Probiótico Para La Erradicación De Streptococcus Agalactiae Durante El Embarazo
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA Departamento de Nutrición y Ciencia de los Alimentos TESIS DOCTORAL Selección de un probiótico para la erradicación de Streptococcus agalactiae durante el embarazo MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Sara Ocaña López Directores Juan Miguel Rodríguez Gómez Virginia Martín Merino Nivia Cárdenas Cárdenas Madrid Ed. electrónica 2019 © Sara Ocaña López, 2019 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE NUTRICIÓN Y CIENCIA DE LOS ALIMENTOS TESIS DOCTORAL Selección de un probiótico para la erradicación de Streptococcus agalactiae durante el embarazo SARA OCAÑA LÓPEZ Directores JUAN MIGUEL RODRÍGUEZ GÓMEZ VIRGINIA MARTIN MERINO NIVIA CÁRDENAS CÁRDENAS Madrid, 2018 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE NUTRICIÓN Y CIENCIA DE LOS ALIMENTOS TESIS DOCTORAL Selección de un probiótico para la erradicación de Streptococcus agalactiae durante el embarazo Memoria para optar al grado de Doctor presenta la licenciada Sara Ocaña López Madrid, 2018 Departamento de Nutrición y Ciencia de los Alimentos Facultad de Veterinaria Ciudad Universitaria , s/n. 28040 Madrid Teléfono: 91 394 3749. Fax: 91 394 37 43 JUAN MIGUEL RODRÍGUEZ GÓMEZ, CATEDRÁTICO DE UNIVERSIDAD, DEL DEPARTAMENTO DE NUTRICIÓN Y CIENCIA DE LOS ALIMENTOS DE LA FACULTAD DE VETERINARIA DE LA UNIVERSIDAD COMPLUTENSE DE MADRID, VIRGINIA MARTÍN MERINO, AYUDANTE DE INVESTIGACIÓN DEL ISCIII CENTRO NACIONAL DE MICROBIOLOGÍA, Y NIVIA CÁRDENAS CÁRDENAS, TÉCNICO SUPERIOR DE INVESTIGACIÓN DE PROBISEARCH, CERTIFICAN: Que la Tesis Doctoral titulada “Selección de un probiótico para la erradicación de Streptococcus agalactiae durante el embarazo”, de la que es autora la Licenciada Sara Ocaña López, ha sido realizada en el Departamento de Nutrición y Ciencia de los Alimentos de la Facultad de Veterinaria de la Universidad Complutense de Madrid, bajo la dirección de los que suscriben, y cumple las condiciones exigidas para optar al título de Doctor.
    [Show full text]
  • Identification of Essential Genes for Escherichia Coli Aryl Polyene
    www.nature.com/npjbiofilms ARTICLE OPEN Identification of essential genes for Escherichia coli aryl polyene biosynthesis and function in biofilm formation Isabel Johnston 1,7, Lucas J. Osborn 1,2,8, Rachel L. Markley1,8, Elizabeth A. McManus1,6, Anagha Kadam1, Karlee B. Schultz 1,3, ✉ Nagashreyaa Nagajothi1,4, Philip P. Ahern 1,2,5, J. Mark Brown1,2,5 and Jan Claesen 1,2,5 Aryl polyenes (APEs) are specialized polyunsaturated carboxylic acids that were identified in silico as the product of the most widespread family of bacterial biosynthetic gene clusters (BGCs). They are present in several Gram-negative host-associated bacteria, including multidrug-resistant human pathogens. Here, we characterize a biological function of APEs, focusing on the BGC from a uropathogenic Escherichia coli (UPEC) strain. We first perform a genetic deletion analysis to identify the essential genes required for APE biosynthesis. Next, we show that APEs function as fitness factors that increase protection from oxidative stress and contribute to biofilm formation. Together, our study highlights key steps in the APE biosynthesis pathway that can be explored as potential drug targets for complementary strategies to reduce fitness and prevent biofilm formation of multi-drug resistant pathogens. npj Biofilms and Microbiomes (2021) 7:56 ; https://doi.org/10.1038/s41522-021-00226-3 1234567890():,; INTRODUCTION BGCs from E. coli CFT073 (APEEc) and Vibrio fischeri ES114 (APEVf) In a global search for novel types of bacterial secondary confirmed that these BGCs encompass all genes required for APE 1 metabolites, we previously identified aryl polyenes (APEs) as the biosynthesis . Moreover, the biosynthesis of the core APE moiety from the nematode symbiont Xenorhabdus doucetiae DSM17909 products of the most abundant biosynthetic gene cluster (BGC) 11 family1.
    [Show full text]
  • Microbial Biodiversity
    Microbial Biodiversity Microbial Biodiversity Edited by P. Ponmurugan and J. Senthil Kumar Microbial Biodiversity Edited by P. Ponmurugan and J. Senthil Kumar This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by P. Ponmurugan, J. Senthil Kumar and contributors All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-4818-X ISBN (13): 978-1-5275-4818-3 TABLE OF CONTENTS Acknowledgements ................................................................................... vii Preface ...................................................................................................... viii Chapter One ................................................................................................. 1 Bioprospecting Ecofriendly Natural Dyes Using Novel Marine Bacteria as an Efficient Alternative to Toxic Synthetic Dyes B. Sathya Priya, K. Chitra, and T. Stalin Chapter Two .............................................................................................. 14 Do We Live for Microorganisms Or Do They Live For Us? T. Dhanalakshmi Chapter Three ...........................................................................................
    [Show full text]
  • Synthesis of Polyene Natural Products
    Durham E-Theses Synthesis of Polyene Natural Products MADDEN, KATRINA,SOPHIE How to cite: MADDEN, KATRINA,SOPHIE (2017) Synthesis of Polyene Natural Products, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12052/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Synthesis of Polyene Natural Products A thesis submitted as partial fulfilment of the requirements for the degree of Doctor of Philosophy at the Department of Chemistry, Durham University, UK Submitted by Katrina Sophie Madden Under the supervision of Professor Andy Whiting Supported by the EPSRC 2016 2 Declaration The work described in this thesis was carried out by the author unless stated otherwise or referenced. The material contained has not been submitted previously for any qualification. The copyright of this thesis rests with the author and any information derived from it should be correctly acknowledged.
    [Show full text]
  • Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implicati
    Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications Chatragadda Ramesh, Nambali Valsalan Vinithkumar, Ramalingam Kirubagaran, Chidambaram Kulandaisamy Venil, Laurent Dufossé To cite this version: Chatragadda Ramesh, Nambali Valsalan Vinithkumar, Ramalingam Kirubagaran, Chidambaram Ku- landaisamy Venil, Laurent Dufossé. Multifaceted Applications of Microbial Pigments: Current Knowl- edge, Challenges and Future Directions for Public Health Implications. Microorganisms, MDPI, 2019, 7 (7), 10.3390/microorganisms7070186. hal-02563390 HAL Id: hal-02563390 https://hal.univ-reunion.fr/hal-02563390 Submitted on 13 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License microorganisms Review Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications Chatragadda Ramesh 1,2,* , Nambali Valsalan Vinithkumar 2 , Ramalingam Kirubagaran 3, Chidambaram Kulandaisamy Venil 4 and Laurent Dufossé 5,* 1 National Centre for Coastal Research (NCCR), NCCR Field Office, Ministry of Earth Sciences (MoES), Mandapam Camp 623519, India 2 Atal Centre for Ocean Science and Technology for Islands, ESSO-NIOT, Dollygunj, Port Blair, Andaman and Nicobar Islands 744103, India 3 Marine Biotechnology Group, ESSO-National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt.
    [Show full text]
  • Corynebacterium Glutamicum Crtr and Its Orthologs in Actinobacteria
    International Journal of Molecular Sciences Article Corynebacterium glutamicum CrtR and Its Orthologs in Actinobacteria: Conserved Function and Application as Genetically Encoded Biosensor for Detection of Geranylgeranyl Pyrophosphate Nadja A. Henke 1 , Sophie Austermeier 1,2 , Isabell L. Grothaus 1,3, Susanne Götker 1, Marcus Persicke 4, Petra Peters-Wendisch 1 and Volker F. Wendisch 1,* 1 Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; [email protected] (N.A.H.); [email protected] (S.A.); [email protected] (I.L.G.); [email protected] (S.G.); [email protected] (P.P.-W.) 2 Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany 3 Faculty of Production Engineering, Bremen University, 28359 Bremen, Germany 4 Faculty of CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-521-106-5611 Received: 14 July 2020; Accepted: 29 July 2020; Published: 31 July 2020 Abstract: Carotenoid biosynthesis in Corynebacterium glutamicum is controlled by the MarR-type regulator CrtR, which represses transcription of the promoter of the crt operon (PcrtE) and of its own gene (PcrtR). Geranylgeranyl pyrophosphate (GGPP), and to a lesser extent other isoprenoid pyrophosphates, interfere with the binding of CrtR to its target DNA in vitro, suggesting they act as inducers of carotenoid biosynthesis. CrtR homologs are encoded in the genomes of many other actinobacteria. In order to determine if and to what extent the function of CrtR, as a metabolite-dependent transcriptional repressor of carotenoid biosynthesis genes responding to GGPP, is conserved among actinobacteria, five CrtR orthologs were characterized in more detail.
    [Show full text]
  • A Secondary Metabolite Drives Intraspecies Antagonism in a Gut Symbiont That Is Inhibited by Peptidoglycan Acetylation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448121; this version posted June 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A secondary metabolite drives intraspecies antagonism in a gut symbiont that is inhibited 2 by peptidoglycan acetylation 3 1,2 1 1,3 4 1 1 4 Mustafa Özçam , Jee-Hwan Oh , Restituto Tocmo , Deepa Acharya , Shenwei Zhang , Silvette Ruiz-Ramírez , 5 Fuyong Li5, Christopher C. Cheng6, Eugenio Vivas7, Federico E. Rey7, Jan Claesen8, Tim Bugni4, Jens Walter5,6,9,10, 6 Jan-Peter van Pijkeren1,11* 7 8 1 Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA 9 2 Division of Gastroenterology, Department of Medicine, University of California San Francisco, CA, 94141, USA. 10 3 Present Address: Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, 60612, USA 11 4 Department of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53706, USA 12 5 Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada 13 6 Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada; 14 7 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA 15 8 Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner 16 Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA 17 9 Department of Medicine and APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; 18 10 School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
    [Show full text]
  • Granadaene Photobleaching Reduces The
    Photochemistry and Photobiology, 20**, **: *–* Research Article Granadaene Photobleaching Reduces the Virulence and Increases Antimicrobial Susceptibility of Streptococcus agalactiae Sebastian Jusuf1, Pu-Ting Dong2 , Jie Hui3 , Erlinda R. Ulloa4, George Y. Liu5* and Ji-Xin Cheng1,2,3,6* 1Department of Biomedical Engineering, Boston University, Boston, MA 2Department of Chemistry, Boston University, Boston, MA 3Department of Electrical & Computer Engineering, Boston University, Boston, MA 4Department of Pediatrics, University of California Irvine School of Medicine, Irvine, CA 5Division of Pediatric Infectious Diseases, University of California San Diego School of Medicine, La Jolla, CA 6Photonics Center, Boston University, Boston, MA Received 8 November 2020, accepted 20 January 2021, DOI: 10.1111/php.13389 ABSTRACT infections has significantly decreased as a result of preventive intrapartum antibiotic prophylaxis (8,9), the rate of GBS infec- Streptococcus agalactiae, also known as Group B Streptococ- tion within nonpregnant adults has increased as evidenced by a cus (GBS), is increasingly recognized as a major cause of soft two-fold rise in incidence of invasive GBS disease in adults tissue and invasive diseases in the elderly and diabetic popu- between 1990 and 2007 (10). Compared to S. pneumoniae inva- lations. Antibiotics like penicillin are used with great fre- sive diseases (42 per 100 000), a leading cause of mortality in quency to treat these infections, although antimicrobial the elderly population, the incidence of GBS invasive disease resistance is increasing among GBS strains and underlines a among elderly is remarkable at 25 per 100 000, based on active, need for alternative methods not reliant on traditional antibi- population-based surveillance data from the ABCs Emerging otics.
    [Show full text]
  • Study of the Vaginal and Rectal Microflora in Pregnant Women, with Emphasis on Group B Streptococci
    Study of the vaginal and rectal microflora in pregnant women, with emphasis on Group B streptococci Nabil Abdullah El Aila Promoter: Prof. Dr. Mario Vaneechoutte Laboratory for Bacteriology Research. Department of Clinical Chemistry, Microbiology and Immunology Co-promoter: Prof. Dr. Marleen Temmerman Department of Obstetrics & Gynaecology Dissertation submitted in fulfilment of the requirements for the degree of Doctor in Biomedical Sciences Faculty of Medicine and Health Sciences, Ghent University January 2011 Nabil El Aila is supported by a PhD grant from (BOF, Bijzonder onderzoeksfonds) of Ghent University-Belgium. Dedication This thesis is dedicated to my lovely parents, Abdullah and Hanifa El Aila who taught me the value of education and have taken great pain to see me prosper in life. I am deeply indebted to them for their continued support and unwavering faith in me. It is also dedicated to my wife Aziza and my daughters: Danya, Dimah and Lana for their constant moral support, encouragement and invaluable help at every stage of my research. Members of the jury Prof. Dr. Phillip Hay Department of Genitourinary Medicine St George’s University of London, UK Prof. Dr. Pierrette Melin Belgian Reference Laboratory for Group B Streptococci Medical Microbiology Department, University Hospital of Liege Prof. Dr. Denis Pierard Department of Microbiology Vrij Universiteit Brussel Prof. Dr. Jean Plum Department of Clinical Chemistry, Microbiology and Immunology Ghent University Dr. Kristien Roelens Department of Obstetrics & Gynaecology Ghent University and Ghent University Hospital Prof. Dr. Koenraad Smets Department of Pediatrics Ghent University and Ghent University Hospital Table of the contents Members of the jury ........................................................................................................................................................... 1 Table of the contents ........................................................................................................................................................
    [Show full text]
  • Identification of Essential Genes for Escherichia Coli Aryl Polyene Biosynthesis and Function in Biofilm Formation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055939; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of essential genes for Escherichia coli aryl polyene biosynthesis and function in biofilm formation Isabel Johnston1, Lucas J Osborn1,2*, Rachel L Markley1*, Elizabeth A McManus1,3, Anagha 5 Kadam1, Karlee B Schultz1,4, Nagashreyaa Nagajothi1,5, Philip P Ahern1,2,6, J Mark Brown1,2,6, Jan Claesen1,2,6† 1Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA 10 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA 3Current affiliation: National Cancer Institute, National Institutes of Health, Bethesda, MD, USA 4College of Arts and Sciences, John Carroll University, University Heights, OH, USA 5University Honors College, University of Pittsburgh, Pittsburgh, PA, USA 15 6Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA *LJO and RLM contributed equally to this work †Correspondence to: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055939; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Aryl polyenes (APEs) are specialized polyunsaturated carboxylic acids that were identified in silico as the product of the most widespread family of bacterial biosynthetic gene clusters (BGCs). They are present in several Gram-negative host-associated bacteria, including multi-drug resistant 5 human pathogens.
    [Show full text]