Seasonal Characteristics of the Indian Ocean Dipole During the Holocene Epoch

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Characteristics of the Indian Ocean Dipole During the Holocene Epoch Vol 445 | 18 January 2007 | doi:10.1038/nature05477 LETTERS Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch Nerilie J. Abram1{, Michael K. Gagan1, Zhengyu Liu2,3,4, Wahyoe S. Hantoro5, Malcolm T. McCulloch1 & Bambang W. Suwargadi5 The Indian Ocean Dipole1,2 (IOD)—an oscillatory mode of IOD sector results in anomalous cooling of SSTs and intense coupled ocean–atmosphere variability—causes climatic extremes drought. An unambiguous record of these eastern IOD SST and and socio-economic hardship throughout the tropical Indian rainfall anomalies can potentially be provided through coupled mea- Ocean region1–5. There is much debate about how the IOD inter- surements of Sr/Ca (a proxy for SST10) and oxygen isotope ratios acts with the El Nin˜o/Southern Oscillation (ENSO) and the Asian (d18O; a proxy for SST and changes in rainfall/evaporation11)in monsoon, and recent changes in the historic ENSO–monsoon rela- corals from the Mentawai Islands. Furthermore, great palaeo- tionship6 raise the possibility that the properties of the IOD may earthquakes along the Mentawai island arc12 have frequently uplifted also be evolving. Improving our understanding of IOD events and the fringing reefs surrounding the Mentawai Islands, leaving indi- their climatic impacts thus requires the development of records vidual fossil Porites colonies well-preserved in growth position. This defining IOD activity in different climatic settings, including pre- historic times when ENSO and the Asian monsoon behaved dif- ferently from the present day. Here we use coral geochemical a 30° N +4 records from the equatorial eastern Indian Ocean to reconstruct surface-ocean cooling and drought during individual IOD events +2 over the past 6,500 years. We find that IOD events during the middle Holocene were characterized by a longer duration of 0° 0 strong surface ocean cooling, together with droughts that peaked –2 later than those expected by El Nin˜o forcing alone. Climate model SST anomaly (°C) simulations suggest that this enhanced cooling and drying was the 25° S –4 result of strong cross-equatorial winds driven by the strengthened 30° E 130° E Asian monsoon of the middle Holocene. These IOD–monsoon b connections imply that the socioeconomic impacts of projected 1 future changes in Asian monsoon strength may extend throughout 0 Australasia. –1 (°C) The IOD, also termed the Indian Ocean Zonal Mode, involves a –2 reversal of the sea surface temperature (SST) gradient and winds SST anomaly –3 across the equatorial Indian Ocean from their climatological state. 300 200 Climate simulations suggest that IOD events can be initiated by –0.1 El Nin˜o conditions that decrease the thermocline depth in the 100 Indonesian throughflow region, and cause an eastward migration 0.0 0 –100 of the Pacific Walker circulation cell (which encourages atmospheric (‰) 0.1 7,8 O anomaly –200 subsidence over the eastern Indian Ocean) . Simulations also indi- 18 0.2 ∆δ –300 cate that IOD events can result from processes internal to the Indian Rainfall anomaly (mm) Ocean region, through intensified Hadley circulation of the Asian– 1993 1994 1995 1996 1997 1998 1999 Australian monsoon, which strengthens the southeasterly tradewinds Year and promotes upwelling of cooler water in the equatorial eastern Figure 1 | IOD climate anomalies. a, SST anomalies during November of the Indian Ocean7,8. However, the ability to test these simulations is 1997 IOD event13, when anomalous cooling in the east and warming in the restricted by the spatial limitations and brevity of high-quality his- west produced a reversal of the equatorial SST gradient across the Indian torical climate records (Supplementary Fig. 1) and the scarcity of Ocean. Boxes mark the eastern and western sectors used to define the Dipole 2 proxy records4,9, particularly in the eastern IOD region. Mode Index , and the white circle shows the location of the Mentawai High-resolution reconstructions of past climate in the tropical Islands. b, In the Mentawai Islands the strong IOD events of 1994 and 1997 were characterized by cool SST anomalies (black curve)13 and drought (grey ocean regions can be obtained through the analysis of geochemical bars)29. These distinct IOD SST and rainfall anomalies are preserved, tracers in the skeletons of massive Porites sp. corals. The coral reefs of respectively, in coral Sr/Ca–SST (red curve) and Dd18O (blue curve) the Mentawai Islands, western Indonesia, lie within the eastern anomalies11. Coral time series between July 1993 and February 1997 are Indian Ocean sector used to define the Dipole Mode Index of IOD based on the average of two coral records, with error bars showing the activity2 (Fig. 1a). During strong IOD events, upwelling in the eastern difference between the coral records for each monthly data point. 1Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory 0200, Australia. 2Center for Climatic Research, University of Wisconsin- Madison, 1225 W. Dayton Street, Madison, Wisconsin 53706, USA. 3Earth Environment Institute, Chinese Academy of Science, Xi’an 710075, China. 4The Ocean University of China, Qingdao 266003, China. 5Research and Development Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung 40135, Indonesia. {Present address: British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK. 299 © 2007 Nature Publishing Group LETTERS NATURE | Vol 445 | 18 January 2007 allows us to examine the ocean–atmosphere signatures of individual climate in the Indian Ocean region2,5,14,15, consistent with strong IOD IOD events for slices of time since ,6,500 calibrated years before events. Indeed, 1961, 1994 and 1997 correspond with the three stron- present (BP). gest droughts in the rainfall record of the Padang-Tabing station in To test the suitability of Mentawai corals for reconstructing IOD western Indonesia (1u S, 100u E), which was established as part of an SST and rainfall anomalies, Sr/Ca and d18O were analysed at high extensive network of Indonesian rainfall stations following the devas- (,monthly) resolution in two modern corals from the Mentawai tating drought of 1877 (ref. 15). The modern coral records suggest Islands (Supplementary Methods). Both corals were collected in that strong IOD events occur in both El Nin˜o (1877, 1994 and 1997) open, fore-reef slope environments on fringing reef systems, at water and non-El Nin˜o (1961) years, consistent with climate simulation depths of 1.2 m (coral TN99-A-4) and ,6 m (coral TM01-A-10; results7,8. IOD events also appear to exist over a wide range of mon- Supplementary Table 1). Both provide a record of the strong IOD soon conditions, with the 1877 IOD event corresponding to a year of event in 1994. The TM01-A-10 coral record also extends into the extreme monsoon failure, while the 1961 IOD occurred during the 1997 IOD event, when the Mentawai reefs experienced widespread heaviest monsoon in the nearly 200-year-long all-India monsoon coral mortality4. The coral Sr/Ca–SST anomalies reliably reconstruct rainfall index16. Hence, understanding how the IOD, ENSO and both the timing and magnitude of IOD cooling during 1994 and Asian monsoon systems interact has important implications for the 1997, as documented by blended buoy, ship and satellite SST predictability of climate extremes in the Indian Ocean region. records13 (Fig. 1b, Supplementary Figs 1 and 2). The coral records During the early to middle Holocene, broad-scale strengthening of of residual d18O(Dd18O), determined by using the Sr/Ca–SST the Asian summer monsoon occurred owing to increased Northern records to remove the temperature component of coral d18O mea- Hemisphere summer insolation17. At the same time, ENSO variabil- sured for the same samples, reflect changes in the d18O composition ity was suppressed18,19 and a more La Nin˜a-like mean state existed of sea water that are due to variations in the surface–ocean balance of across the tropical Pacific Ocean20. Thus, mid-Holocene fossil corals rainfall and evaporation11. Comparison with station and gridded from the Mentawai Islands provide a good opportunity to examine rainfall data shows that the Mentawai coral Dd18O records replicate how externally forced increases in Asian monsoon strength (which the droughts in western Indonesia that accompanied the 1994 and have been predicted for the coming century21–23) may influence the 1997 IOD events (Fig. 1b). IOD system. To do this, reconstructions of four individual IOD The distinct cool/dry IOD signal in the Mentawai coral Sr/Ca and events from the middle Holocene (6,570–4,160 calibrated years BP; d18O records indicates that corals from the eastern upwelling region Fig. 2) were averaged to produce a composite IOD event for a period can be used as an independent proxy for strong IOD activity. Further of strong Asian monsoon forcing (Fig. 3, Supplementary Fig. 3, analysis of a 140-year-long coral record from the Mentawai Islands Supplementary Table 2). For comparison, a composite IOD event has identified two more exceptionally strong IOD signals in 1961 and was also constructed using four late Holocene IOD events (from 1877 AD4 (Supplementary Fig. 3). Both years were times of extreme 2,180 calibrated years BP to the present), when the Asian monsoon weakened and El Nin˜o events were relatively strong and frequent. Comparison of the composite SST anomalies shows that, on aver- a age, the magnitude of cooling during strong eastern IOD upwelling –9.0 15 O (‰) events is similar for the strong El Nin˜o and strong monsoon scenarios 18 δ –8.5 10 (Fig. 3; 23.9 6 0.2 uC and 24.3 6 0.6 uC, respectively). The timing of –8.0 peak IOD cooling also appears to have remained essentially constant –7.5 5 with respect to the seasonal cycle of SST.
Recommended publications
  • Indian Ocean Dipole and El Niño/Southern Oscillation Impacts on Regional Chlorophyll Anomalies in the Indian Ocean Jock C
    Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean Jock C. Currie, Matthieu Lengaigne, Jérôme Vialard, David M. Kaplan, Olivier Aumont, S. W. A. Naqvi, Olivier Maury To cite this version: Jock C. Currie, Matthieu Lengaigne, Jérôme Vialard, David M. Kaplan, Olivier Aumont, et al.. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences, European Geosciences Union, 2013, 10 (10), pp.6677 - 6698. 10.5194/bg-10-6677-2013. hal-01495273 HAL Id: hal-01495273 https://hal.archives-ouvertes.fr/hal-01495273 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Biogeosciences, 10, 6677–6698, 2013 Open Access www.biogeosciences.net/10/6677/2013/ doi:10.5194/bg-10-6677-2013 Biogeosciences © Author(s) 2013. CC Attribution 3.0 License. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean J. C. Currie1,2, M. Lengaigne3, J. Vialard3, D. M. Kaplan4, O. Aumont5, S. W. A.
    [Show full text]
  • To What Extent Can Orbital Forcing Still Be Seen As the “Pacemaker Of
    Sophie Webb To what extent can orbital forcing still be seen as the main driver of global climate change? Introduction The Quaternary refers to the last 2.6 million years of geological time. During this period, there have been many oscillations in global climate resulting in episodes of glaciation and fluctuations in sea level. By examining evidence from a range of sources, palaeoclimatic data across different timescales can be considered. The recovery of longer, better preserved sediment and ice cores in addition to improved dating techniques have shown that climate has changed, not only on orbital timescales, but also on shorter scales of centuries and decades. Such discoveries have lead to the most widely accepted hypothesis of climate change, the Milankovitch hypothesis, being challenged and the emergence of new explanations. Causes of Climate Change Milankovitch Theory Orbital mechanisms have little effect on the amount of solar radiation (insolation) received by Earth. However, they do affect the distribution of this energy around the globe and produce seasonal variations which promote the growth or retreat of glaciers and ice sheets. Eccentricity is an approximate 100 kyr cycle and refers to the shape of the Earth’s orbit around the Sun. The orbit can be more elliptical or circular, altering the time Earth spends close to or far from the Sun. This in turn affects the seasons which can initiate small climatic changes. Seasonal changes are also caused by the Earth’s precession which runs on a cycle of around 23 kyr. The effect of precession is influenced by the eccentricity cycle: when the orbit is round, Earth’s distance from the sun is constant so there is not a hugely significant precessional effect.
    [Show full text]
  • A Tale of Two Oceans, and the Monsoons Tiny Seafloor Shells Could Offer Big Clues to the Forces That Generate Rainfall
    A tale of two oceans, and the monsoons Tiny seafloor shells could offer big clues to the forces that generate rainfall By Fern Gibbons lion people from their homes. Over the But we can use the past. One way to un- past 200 years, several droughts have each ravel the complexities of the monsoon sys- very summer, the continent of Asia caused more than 5 million deaths. tem is to study how it has worked in the takes a big breath. This inhalation If we could forecast upcoming mon- past. To do this, we use some very small pullsE moisture-laden air from the Indian soon seasons, we could take steps to avoid shells, preserved in sediments at the bottom Ocean over India and Southeast Asia, caus- death and destruction. But the monsoons of the sea, to answer some very big ques- ing torrential rains known as the monsoons. have defied prediction so far, partly because tions about climate. For as long as there have been people in In- they are generated by complex interactions dia and Southeast Asia, lives have been set among land, air, and two oceans. Predicting A seesawing ocean by the rhythm of the monsoons. the monsoons will become even more diffi- During the summer, the huge landmass Some years, too much rain brings devas- cult as global warming creates a climate that of Asia heats up like a brick in the sun; hot tating floods and mudslides; in other years, we have not experienced in recorded history. air rises over the continent, and cool ocean too little rain causes droughts and famine.
    [Show full text]
  • Pacific and Indian Ocean Climate Signals in a Tree-Ring Record of Java
    INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. (2008) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/joc.1679 Pacific and Indian Ocean climate signals in a tree-ring record of Java monsoon drought Rosanne D’Arrigo,a* Rob Allan,b Rob Wilson,c Jonathan Palmer,d John Sakulich,g Jason E. Smerdon,a Satria Bijaksanae and La Ode Ngkoimanif a Lamont-Doherty Earth Observatory, Palisades, NY, USA b Hadley Centre for Climate Change, UK Met Office, Exeter, United Kingdom, UK c University of St. Andrews, St. Andrews, UK d Gondwana Tree-Ring Laboratory, PO Box 14, Little River, Canterbury 7546, New Zealand e Bandung Technical University, Bandung, Indonesia f Jurusan Fisika FMIPA, Universitas Haluoleo, Sulawesi, Indonesia g University of Tennessee, Knoxville, Tennessee ABSTRACT: Extreme climate conditions have dramatic socio-economic impacts on human populations across the tropics. In Indonesia, severe drought and floods have been associated with El Nino-Southern˜ Oscillation (ENSO) events that originate in the tropical Indo-Pacific region. Recently, an Indian Ocean dipole mode (IOD) in sea surface temperature (SST) has been proposed as another potential cause of drought and flood extremes in western Indonesia and elsewhere around the Indian Ocean rim. The nature of such variability and its degree of independence from the ENSO system are topics of recent debate, but understanding is hampered by the scarcity of long instrumental records for the tropics. Here, we describe a tree-ring reconstruction of the Palmer Drought Severity Index (PDSI) for Java, Indonesia, that preserves a history of ENSO and IOD-related extremes over the past 217 years.
    [Show full text]
  • Identification of Hotspots of Rainfall Variation Sensitive to Indian Ocean
    https://doi.org/10.5194/hess-2019-217 Preprint. Discussion started: 4 June 2019 c Author(s) 2019. CC BY 4.0 License. 1 Identification of Hotspots of Rainfall Variation 2 Sensitive to Indian Ocean Dipole Mode through 3 Intentional Statistical Simulations 4 5 Jong-Suk Kim1, Phetlamphanh Xaiyaseng1, Lihua Xiong1, Sun-Kwon Yoon2,*, Taesam Lee3,* 6 1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan 7 University, Wuhan, 430072, P.R. China; [email protected] (J.K.); [email protected] 8 (P.X.); [email protected] (L.X.) 9 2 Department of Safety and Disaster Prevention Research, Seoul Institute of Technology, Seoul 10 03909, Republic of Korea 11 3 Department of Civil Engineering, ERI, Gyeongsang National University, 501 Jinju-daero, 12 Jinju, Gyeongnam, South Korea, 660-701 13 * Correspondence: [email protected] (S.Y.); [email protected] (T.L.) 14 15 Abstract. This study analyzed the sensitivity of rainfall patterns over the Indochina 16 Peninsula (ICP) to sea surface temperature in the Indian Ocean based on statistical 17 simulations of observational data. Quantitative changes in rainfall patterns over the ICP 18 were examined for both wet and dry seasons to identify hotspots sensitive to ocean 19 warming in the Indo-Pacific sector. Rainfall variability across the ICP was confirmed 20 amplified by combined and/or independent effects of the El Niño–Southern Oscillation 21 and the Indian Ocean Dipole (IOD). During the years of El Niño and a positive phase of 22 the IOD, rainfall is less than usual in Thailand, Cambodia, southern Laos, and Vietnam.
    [Show full text]
  • Indian Ocean Dipole: Processes and Impacts
    Indian Ocean Dipole: Processes and impacts P N VINAYACHANDRAN1,∗, P A FRANCIS2 and S A RAO3 1Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India 2Indian National Centre for Ocean Information Services, Hyderabad 500 055, India 3Indian Institute of Tropical Meteorology, Pashan, Pune 411 008, India ∗e-mail: [email protected] Equatorial Indian Ocean is warmer in the east, has a deeper thermocline and mixed layer, and supports a more convective atmosphere than in the west. During certain years, the eastern Indian Ocean becomes unusually cold, anomalous winds blow from east to west along the equator and southeastward off the coast of Sumatra, thermocline and mixed layer lift up and the atmospheric convection gets suppressed. At the same time, western Indian Ocean becomes warmer and enhances atmospheric convection. This coupled ocean-atmospheric phenomenon in which convection, winds, sea surface temperature (SST) and thermocline take part actively is known as the Indian Ocean Dipole (IOD). Propagation of baroclinic Kelvin and Rossby waves excited by anomalous winds, play an important role in the development of SST anomalies associated with the IOD. Since mean thermocline in the Indian Ocean is deep compared to the Pacific, it was believed for a long time that the Indian Ocean is passive and merely responds to the atmospheric forcing. Discovery of the IOD and studies that followed demonstrate that the Indian Ocean can sustain its own intrinsic coupled ocean-atmosphere processes. About 50% percent of the IOD events in the past 100 years have co-occurred with El Nino Southern Oscillation (ENSO) and the other half independently.
    [Show full text]
  • Downloaded 10/01/21 10:31 PM UTC 874 JOURNAL of CLIMATE VOLUME 12
    MARCH 1999 VAVRUS 873 The Response of the Coupled Arctic Sea Ice±Atmosphere System to Orbital Forcing and Ice Motion at 6 kyr and 115 kyr BP STEPHEN J. VAVRUS Center for Climatic Research, Institute for Environmental Studies, University of WisconsinÐMadison, Madison, Wisconsin (Manuscript received 2 February 1998, in ®nal form 11 May 1998) ABSTRACT A coupled atmosphere±mixed layer ocean GCM (GENESIS2) is forced with altered orbital boundary conditions for paleoclimates warmer than modern (6 kyr BP) and colder than modern (115 kyr BP) in the high-latitude Northern Hemisphere. A pair of experiments is run for each paleoclimate, one with sea-ice dynamics and one without, to determine the climatic effect of ice motion and to estimate the climatic changes at these times. At 6 kyr BP the central Arctic ice pack thins by about 0.5 m and the atmosphere warms by 0.7 K in the experiment with dynamic ice. At 115 kyr BP the central Arctic sea ice in the dynamical version thickens by 2±3 m, accompanied bya2Kcooling. The magnitude of these mean-annual simulated changes is smaller than that implied by paleoenvironmental evidence, suggesting that changes in other earth system components are needed to produce realistic simulations. Contrary to previous simulations without atmospheric feedbacks, the sign of the dynamic sea-ice feedback is complicated and depends on the region, the climatic variable, and the sign of the forcing perturbation. Within the central Arctic, sea-ice motion signi®cantly reduces the amount of ice thickening at 115 kyr BP and thinning at 6 kyr BP, thus serving as a strong negative feedback in both pairs of simulations.
    [Show full text]
  • The Global Monsoon Across Time Scales Mechanisms And
    Earth-Science Reviews 174 (2017) 84–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev The global monsoon across time scales: Mechanisms and outstanding issues MARK ⁎ ⁎ Pin Xian Wanga, , Bin Wangb,c, , Hai Chengd,e, John Fasullof, ZhengTang Guog, Thorsten Kieferh, ZhengYu Liui,j a State Key Laboratory of Mar. Geol., Tongji University, Shanghai 200092, China b Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96825, USA c Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing 210044, China d Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China e Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA f CAS/NCAR, National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301, USA g Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China h Future Earth, Global Hub Paris, 4 Place Jussieu, UPMC-CNRS, 75005 Paris, France i Laboratory Climate, Ocean and Atmospheric Studies, School of Physics, Peking University, Beijing 100871, China j Center for Climatic Research, University of Wisconsin Madison, Madison, WI 53706, USA ARTICLE INFO ABSTRACT Keywords: The present paper addresses driving mechanisms of global monsoon (GM) variability and outstanding issues in Monsoon GM science. This is the second synthesis of the PAGES GM Working Group following the first synthesis “The Climate variability Global Monsoon across Time Scales: coherent variability of regional monsoons” published in 2014 (Climate of Monsoon mechanism the Past, 10, 2007–2052).
    [Show full text]
  • The Effect of Orbital Forcing on the Mean Climate and Variability of the Tropical Pacific
    15 AUGUST 2007 T I MMERMANN ET AL. 4147 The Effect of Orbital Forcing on the Mean Climate and Variability of the Tropical Pacific A. TIMMERMANN IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii S. J. LORENZ Max Planck Institute for Meteorology, Hamburg, Germany S.-I. AN Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea A. CLEMENT RSMAS/MPO, University of Miami, Miami, Florida S.-P. XIE IPRC, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii (Manuscript received 24 October 2005, in final form 22 December 2006) ABSTRACT Using a coupled general circulation model, the responses of the climate mean state, the annual cycle, and the El Niño–Southern Oscillation (ENSO) phenomenon to orbital changes are studied. The authors analyze a 1650-yr-long simulation with accelerated orbital forcing, representing the period from 142 000 yr B.P. (before present) to 22 900 yr A.P. (after present). The model simulation does not include the time-varying boundary conditions due to ice sheet and greenhouse gas forcing. Owing to the mean seasonal cycle of cloudiness in the off-equatorial regions, an annual mean precessional signal of temperatures is generated outside the equator. The resulting meridional SST gradient in the eastern equatorial Pacific modulates the annual mean meridional asymmetry and hence the strength of the equatorial annual cycle. In turn, changes of the equatorial annual cycle trigger abrupt changes of ENSO variability via frequency entrainment, resulting in an anticorrelation between annual cycle strength and ENSO amplitude on precessional time scales. 1. Introduction Recent greenhouse warming simulations performed with ENSO-resolving coupled general circulation mod- The El Niño–Southern Oscillation (ENSO) is a els (CGCMs) have revealed that the projected ampli- coupled tropical mode of interannual climate variability tude and pattern of future tropical Pacific warming that involves oceanic dynamics (Jin 1997) as well as (Timmermann et al.
    [Show full text]
  • Orbital Forcing of Climate 1.4 Billion Years Ago
    Orbital forcing of climate 1.4 billion years ago Shuichang Zhanga, Xiaomei Wanga, Emma U. Hammarlundb, Huajian Wanga, M. Mafalda Costac, Christian J. Bjerrumd, James N. Connellyc, Baomin Zhanga, Lizeng Biane, and Donald E. Canfieldb,1 aKey Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, China; bInstitute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, 5230 Odense M, Denmark; cCentre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen K, Denmark; dDepartment of Geosciences and Natural Resource Management, Section of Geology, and Nordic Center for Earth Evolution, University of Copenhagen, 1350 Copenhagen K, Denmark; and eDepartment of Geosciences, Nanjing University, Nanjing 210093, China Contributed by Donald E. Canfield, February 9, 2015 (sent for review May 2, 2014) Fluctuating climate is a hallmark of Earth. As one transcends deep tions. For example, the intertropical convergence zone (ITCZ), into Earth time, however, both the evidence for and the causes the region of atmospheric upwelling near the equator, shifts its of climate change become difficult to establish. We report geo- average position based on the temperature contrast between the chemical and sedimentological evidence for repeated, short-term northern and southern hemispheres, with the ITCZ migrating in climate fluctuations from the exceptionally well-preserved ∼1.4- the direction of the warming hemisphere (11, 12). Therefore, the billion-year-old Xiamaling Formation of the North China Craton. ITCZ changes its position seasonally, but also on longer time We observe two patterns of climate fluctuations: On long time scales as controlled, for example, by the latitudinal distribution scales, over what amounts to tens of millions of years, sediments of solar insolation.
    [Show full text]
  • Perception Towards Forestation As a Strategy to Mitigate Climate Change in Somalia
    This SocArXiv preprint has been submitted for peer-review Perception towards forestation as a strategy to mitigate climate change in Somalia Osman M. Jama 1,2, Abdishakur W. Diriye 1,2, Abdulhakim M. Abdi 3 1 School of Public Affairs, University of Science and Technology of China, Hefei, People’s Republic of China- 2 Department of Public Administration, Faculty of Economics and Management Science, Mogadishu University, Mogadishu, Somalia. 3 Centre for Environmental and Climate Research, Lund University, Lund, Sweden. Abstract Climate change mitigation strategies need both source reductions in greenhouse gas emissions and a significant enhancement of the land sink of carbon dioxide (CO2) through photosynthesis. In recent years, there has been growing attention to forests as an effective way to mitigate climate change as they capture and store large quantities of CO2 as phytomass and in the soil. Numerous forestation programs have been rolled out internationally and governments, mostly in the developing world, have been fostering tree planting initiatives. However, there is a paucity of studies that assess local perceptions to these initiatives and there are virtually no studies that do so in countries recovering from long-term conflict such as Somalia. Here, we analyze the factors that motivate or hinder the perception of young people in Somalia about forestation as a means to mitigate climate change. This demographic was targeted because 75% of the population of Somalia is between the ages of 18 and 35. Our results show that biocentric value orientation, which emphasizes environmental preservation and ecosystem maintenance, has significant positive influence on attitudes towards forestation whereas anthropocentric value orientation, which treats forests as an instrumental value to humans, did not show a significant influence.
    [Show full text]
  • Can Australian Multiyear Droughts and Wet Spells Be Generated in the Absence of Oceanic Variability?
    1SEPTEMBER 2016 T A S C H E T T O E T A L . 6201 Can Australian Multiyear Droughts and Wet Spells Be Generated in the Absence of Oceanic Variability? ANDRÉA S. TASCHETTO AND ALEX SEN GUPTA Climate Change Research Centre, and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia CAROLINE C. UMMENHOFER Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts MATTHEW H. ENGLAND Climate Change Research Centre, and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia (Manuscript received 1 October 2015, in final form 28 April 2016) ABSTRACT Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall vari- ability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year.
    [Show full text]