Exudative Epidermitis in Pigs Caused by Toxigenic Staphylococcus Chromogenes

Total Page:16

File Type:pdf, Size:1020Kb

Exudative Epidermitis in Pigs Caused by Toxigenic Staphylococcus Chromogenes Veterinary Microbiology 105 (2005) 291–300 www.elsevier.com/locate/vetmic Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes Lars Ole Andresen*, Peter Ahrens, Lise Daugaard, Vivi Bille-Hansen Danish Institute for Food and Veterinary Research, Department of Veterinary Diagnostics and Research, Bu¨lowsvej 27, DK-1790 Copenhagen V, Denmark Received 3 September 2004; received in revised form 1 December 2004; accepted 8 December 2004 Abstract Staphylococcus chromogenes is closely related to Staphylococcus hyicus, which is recognised as the causative agent of exudative epidermitis (EE) in pigs. S. chromogenes is part of the normal skin flora of pigs, cattle and poultry and has so far been considered non-pathogenic to pigs. A strain of S. chromogenes producing exfoliative toxin type B, ExhB, was identified by the use of a multiplex PCR specific for the exfoliative toxins from S. hyicus. The exfoliative toxin from S. chromogenes reacted in immunoblot analysis with polyclonal and monoclonal antibodies specific to ExhB from S. hyicus and had an apparent molecular weight of 30 kDa. Sequencing the gene encoding the exfoliative toxin from S. chromogenes revealed that the molecular weight of the toxin with the signal peptide and the mature toxin was 30,553 and 26,694 Da, respectively. Comparison of the exhB genes from S. chromogenes strain VA654 and S. hyicus strain 1289D-88 showed differences in seven base pairs of the DNA sequences and in two amino acid residues in the deduced amino acid sequences. Pigs were experimentally inoculated with S. chromogenes strain VA654. By clinical observations and histopathological evaluation of the skin alterations, all pigs revealed development of generalized exudative epidermitis. No toxin producing S. hyicus was isolated from the pigs and all ExhB-positive bacterial isolates were identified as S. chromogenes. This confirmed that the disease-causing agent was the inoculated S. chromogenes strain VA654. The results of this study show that S. chromogenes may cause exudative epidermitis in pigs. # 2004 Elsevier B.V. All rights reserved. Keywords: Staphylococcus chromogenes; Exfoliative toxin; Exudative epidermitis; Experimental infection; Pig-bacteria 1. Introduction pigs and have also been isolated from cattle, poultry (Devriese et al., 1985; Shimizu et al., 1992) and goats The bacterial species Staphylococcus chromogenes (Valle et al., 1991). Both species were previously and Staphylococcus hyicus are part of the skin flora of subspecies of the species S. hyicus, which was a new combination of Micrococcus hyicus, coagulase-posi- * Corresponding author. Tel.: +45 723 46 282; tive S. epidermidis biotype 2, and Staphylococcus fax: +45 723 46 001. aureus avian biotype 2 (Devriese et al., 1978). E-mail address: [email protected] (L.O. Andresen). Elevation of S. hyicus ssp. chromogenes to S. 0378-1135/$ – see front matter # 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.vetmic.2004.12.006 292 L.O. Andresen et al. / Veterinary Microbiology 105 (2005) 291–300 chromogenes was suggested by Ha´jek et al. (1986) In dairy cattle, S. chromogenes is a well-known based on several criteria, including DNA–DNA pathogen associated with mastitis (Devriese et al., hybridisation studies, phenotypic characteristics, 2002) and has also been reported as the cause of skin differences in penicillin-binding proteins and phage infection in a goat (Andrews and Lamport, 1997). S. host range, which separated the two subspecies of S. chromogenes has been isolated from the skin of both hyicus from one another. Consequently both S. hyicus diseased and healthy pigs (Devriese et al., 1978; Saito ssp. hyicus and S. hyicus ssp. chromogenes were raised et al., 1996) but in those studies was not established as to species status (Annon., 1987). A few character- an ethiological agent of disease. S. chromogenes from istics, which are useful in diagnostic laboratories, can chickens and bovine udders was not pathogenic to pigs easily differentiate S. chromogenes and S. hyicus. The in inoculation experiments (Devriese and Oeding, former lacks heat-stable nuclease, hyaluronidase, and 1975), and consequently, S. chromogenes has been does not possess lipase activity that hydrolyse Tween regarded as non-pathogenic in pigs (Ha´jek et al., 1986). 80, whereas S. hyicus shows positive reactions for In the present study, we have identified and char- these enzymes. In addition, S. chromogenes most often acterised an exfoliative toxin from S. chromogenes appears with orange or creamy colonies in contrast to similar to the exfoliative toxin ExhB from S. hyicus.By the white colonies of S. hyicus. Isolation of non- experimental infection studies it was demonstrated that pigmented S. chromogenes from pigs has, however, S. chromogenes may provoke EE in pigs. been reported (Saito et al., 1996). S. hyicus is recognized as the causative agent of exudative epidermitis in pigs, which is a generalized 2. Materials and methods skin infection (Wegener and Skov-Jensen, 1999). Exfoliative toxins that are produced by certain strains 2.1. Bacterial strains and culture conditions of S. hyicus cause the characteristic histopathological signs of EE (Andresen et al., 1997). Both toxigenic S. chromogenes investigated in the present study and non-toxigenic S. hyicus can be isolated from comprised 15 from Belgium (13 porcine and 2 diseased animals (Andresen, 1998). The human bovine), all originating from different farms and 4 disease staphylococcal scalded skin syndrome (SSSS), strains from bovine mastitis isolated in Norway (see caused by exfoliative toxin-producing S. aureus Table 1). The type strains of S. chromogenes, (Ladhani et al., 1999), has several comparative aspects NCTC10530 (Ha´jek et al., 1986) and S. hyicus, to EE in pigs including histopathology, i.e., blister NCTC10350 (Devriese et al., 1978) were used for formation and exfoliation of the skin caused by comparison and as control strains in the identification splitting of the skin at the granular layer of the procedures. S. hyicus strains NCTC10350T, 1289D- epidermis. S. aureus from cases of SSSS and bullous 88, 842A-88 (Wegener et al., 1993) and A2869C impetigo in humans produces exfoliative toxins, (Amtsberg, 1979) were used as reference strains with designated ETA, ETB and ETD (Hanakawa et al., regard to the exfoliative toxins ExhA, ExhB, ExhC 2002; Yamaguchi et al., 2002). These toxins have been and ExhD, respectively, and the corresponding genes. shown to specifically cleave the desmoglein-1, which Additionally, four ExhB-positive field strains of S. is a desmosomal cadherin-like molecule involved in hyicus isolated from pigs with EE in Denmark in 1996, cell-to-cell adhesion (Hanakawa et al., 2002). 1997, 2003 and 2004, respectively, were used for Recently, it was shown that the amino acid sequences sequencing of the exhB gene. The strains were grown of the exfoliative toxins from S. hyicus and S. aureus aerobically at 37 8C for 17–24 h on Columbia agar share similarities both between and within the two base (Oxoid, Unipath Ltd., Basingstoke, UK) supple- species (Ahrens and Andresen, 2004). On the basis of mented with 5% bovine blood (C-blood agar). Liquid the DNA sequences of the exfoliative toxins and growth medium consisted of 30 g lÀ1 trypticase soy available reference strains for the exfoliative toxins broth (Becton Dickinson and Co., Cockeysville, MD) ExhA, ExhB, ExhC and ExhD from S. hyicus a supplemented with 10 g lÀ1 yeast extract (Oxoid), pH multiplex PCR was recently developed (Andresen and was adjusted to 7.2 before autoclaving the medium. Ahrens, 2004). The liquid growth medium was supplemented with L.O. Andresen et al. / Veterinary Microbiology 105 (2005) 291–300 293 Table 1 Strains of Staphylococcus chromogenes and Staphylococcus hyicus used in present study Species Strain designation Origin Year of isolation, Referencea Exfoliative country toxin produced S. chromogenes NCTC10530T –, England 1 VA103, VA104, VA110, VA401, Pig, healthy skin 1979, Belgium 2 VA404, VA650 VA654 Pig, healthy skin 1979, Belgium 2 ExhB VAC 44 Pig, healthy skin 1989, Belgium – G91 Pig, joint 1984, Belgium – G92 Pig, skin 1984, Belgium – G248, G254 Sow, endometritis 1990, Belgium – Bo59, Bo81 Cow, lesion 1977, Belgium 2 6105-4, 6042-3, 6087-2, 6128-3 Cow, mastitis 1997–1998, Norway – S. hyicus NCTC10350T Pig with EE, skin 1949, Denmark 3 ExhA 1289D-88 Pig with EE, skin 1988, Denmark 4 ExhB 842A-88 Pig with EE, skin 1988, Denmark 4 ExhC A2869C Pig with EE, skin 1970, Germany 5 ExhD 9606363-1 Pig with EE, skin 1996, Denmark – ExhB 9716142-1 Pig with EE, skin 1997, Denmark – ExhB 7513260-1 Pig with EE, skin 2003, Denmark – ExhB 7611103-1 Pig with EE, skin 2004, Denmark – ExhB a 1, Baird-Parker (1962);2,Devriese et al. (1978);3,Sompolinsky (1950);4,Wegener et al. (1993); 5, Amtsberg et al. (1979). Strains with no reference indicated (–) have not previously been published. 0.5 mM CoCl2 and 0.5 mM ZnSO4 after sterilization. multiplex PCR as previously described (Andresen and Cultures were grown in 10-ml tubes containing 5 ml Ahrens, 2004). Expression of exfoliative toxin was liquid growth medium inoculated with a single colony detected by sodium dodecyl sulfate-polyacrylamide from an overnight culture on C-blood agar. Liquid gel electrophoresis (SDS-PAGE) and immunoblotting cultures were incubated for 24 h at 37 8C with shaking as previously described (Andresen, 1999) using the at 130 rpm. monoclonal antibody MabEXH5.1 and polyclonal rabbit antibodies specific for ExhB (Andresen et al., 2.2. Identification 1997) as primary antibodies. Characters that were used for distinguishing 2.4. DNA sequencing between S. chromogenes and S. hyicus were pigmen- tation of the bacterial colonies on C-blood agar, lipase Genes encoding 16S rDNA were sequenced as activity tested for by the use of a selective and previously described (L’Abe´e-Lund et al., 2003)by indicative agar-medium previously described by PCR amplification, purification of the PCR-products Devriese (1977), hyaluronidase activity (Devriese and sequencing on an ABI 377 automatic sequencers et al., 1985) and heat-stable nuclease (Lachica et al., using the Prism BigDye terminator cycle sequencing 1971).
Recommended publications
  • Detection of Staphylococcus Aureus and Other Coagulase Positive Staphylococci in Bovine Raw Milk in Khartoum State by Ikhtyar Ah
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace Detection of Staphylococcus aureus and other Coagulase Positive Staphylococci in Bovine Raw Milk in Khartoum State By Ikhtyar Ahmed Hassan Ali B.C.Sc (2003) Supervisor Prof. Mohammed Taha Shigiddi Department of Microbiology Faculty of Veterinary medicine A dissertation submitted to University of Khartoum in partial fulfillment for the requirement of the Degree of Master of Science in Microbiology Department of Microbiology Faculty of veterinary Medicine University of Khartoum 2010 Dedication to my father, mother, brothers and sisters with love I Table of Contents Subject Page Dedication………………………………………………………. I Table of Contents………………………………………………. II List of Figures…………………………………………………… VII List of Table…………………………………………………….. VIII Acknowledgments………………………………………………. IX Abstract…………………………………………………………. X Abstract (Arabic)……………………………………………… XI Introduction…………………………………………………… 1 Chapter One: Literature Review…………………………….. 3 1.1. Health Hazards of Raw Milk…………………………………… 4 1.2. Pathogenic bacteria in milk........................................................ 5 1.3. Microbial quality of raw milk.................................................... 6 1.4. Staphylococci........................................................................... 7 1.4.1. Coagulase positive staphylococci (CPS)……………………… 8 1.4.2. Coagulase negative staphylococci (CNS)……………………… 10 1.5. Staphylococcus aureus………………………………………… 10 1.5.1. Virulence characteristics of S.
    [Show full text]
  • Greasy Pig Disease
    Greasy Pig Disease Greasy Pig Disease is caused by a bacterium called Staphylococcus hyicus. Clinical signs are mostly seen with piglets which are up to 2 weeks old, but it can affect pigs up to 6 weeks of age and older. The bacterium is transmitted from pig to pig and is contagious (can spread easily). In pre-weaned pigs, a few piglets or a litter may be affected, in contrast to post-weaned animals when litters are mixed and a greater number of pigs can show clinical signs. Staphylococcus hyicus is found on the skin and does not usually cause clinical disease. The reservoir of infection for piglets is the sow’s skin and the bacterium is transmitted to the piglet following direct skin contact with her during the farrowing period. For clinical signs to develop, entry into the pig has to be gained, and this occurs through skin wounds or abrasions where the skin defence barrier is weakened. These can be caused by fighting, the environment, or even parasite damage such as that caused by Mange mites. Further spread of the bacterium between piglets occurs when they are in an environment that is warm and has high humidity. Clinical Signs After gaining entry through the skin, the bacterium infects the local area, which then becomes painful and reddened. The skin becomes thickened and oozes, progressing to a covering of greasy brown scabs that can extend over the whole body. These lesions are not itchy, but they do Picture from pictureASAS gallery leave the piglet’s skin susceptible to Greasy brown scabs commonly seen with other potential secondary infections.
    [Show full text]
  • Staphylococcus Aureus and Other Staphylococci by an Endolysin A.C
    Killing and lysis of Staphylococcus aureus and other staphylococci by an endolysin A.C. Fluit1, S. van Marm1, F. Eichenseher2, M.J. Loessner2, F. Pietersma3, and C.H.E. Boel1 1Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands; 2Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland; 3Micreos BV, Wageningen, The Netherlands Introduction Results Table 1. Lysis results for the tested strains after The use of endolysins for the treatment of ■ All Staphylococcus aureus strains could be lysed by the endolysin (Table 1). 30 min and 60 µg/mL endolysin. skin infections or decontamination may A concentration of 30 µg/mL was still considered to be effective (example in species remarks result circumvent antibiotic resistance. Micreos has Fig. 1). lysis (%) Staphylococcus aureus Hospital-associated MRSA 50 developed an endolysin as a potential ■ Staphylococcus pseudointermedius, and Staphylococcus hyicus also showed Community-associated antibacterial compound. Staphefekt.SA100 a good lysis, whereas lysis of Staphylococcus capitis and Staphyloccus homonis Staphylococcus aureus MRSA 60 Livestock-associated is a chimeric lysin featuring endopeptidase was less. Lysis of Staphylococcus epidermidis and Staphylococcus Staphylococcus aureus MRSA 70 and putative amidase activities. The aim of haemolyticus was hardly observed and was absent for Staphylococcus Staphylococcus aureus methicillin susceptible 50 Staphylococcus aureus methicillin susceptible 50 this study was to determine the species lugdunensis. Staphylococcus epidermidis methicillin resistant 0 Staphylococcus epidermidis methicillin susceptible 10 specificity of Staphefekt.SA100, the ■ For the other species tested lysis could not be detected (Table 1). Staphylococcus haemolyticus 10 killing efficiency and effective concentration ■ For all S. aureus isolates excellent killing (>100x) was observed within 6 h Staphylococcus hominis 20 Staphylococcus pseudointermedius 40 against several staphylococcal species.
    [Show full text]
  • The Genera Staphylococcus and Macrococcus
    Prokaryotes (2006) 4:5–75 DOI: 10.1007/0-387-30744-3_1 CHAPTER 1.2.1 ehT areneG succocolyhpatS dna succocorcMa The Genera Staphylococcus and Macrococcus FRIEDRICH GÖTZ, TAMMY BANNERMAN AND KARL-HEINZ SCHLEIFER Introduction zolidone (Baker, 1984). Comparative immu- nochemical studies of catalases (Schleifer, 1986), The name Staphylococcus (staphyle, bunch of DNA-DNA hybridization studies, DNA-rRNA grapes) was introduced by Ogston (1883) for the hybridization studies (Schleifer et al., 1979; Kilp- group micrococci causing inflammation and per et al., 1980), and comparative oligonucle- suppuration. He was the first to differentiate otide cataloguing of 16S rRNA (Ludwig et al., two kinds of pyogenic cocci: one arranged in 1981) clearly demonstrated the epigenetic and groups or masses was called “Staphylococcus” genetic difference of staphylococci and micro- and another arranged in chains was named cocci. Members of the genus Staphylococcus “Billroth’s Streptococcus.” A formal description form a coherent and well-defined group of of the genus Staphylococcus was provided by related species that is widely divergent from Rosenbach (1884). He divided the genus into the those of the genus Micrococcus. Until the early two species Staphylococcus aureus and S. albus. 1970s, the genus Staphylococcus consisted of Zopf (1885) placed the mass-forming staphylo- three species: the coagulase-positive species S. cocci and tetrad-forming micrococci in the genus aureus and the coagulase-negative species S. epi- Micrococcus. In 1886, the genus Staphylococcus dermidis and S. saprophyticus, but a deeper look was separated from Micrococcus by Flügge into the chemotaxonomic and genotypic proper- (1886). He differentiated the two genera mainly ties of staphylococci led to the description of on the basis of their action on gelatin and on many new staphylococcal species.
    [Show full text]
  • Bacterial Flora on the Mammary Gland Skin of Sows and in Their Colostrum
    Brief communication Peer reviewed Bacterial flora on the mammary gland skin of sows and in their colostrum Nicole Kemper, Prof, Dr med vet; Regine Preissler, DVM Summary Resumen - La flora bacteriana en la piel de Résumé - Flore bactérienne cutanée de la Mammary-gland skin swabs and milk la glándula mamaria de las hembras y en su glande mammaire de truies et de leur lait calostro samples were analysed bacteriologically. All Des écouvillons de la peau de la glande skin samples were positive, with 5.2 isolates Se analizaron bacteriológicamente hisopos de mammaire ainsi que des échantillons de lait on average, Staphylococcaceae being the la piel de la glándula mamaria y muestras de ont été soumis à une analyse bactériologique. dominant organisms. In 20.8% of milk leche. Todas las muestras de piel resultaron Tous les échantillons provenant de la peau samples, no bacteria were detected. Two iso- positivas, con 5.2 aislados en promedio, étaient positifs, avec en moyenne 5.2 isolats lates on average, mainly Staphylococcaceae siendo los Staphylococcaceae los organismos bactériens, les Staphylococcaceae étant de loin and Streptococcaceae, were isolated from the dominantes. En 20.8% de las muestras de les micro-organismes dominants. Aucune positive milk samples. leche, no se detectaron bacterias. De las bactérie ne fut détectée dans 20.8% des Keywords: swine, bacteria, colostrum, muestras de leche positivas, se aislaron échantillons de lait. En moyenne, on trouvait mammary gland, skin dos aislados en promedio, principalmente deux isolats bactériens par échantillon de lait Staphylococcaceae y los Streptococcaceae. positif, et ceux-ci étaient principalement des Received: April 7, 2010 Staphylococcaceae et des Streptococcaceae.
    [Show full text]
  • Investigation of Exudative Epidermitis and Ear Necrosis in Pigs
    INVESTIGATION OF EXUDATIVE EPIDERMITIS AND EAR NECROSIS IN PIGS by Jeonghwa Park A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Veterinary Sciences in Population Medicine Guelph, Ontario, Canada © Jeonghwa Park, December, 2011 ABSTRACT INVESTIGATION OF EXUDATIVE EPIDERMITIS AND EAR NECROSIS IN PIGS Jeonghwa Park Advisor: University of Guelph, 2011 Dr. R. M. Friendship This thesis is an investigation of two common skin conditions of pigs: exudative epidermitis (EE) and ear necrosis (EN). The cause of exudative epidermitis and risk factors are well understood, however the study was prompted because of reports of treatment failure. A survey of veterinary practitioners (n=15) and pork producers (n=58) was conducted to determine which treatments are commonly used. Amongst farmer respondents topical treatments were often used and in serious cases injectable penicillin G was administered. Thirty farms with a history of EE were visited and skin samples taken from affected pigs. The antimicrobial resistance pattern for isolates of Staphylococcus hyicus and Staphylococcus aureus revealed that almost all isolates were resistant to penicillin G and ampicillin. In addition, certain isolates of S. hyicus as well as S. aureus were shown to possess the mecA gene which is associated with resistance to methicillin. The presence of widespread resistance to penicillin G among staphylococci isolates suggests a reason for poor treatment response. The presence of the mecA gene in staphylococci other than S. aureus recovered from pigs has not been reported before and is of interest from a public health standpoint. A second study investigated EN.
    [Show full text]
  • Advancements in the Understanding of Staphylococcal
    ADVANCEMENTS IN THE UNDERSTANDING OF STAPHYLOCOCCAL MASTITIS THROUGH THE USE OF MOLECULAR TOOLS __________________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia __________________________________________ In partial fulfillment of the requirements for the degree Doctor of Philosophy __________________________________________ By PAMELA RAE FRY ADKINS Dr. John Middleton, Dissertation Supervisor May 2017 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled ADVANCEMENTS IN THE UNDERSTANDING OF STAPHYLOCOCCAL MASTITIS THROUGH THE USE OF MOLECULAR TOOLS presented by Pamela R. F. Adkins, a candidate for the degree of Doctor of Philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor John R. Middleton Professor James N. Spain Professor Michael J. Calcutt Professor George C. Stewart Professor Thomas J. Reilly DEDICATION I dedicate this to my husband, Eric Adkins, and my mother, Denice Condon. I am forever grateful for their eternal love and support. ACKNOWLEDGEMENTS I thank John R. Middleton, committee chair, for this support and guidance. I sincerely appreciate his mentorship in the areas of research, scientific writing, and life in academia. I also thank all the other members of my committee, including Michael Calcutt, George Stewart, James Spain, and Thomas Reilly. I am grateful for their guidance and expertise, which has helped me through many aspects of this research. I thank Simon Dufour (University of Montreal), Larry Fox (Washington State University) and Suvi Taponen (University of Helsinki) for their contribution to this research. I acknowledge Julie Holle for her technical assistance, for always being willing to help, and for being so supportive.
    [Show full text]
  • Redalyc.Evaluation of a Simplified Key for the Identification Of
    Acta Scientiarum. Biological Sciences ISSN: 1679-9283 [email protected] Universidade Estadual de Maringá Brasil Márcio da Costa, Geraldo; Vilela Paiva, Luciano; Hilsdorf Piccoli, Roberta; Junqueira Figueiredo, Demétrio; Pádua Pereira, Ulisses de; Silva, Nivaldo da Evaluation of a simplified key for the identification of coagulasepositive Staphylococcus isolated from bovine mastitis Acta Scientiarum. Biological Sciences, vol. 32, núm. 4, 2010, pp. 403-406 Universidade Estadual de Maringá .png, Brasil Disponible en: http://www.redalyc.org/articulo.oa?id=187115378010 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto DOI: 10.4025/actascibiolsci.v32i4.6276 Evaluation of a simplified key for the identification of coagulase- positive Staphylococcus isolated from bovine mastitis Geraldo Márcio da Costa1*, Luciano Vilela Paiva2, Roberta Hilsdorf Piccoli3, Demétrio Junqueira Figueiredo1, Ulisses de Pádua Pereira1 and Nivaldo da Silva4 1Departamento de Medicina Veterinária, Universidade Federal de Lavras, 37200-000, Centro, Lavras, Minas Gerais, Brazil. 2Departamento de Química, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil. 3Departamento de Ciências dos Alimentos, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil. 4Departamento de Medicina Veterinária Preventiva, Escola de Veterinária,
    [Show full text]
  • Differentiation and Distribution of Three Types of Exfoliative Toxin Produced
    FEMS Immunology and Medical Microbiology 20 (1998) 301^310 Di¡erentiation and distribution of three types of exfoliative toxin produced by Staphylococcus hyicus from pigs with exudative epidermitis Lars Ole Andresen * Department of Microbiology, Danish Veterinary Laboratory, Buëlowsvej 27, DK-1790 Copenhagen V, Denmark Received 20 December 1997; revised 19 February 1998; accepted 20 February 1998 Abstract Exfoliative toxins of approximately 30 kDa produced by Staphylococcus hyicus strains NCTC 10350, 1289D-88 and 842A-88 were purified and specific polyclonal antisera were raised against each of the toxins. It was shown by immunoblot analysis and ELISA that three exfoliative toxins from S. hyicus were antigenically distinct. The three toxins were designated ExhA, ExhB and ExhC. From 60 diseased pigs, each representing an outbreak of exudative epidermitis, a total of 584 isolates of S. hyicus were phage typed and tested for production of exfoliative toxin. ExhA-, ExhB- and ExhC-producing S. hyicus isolates were found in 12 (20%), 20 (33%) and 11 (18%), respectively, of the 60 pig herds investigated. Production of the different types of exfoliative toxin was predominantly associated with certain phage groups. However, toxin production was found in all of the six phage groups defined by the phage typing system. Some changes in the distribution of isolates between phage groups were observed when the results of this study were compared to previous investigations. In this study two new antigenically distinct exfoliative toxins were isolated and tools for in vitro detection of toxin producing S. hyicus isolates and for further studies on the exfoliative toxins from S. hyicus have been provided.
    [Show full text]
  • Virulence Factors and Pathogencity Islands in Staphylococcus Species: a Review
    International Journal of Research Studies in Microbiology and Biotechnology (IJRSMB) Volume 6, Issue 1, 2020, PP 14-20 ISSN No. (Online) 2454-9428 DOI: http://dx.doi.org/10.20431/2454-9428.0601002 www.arcjournals.org Virulence Factors and Pathogencity Islands in Staphylococcus Species: A Review Desiye Tesfaye Tegegne* Animal Biotechnology Research Program, National Agricultural Biotechnology Research Center, Ethiopian Institute Of Agricultural Research, P.O. Box 249, Holeta, Ethiopia *Corresponding Author: Desiye Tesfaye Tegegne, Animal Biotechnology Research Program, National Agricultural Biotechnology Research Center, Ethiopian Institute Of Agricultural Research, P.O. Box 249, Holeta, Ethiopia, . Abstract: Staphylococcus aureus (S.aureus) is a common pathogen associated with serious community and . hospital acquired diseases and has long been considered as a major problem of public health. This potent Gram -positive bacterium is able to bypass all barriers of the host defense system as it possesses a wide spectrum of virulence factors. S. aureus is also one of the prominent pathogens in biofilm-related infections of indwelling medical devices, which are responsible for billions in healthcare cost each year in developing countries. S. aureus expresses a large number of virulence factors that are implicated in their pathogenesis. Methicillin-resistant S. aureus infections have reached epidemic levels in many parts of the world. This review describes the virulence factors and pathogenic islands in major pathogenic staphylococcus especially S.aureus Keywords: Staphylococcus aureus, pathogenic islands, virulence factor 1. INTRODUCTION Staphylococci are gram positive bacteria, 0.5-1.5 μm in diameter and appear as individual coccus, in pairs, tetrads or in grape like clusters. The genus Staphylococcus has 41 species many of which colonize human and animal body.
    [Show full text]
  • Evaluation of the Staph-Ident and Staphase Systems for Identification of Staphylococci from Bovine Intramammary Infections JEFFREY L
    JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1984, p. 448-452 Vol. 20, No. 3 0095-1137/84/090448-05$02.00/0 Copyright ©D 1984, American Society for Microbiology Evaluation of the Staph-Ident and STAPHase Systems for Identification of Staphylococci from Bovine Intramammary Infections JEFFREY L. WATTS,* J. WOODROW PANKEY, AND STEPHEN C. NICKERSON Mastitis Research Laboratory, Hill Farm Research Station, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Homer, Louisiana 71040 Received 6 January 1984/Accepted 22 May 1984 The Staph-Ident and STAPHase systems (Analytab Products, Plainview, N.Y.) were compared with conventional methods for identification of staphylococci isolated from bovine intramammary infections. Adjunct testing by colony morphology, pigmentation, and biochemical tests was conducted to resolve discrepant identifications. The initial accuracies of the conventional scheme and Staph-Ident were 92.1 and 89.2%, respectively. Staphylococcus hyicus subsp. chromogenes could not be identified by means of the Staph- Ident test, but the addition of pigment production as a key character permitted identification of most strains. The final accuracy of the Staph-Ident was 94.3%. The STAPHase system was as accurate as the conventional tube coagulase method. The Staph-Ident and STAPHase systems are acceptable alternatives to conventional methods for identification of staphylococcal species isolated from bovine intramammary infections. Bovine mastitis is a disease of great economic importance system requires only 5 h of incubation for the identification to the dairy industry, with national losses approaching two of staphylococci. The purpose of this study was to compare billion dollars per year (26). Members of the family Micro- the Staph-Ident with a conventional scheme for identifica- coccaceae are the organisms most frequently isolated from tion of staphylococcal species isolated from bovine IMI.
    [Show full text]
  • Whole Genome Comparisons of Staphylococcus Agnetis Isolates from Cattle and Chickens
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.06.896779; this version posted January 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Whole genome comparisons of Staphylococcus agnetis isolates from cattle and chickens. 2 3 Abdulkarim Shwani,a Pamela R. F. Adkins,b Nnamdi S. Ekesi,a Adnan Alrubaye,a Michael J. 4 Calcutt,c John R. Middleton,b Douglas D. Rhoadsa,# 5 aCell and Molecular Biology program, University of Arkansas, Fayetteville, Arkansas, USA 6 bDept. of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA 7 cDept. of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA 8 9 Running Head: S. agnetis phylogenomics 10 11 #Address correspondence to Douglas Rhoads, [email protected] 12 Keywords: Staphlococcus, Broiler, Mastitis, Lameness, Phylogeny 13 14 Abstract 15 We report the comparisons of genomes of eleven isolates of Staphylococcus agnetis obtained 16 from dairy cattle and chickens. S. agnetis has been previously associated with subclinical or 17 clinically mild cases of mastitis in dairy cattle and is one of several Staphylococcal species 18 isolated from the bone and blood of lame broilers. We have previously shown that a chicken 19 isolate 908 can induce bacterial chondronecrosis with osteomyelitis (BCO) in chickens with 20 incidences of lameness over 50%. We have also assembled and analyzed the genome of isolate 21 908. To better understand the relationship between dairy cattle and broiler isolates, we 22 assembled genomes for S.
    [Show full text]