Excerpt from the Proceedings of the COMSOL Conference 2010 Paris From CT Scan to Plantar Pressure Map Distribution of a 3D Anatomic Human Foot P. Franciosa, S. Gerbino* University of Molise, School of Engineering *Corresponding author: Via Duca degli Abruzzi - 86039 Termoli (CB) – Italy
[email protected] Abstract: Understanding the stress-strain behav- methods, based on FE modeling, have also been ior of human foot tissues and pressure map dis- adopted. FE models of human foot have been tributions at the plantar interface is of interest developed under certain simplifications and as- into biomechanical investigations. In particular, sumptions (see [7] and [8]) such as: (i) simplified monitoring plantar pressure maps is crucial to or partial foot shape, (ii) assumptions of non- establishing the perceived human comfort of linear hyper-elastic material law, (iii) ligaments shoe insoles. and plantar fascia modeled as equivalent forces In this contest, a 3D anatomical detailed FE hu- or elastic beams/bars, (iiii) no friction or thermal man foot model was created, starting from CT effect, at plantar foot interface, accounted. (Computer Tomography) scans of a 29 years old Based on these assumptions, valuable 3D FE male. Anatomical domains related to bones and models were presented in the literature [9], [10]. soft tissues were generated, using segmentation In this contest, the geometrical complexity of techniques, and then processed into a CAD envi- foot structure was captured through reverse en- ronment to model 3D domains by using gineering methodologies, based on CT (Com- loft/sweep and boolean operations. Finally, FE puter Tomography) or MR (Magnetic Reso- model was generated into Comsol Multiphys- nance) scans.