2017 Abstract Book Ionized and Molecular Gas in IC 860: Evidence for an Outflow Carson Adams Mentors: Katherine Alatalo and Anne M

Total Page:16

File Type:pdf, Size:1020Kb

2017 Abstract Book Ionized and Molecular Gas in IC 860: Evidence for an Outflow Carson Adams Mentors: Katherine Alatalo and Anne M 2017 Abstract Book Ionized and Molecular Gas in IC 860: Evidence for an Outflow Carson Adams Mentors: Katherine Alatalo and Anne M. Medling Galaxies at present-day fall predominantly in two distinct populations, as either blue, star-forming spirals or red, quiescent early-type galaxies. Blue galaxies appear to evolve onto the red sequence as star formation is quenched. The absence of a significant population falling in the intermediate ‘green valley’ implies that these transitions must occur rapidly. Identifying the initial properties of and pathways taken by these ‘dying galaxies’ is essential to building a complete understanding of galactic evolution. In this work, we investigate these phenomena in action within IC 860 — a nearby, early-type spiral in the initial stages of undergoing a rapid transition in the presence of a powerful AGN-driven molecular outflow. As a shocked, post-starburst galaxy with an intermediate-age stellar population which lies on the blue end of the green valley, IC 860 provides a window into the early stages of galaxy transition and AGN feedback. We present Hubble Space Telescope imaging of IC 860 showing a violent, dusty outflow originating from a compact core. We find that the mean velocity map of the CO(1-0) from CARMA suggests a dynamically excited bar funneling molecular gas into the galactic center. Finally, we present kinematic maps of ionized gas emission lines as well as sodium D absorption tracing neutral winds obtained by the Wide-Field Spectrograph. Moving Mass and Mechanical Clutch Mechanisms for One-Dimensional Hopping Robots Sara Adams Mentors: Aaron Ames and Eric Ambrose There are a number of potential mechanisms to create a hopping motion in robots, but not many are energy efficient. By developing energy efficient mechanisms for hopping robots, we allow future robots to have more flexibility doing work in the field, as they can be powered by batteries rather than a tether to an external power supply. Using a spring for hopping allows us to take advantage of restorative spring forces, but deformation and friction still cause energy losses that necessitate the use of an actuator to maintain a consistent hop height. Thus, we compared the functionality and efficiency of a moving mass mechanism and a mechanical clutch for compressing the hopper’s spring in order to maintain a hop height of six feet. Use of Antibiotics as Synthetic Modules for Regulating Bacterial Growth Swati Agrawal Mentors: Richard Murray and Reed McCardell The intricate network of interdependencies driving the operation of biological ecosystems yields capabilities which are largely realised through coordinated community behaviour. It is some of these competitive interactions that we wish to investigate using synthetic growth regulators such as secreted antibiotics and quorum sensing modules. We conducted experiments to assess the dynamic range and kinetics with which antibiotics inhibit cell growth and how tetracyclin (aTC) inducible resistance genes subvert the effects of this toxicity. In an antibiotic gradient experiment with cells lacking resistance genes, the cells showed, albeit with varying profiles depending upon the antibiotic used, complete inhibition of growth on a 24-hour time scale. To explore the phenomenon of rescue, cells transformed with inducible resistance were incubated with a constant antibiotic concentration and an increasing gradient of aTC (0 – 200 ng/µL) was applied. This was performed with a series of antibiotic concentrations. Results indicated that these potentially resistant cells apart from responding to the rescue operation at appreciable aTC levels surprisingly escaped growth arrest even without induction. As the copy number of the plasmid carrying the resistance gene grew larger, effects of this escape became more pronounced and were noticed in antibiotic concentrations as high as 300%. From these observations, we hypothesised the existence of a basal level of resistance accruing from leak of expression from our plasmid compounded by the effect of copy number. In another setup, a pulsed addition of aTC over a time interval of 24 hours to cells already incubated with a constant antibiotic concentration was also successful in reviving cell growth. The antibiotics used in this study were Carbenicilin, Chloramphenicol and Kanamycin, and DH5αZ1 cells provided the cellular chassis. Probing the Dynamics of SGTA/2, a Chaperone Protein Involved in Membrane Insertion of Tail-Anchored Proteins Rita Aksenfeld Mentors: William Clemons and Michelle Fry The chaperone protein SGTA (and its archaeal homolog, Sgt2) dimer is an integral part of the guided entry of tail anchored proteins (GET) pathway that protects the transmembrane domain of tail-anchored (TA) proteins from the aqueous cellular environment. While it is known that the C-terminal domain of SGTA is the binding site for TA proteins, a structure of this region has not been obtained. Based on data previously collected in the Clemons group, we hypothesize that the C-terminal domain of SGTA has a disordered structure that becomes ordered upon binding. To demonstrate this, a construct containing the C-domain of SGTA was created and expressed in E. coli The SGTA C-domain was purified by nickel column and size exclusion chromatography, and mass spectrometry will be used to confirm its presence. This will be repeated in the presence of TA protein so that a complex forms. We 1 will perform 1H - 15N HSQC NMR spectroscopy to measure the relative disorder of SGTA alone and in complex with a TA protein. If that yields inconclusive results, differential scanning calorimetry will be performed to measure the difference in enthalpy between SGTA alone and in complex with a TA protein. Inducing Habits in Humans Through Overtraining Mladena Aleksic Mentors: John P. O’Doherty and Eva R. Pool In contrast to goal-directed behaviors, which are driven by the representation of their consequences, habits are outcome insensitive behaviors elicited solely by situational cues. This study aims at inducing habits in humans during a free operant task through an overtraining procedure. Sixty participants pressed keys to accumulate food outcomes during the presentation of outcome-associated stimuli. The task was administered to two groups: one group was trained moderately whereas the other group was trained extensively (i.e., six times more). Following the training, both groups underwent a devaluation procedure, in which the outcome value was reduced through selective satiation. The pressing frequency before and after the devaluation procedure was measured to reflect behavioral sensitivity to the outcome value and compared between the two groups. We expect the moderately trained group to flexibly adapt their behavior to the outcome value by diminishing key pressing for the devalued outcome after satiation; and we expect a reduction of this behavioral sensitivity to outcome value in the overtrained group. This study will enable us to determine the extent to which an overtraining procedure can induce habitual behavior in humans. Integrating and Testing Simulations Designed for the Dark Energy Spectroscopic Instrument Thomas Alford Mentors: Klaus Honscheid and Tim Eifler The DESI (Dark Energy Spectroscopic Instrument) project is an endeavor to measure dark energy and its effect upon the expanding universe. DESI mainly looks at baryonic acoustic oscillations and redshift-space distortions and uses these to measure the effect of dark energy on the universe. DESI is scheduled to begin measurements in 2018 at the Mayall 4-meter telescope at Kitt Peak National Observatory. The DESI control system ensures that DESI aligns itself correctly after each image it receives from the telescope in preparation for the next. My project focused on creating simulations of images for the control system. Initially, these image simulations were simple NumPy arrays filled with random values. I created a program that simulated actual images of stars, donuts (out of focus images of stars), and spectra, which I then integrated with the rest of the code running the control system. This control code can then be tested with the simulations to ensure that each part of the system runs smoothly before it takes real data in 2018. Approximating Feedback Vertex Sets in Tournaments Ayya Alieva Mentors: Virginia Williams and Adam Sheffer The Feedback Vertex Set problem is a well-known problem in discrete mathematics. In a directed graph, a feedback vertex set is a subset of vertices S such that the graph obtained by removing S has no directed cycles. The problem of finding a polynomial-time algorithm for extracting a minimum feedback vertex set from a graph is called the Feedback Vertex Set (FVS) problem. It is one of Karp's 21 NP-complete problems. A graph T=(V,E) is a tournament graph if it is a complete directed graph (such that for any two vertices v, u in V, there is exactly one edge either from u to v or from v to u). The FVS problem remains NP-complete in such graphs. In 2016, Matthias Mnich, Virginia Vassilevska Williams, and Laszlo A. Vegh showed a 7/3 approximation algorithm for the Feedback Vertex Set problem generalized to allow for nonnegative vertex weights. This was an improvement on the previously known 5/2 ratio. My research concerns the above problem. If successful, my research will lead to a (2+epsilon)-approximation algorithm for all epsilon > 0, which is optimal under the Unique Games Conjecture. Robust Control Synthesis From Temporal Logic Specifications Rijad Alisic Mentors: Richard M. Murray and Sumanth Dathathri Synthesizing correct-by-construction policies from a given Temporal Logic Specification for an autonomous system requires knowledge of the high-level environment behavior. These synthesis algorithms often produce only one policy out of a set of possible ones, without a way of comparing them to each other. By bringing this framework out into the physical world one would need to consider noise and unpredictability as well. The impact of these uncertainties could be dealt with by identifying abstractions that could improve the robustness of control policies during the synthesis or by identifying which policies will be less affected by them.
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Silicene, Silicene Derivatives, and Their Device Applications
    Chemical Society Reviews Silicene, silicene derivatives, and their device applications Journal: Chemical Society Reviews Manuscript ID CS-REV-04-2018-000338.R1 Article Type: Review Article Date Submitted by the Author: 27-Jun-2018 Complete List of Authors: Molle, Alessandro; CNR-IMM, unit of Agrate Brianza Grazianetti, Carlo; CNR-IMM, unit of Agrate Brianza Tao, Li; The University of Texas at Autin, Microelectronics Research Center Taneja, Deepyanti; The University of Texas at Autin, Microelectronics Research Center Alam, Md Hasibul; The University of Texas at Autin, Microelectronics Research Center Akinwande, Deji; The University of Texas at Autin, Microelectronics Research Center Page 1 of 17 PleaseChemical do not Society adjust Reviews margins Chemical Society Reviews REVIEW Silicene, silicene derivatives, and their device applications Alessandro Molle,a Carlo Grazianetti,a,† Li Tao,b,† Deepyanti Taneja,c Md. Hasibul Alam,c and Deji c,† Received 00th January 20xx, Akinwande Accepted 00th January 20xx Silicene, the ultimate scaling of silicon atomic sheet in a buckled honeycomb lattice, represents a monoelemental class of DOI: 10.1039/x0xx00000x two-dimensional (2D) materials similar to graphene but with unique potential for a host of exotic electronic properties. www.rsc.org/ Nonetheless, there is a lack of experimental studies largely due to the interplay between material degradation and process portability issues. This Review highlights state-of-the-art experimental progress and future opportunities in synthesis, characterization, stabilization, processing and experimental device example of monolayer silicene and thicker derivatives. Electrostatic characteristics of Ag-removal silicene field-effect transistor exihibits ambipolar charge transport, corroborating with theoretical predictions on Dirac Fermions and Dirac cone in band structure.
    [Show full text]
  • Call for Papers | 2022 MRS Spring Meeting
    Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications.
    [Show full text]
  • Ligo-India Proposal for an Interferometric Gravitational-Wave Observatory
    LIGO-INDIA PROPOSAL FOR AN INTERFEROMETRIC GRAVITATIONAL-WAVE OBSERVATORY IndIGO Indian Initiative in Gravitational-wave Observations PROPOSAL FOR LIGO-INDIA !"#!$ Indian Initiative in Gravitational wave Observations http://www.gw-indigo.org II Title of the Project LIGO-INDIA Proposal of the Consortium for INDIAN INITIATIVE IN GRAVITATIONAL WAVE OBSERVATIONS IndIGO to Department of Atomic Energy & Department of Science and Technology Government of India IndIGO Consortium Institutions Chennai Mathematical Institute IISER, Kolkata IISER, Pune IISER, Thiruvananthapuram IIT Madras, Chennai IIT, Kanpur IPR, Bhatt IUCAA, Pune RRCAT, Indore University of Delhi (UD), Delhi Principal Leads Bala Iyer (RRI), Chair, IndIGO Consortium Council Tarun Souradeep (IUCAA), Spokesperson, IndIGO Consortium Council C.S. Unnikrishnan (TIFR), Coordinator Experiments, IndIGO Consortium Council Sanjeev Dhurandhar (IUCAA), Science Advisor, IndIGO Consortium Council Sendhil Raja (RRCAT) Ajai Kumar (IPR) Anand Sengupta(UD) 10 November 2011 PROPOSAL FOR LIGO-INDIA II PROPOSAL FOR LIGO-INDIA LIGO-India EXECUTIVE SUMMARY III PROPOSAL FOR LIGO-INDIA IV PROPOSAL FOR LIGO-INDIA This proposal by the IndIGO consortium is for the construction and subsequent 10- year operation of an advanced interferometric gravitational wave detector in India called LIGO-India under an international collaboration with Laser Interferometer Gravitational–wave Observatory (LIGO) Laboratory, USA. The detector is a 4-km arm-length Michelson Interferometer with Fabry-Perot enhancement arms, and aims to detect fractional changes in the arm-length smaller than 10-23 Hz-1/2 . The task of constructing this very sophisticated detector at the limits of present day technology is facilitated by the amazing opportunity offered by the LIGO Laboratory and its international partners to provide the complete design and all the key components required to build the detector as part of the collaboration.
    [Show full text]
  • View Print Program (Pdf)
    PROGRAM November 3 - 5, 2016 Hosted by Sigma Pi Sigma, the physics honor society 2016 Quadrennial Physics Congress (PhysCon) 1 31 Our students are creating the future. They have big, bold ideas and they come to Florida Polytechnic University looking for ways to make their visions a reality. Are you the next? When you come to Florida Poly, you’ll be welcomed by students and 3D faculty who share your passion for pushing the boundaries of science, PRINTERS technology, engineering and math (STEM). Florida’s newest state university offers small classes and professors who work side-by-side with students on real-world projects in some of the most advanced technology labs available, so the possibilities are endless. FLPOLY.ORG 2 2016 Quadrennial Physics Congress (PhysCon) Contents Welcome ........................................................................................................................... 4 Unifying Fields: Science Driving Innovation .......................................................................... 7 Daily Schedules ............................................................................................................. 9-11 PhysCon Sponsors .............................................................................................................12 Planning Committee & Staff ................................................................................................13 About the Society of Physics Students and Sigma Pi Sigma ���������������������������������������������������13 Previous Sigma Pi Sigma
    [Show full text]
  • Application of Silicene, Germanene and Stanene for Na Or Li Ion Storage: a Theoretical Investigation
    Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation Bohayra Mortazavi*,1, Arezoo Dianat2, Gianaurelio Cuniberti2, Timon Rabczuk1,# 1Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423 Weimar, Germany. 2Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden, Germany Abstract Silicene, germanene and stanene likely to graphene are atomic thick material with interesting properties. We employed first-principles density functional theory (DFT) calculations to investigate and compare the interaction of Na or Li ions on these films. We first identified the most stable binding sites and their corresponding binding energies for a single Na or Li adatom on the considered membranes. Then we gradually increased the ions concentration until the full saturation of the surfaces is achieved. Our Bader charge analysis confirmed complete charge transfer between Li or Na ions with the studied 2D sheets. We then utilized nudged elastic band method to analyze and compare the energy barriers for Li or Na ions diffusions along the surface and through the films thicknesses. Our investigation findings can be useful for the potential application of silicene, germanene and stanene for Na or Li ion batteries. Keywords: Silicene; germanene; stanene; first-principles; Li ions; *Corresponding author (Bohayra Mortazavi): [email protected] Tel: +49 157 8037 8770, Fax: +49 364 358 4511 #[email protected] 1. Introduction The interest toward two-dimensional (2D) materials was raised by the great success of graphene [1–3]. Graphene is a zero-gap semiconductor that present outstanding mechanical [4] and heat conduction [5] properties, surpassing all known materials.
    [Show full text]
  • Theoretical Study of a New Porous 2D Silicon-Filled Composite Based on Graphene and Single-Walled Carbon Nanotubes for Lithium-Ion Batteries
    applied sciences Article Theoretical Study of a New Porous 2D Silicon-Filled Composite Based on Graphene and Single-Walled Carbon Nanotubes for Lithium-Ion Batteries Dmitry A. Kolosov 1 and Olga E. Glukhova 1,2,* 1 Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia; [email protected] 2 Laboratory of Biomedical Nanotechnology, I.M. Sechenov First Moscow State Medical University, Trubetskaya street 8-2, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-84-5251-4562 Received: 24 July 2020; Accepted: 18 August 2020; Published: 21 August 2020 Abstract: The incorporation of Si16 nanoclusters into the pores of pillared graphene on the base of single-walled carbon nanotubes (SWCNTs) significantly improved its properties as anode material of Li-ion batteries. Quantum-chemical calculation of the silicon-filled pillared graphene efficiency found (I) the optimal mass fraction of silicon (Si)providing maximum anode capacity; (II) the optimal Li: C and Li: Si ratios, when a smaller number of C and Si atoms captured more amount of Li ions; and (III) the conditions of the most energetically favorable delithiation process. For 2D-pillared graphene with a sheet spacing of 2–3 nm and SWCNTs distance of ~5 nm the best silicon concentration in pores was ~13–18 wt.%. In this case the value of achieved capacity exceeded the graphite anode one by 400%. Increasing of silicon mass fraction to 35–44% or more leads to a decrease in the anode capacity and to a risk of pillared graphene destruction. It is predicted that this study will provide useful information for the design of hybrid silicon-carbon anodes for efficient next-generation Li-ion batteries.
    [Show full text]
  • Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111)
    Letter pubs.acs.org/NanoLett Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111) † † † ‡ † † † † Baojie Feng, Zijing Ding, Sheng Meng, Yugui Yao, , Xiaoyue He, Peng Cheng, Lan Chen,*, † and Kehui Wu*, † Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ‡ School of Physics, Beijing Institute of Technology, Beijing 100081, China ABSTRACT: In the search for evidence of silicene, a two- dimensional honeycomb lattice of silicon, it is important to obtain a complete picture for the evolution of Si structures on Ag(111), which is believed to be the most suitable substrate for growth of silicene so far. In this work we report the finding and evolution of several monolayer superstructures of silicon on Ag(111), depend- ing on the coverage and temperature. Combined with first- principles calculations, the detailed structures of these phases have been illuminated. These structures were found to share common building blocks of silicon rings, and they evolve from a fragment of silicene to a complete monolayer silicene and multilayer silicene. Our results elucidate how silicene forms on Ag(111) surface and provides methods to synthesize high-quality and large- scale silicene. KEYWORDS: Silicene, Ag(111), scannning tunneling microscopy, molecular beam epitaxy, first-principles calculation ith the development of the semiconductor industry of silicene and optimizing the preparation procedure for W toward a smaller scale, the rich quantum phenomena in growing high-quality silicene films, it is important to build a low-dimensional systems may lead to new concepts and complete understanding of the formation mechanism and ground-breaking applications. In the past decade graphene growth dynamics of possible silicon structures on Ag(111), has emerged as a low-dimensional system for both fundamental which is currently believed to be the best substrate for growing research and novel applications including electronic devices, silicene.
    [Show full text]
  • The Perils of Complacency
    THE PERILS OF COMPLACENCYTHE PERILS : America at a Tipping Point in Science & Engineering : America at a Tipping Point THE PERILS OF COMPLACENCY America at a Tipping Point in Science & Engineering An Update to Restoring the Foundation: The Vital Role of Research in Preserving the American Dream AMERICAN ACADEMY OF ARTS & SCIENCES AMERICAN ACADEMY THE PERILS OF COMPLACENCY America at a Tipping Point in Science & Engineering An Update to Restoring the Foundation: The Vital Role of Research in Preserving the American Dream american academy of arts & sciences Cambridge, Massachusetts This report and its supporting data were finalized in April 2020. While some new data have been released since then, the report’s findings and recommendations remain valid. Please note that Figure 1 was based on nsf analysis, which used existing oecd purchasing power parity (ppp) to convert U.S. and Chinese financial data.oecd adjusted its ppp factors in May 2020. The new factors for China affect the curves in the figure, pushing the China-U.S. crossing point toward the end of the decade. This development is addressed in Appendix D. © 2020 by the American Academy of Arts & Sciences All rights reserved. isbn: 0- 87724- 134- 1 This publication is available online at www.amacad.org/publication/perils-of-complacency. The views expressed in this report are those held by the contributors and are not necessarily those of the Officers and Members of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts and Sciences 136 Irving Street Cambridge, Massachusetts 02138- 1996 Telephone: 617- 576- 5000 Email: [email protected] Website: www.amacad.org Contents Acknowledgments 5 Committee on New Models for U.S.
    [Show full text]
  • Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate
    Giving to the Department of Physics by Erin McGrath RAINER WEISS ’55, PHD ’62 Bryce Vickmark Rai Weiss has established a fellowship in the Physics Department because he is eternally grateful to his advisor, the late Jerrold Zacharias, for all that he did for Rai, so he knows firsthand the importance of supporting graduate students. Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate. Rainer “Rai” Weiss was born in Berlin, Germany in 1932. His father was a physician and his mother was an actress. His family was forced out of Germany by the Nazis since his father was Jewish and a Communist. Rai, his mother and father fled to Prague, Czecho- slovakia. In 1937 a sister was born in Prague. In 1938, after Chamberlain appeased Hitler by effectively giving him Czechoslovakia, the family was able to obtain visas to enter the United States through the Stix Family in St. Louis, who were giving bond to professional Jewish emigrants. When Rai was 21 years-old, he visited Mrs. Stix and thanked her for what she had done for his family. The family immigrated to New York City. Rai’s father had a hard time passing the medi- cal boards because of his inability to answer multiple choice exams. His mother, who Rai says “held the family together,” worked in a number of retail stores. Through the services of an immigrant relief organization Rai received a scholarship to attend the prestigious Columbia Grammar School. At the end of 1945, when Rai was 13 years old, he became fascinated with electronics and music.
    [Show full text]
  • Physics of LIGO Lecture 4
    Physics of LIGO Lecture 4 40KG § Advanced LIGO SAPPHIRE, 31.4CMf SILICA, HERAEUS SV 35CMf INPUT MODE SILICA, LIGO I GRADE § LIGO Data analysis CLEANER ~26CMf ACTIVE THERMAL CORRECTION T=0.5% 125W 830KW LASER MOD. BS PRM ITM ETM time T~6% SRM T=7% OUTPUT MODE CLEANER PD Ringdowns GW READOUT Broadband Background Bursts frequency CW (quasi-periodic) Chirps LIGO-G000165-00-R AJW, Caltech, LIGO Project 1 Initial LIGO Þ Advanced LIGO schedule 1995 NSF Funding secured ($360M) 1996 Construction Underway (mostly civil) 1997 Facility Construction (vacuum system) 1998 Interferometer Construction (complete facilities) 1999 Construction Complete (interferometers in vacuum) 2000 Detector Installation (commissioning subsystems) 2001 Commission Interferometers (first coincidences) 2002 Sensitivity studies (initiate LIGO I Science Run) 2003+ Initial LIGO data run (one year integrated data at h ~ 10-21) 2007 Begin Advanced LIGO installation 2008 Advanced LIGO science run (2.5 hours ~ 1 year of Initial LIGO) LIGO-G000165-00-R AJW, Caltech, LIGO Project 2 Advanced LIGO incremental improvements § Reduce shot noise: higher power CW-laser: 12 watts Þ120 watts § Reduce shot noise: Advanced optical configuration: signal recycling mirror (7th suspended optic) to tune shot-noise response in frequency § Reduce seismic noise: Advanced (active) seismic isolation. Seismic wall moved from 40 Hz Þ ~ 12 Hz. § Reduce seismic and suspension noise: Quadrupal pendulum suspensions to filter environmental noise in stages. § Reduce suspension noise: Fused silica fibers, silica welds. § Reduce test mass thermal noise: Last pendulum stage (test mass) is controlled via electrostatic or photonic forces (no magnets). § Reduce test mass thermal noise: High-Q material (40 kg sapphire).
    [Show full text]
  • National Science Foundation LIGO FACTSHEET NSF and the Laser Interferometer Gravitational-Wave Observatory
    e National Science Foundation LIGO FACTSHEET NSF and the Laser Interferometer Gravitational-Wave Observatory In 1916, Albert What is LIGO? Einstein published the LIGO consists of two widely separated laser paper that predicted interferometers located within the United States – one gravitational waves – in Hanford, Washington, and the other in Livingston, ripples in the fabric of Louisiana – each housed inside an L-shaped, ultra-high space-time resulting vacuum tunnel. The twin LIGO detectors operate in from the most violent unison to detect gravitational waves. Caltech and MIT phenomena in our led the design, construction and operation of the NSF- universe, from funded facilities. supernovae explosions to the collision of black What are gravitational waves? holes. For 100 years, Gravitational waves are distortions of the space and that prediction has time which emit when any object that possesses mass stimulated scientists accelerates. This can be compared in some ways to how around the world who accelerating charges create electromagnetic fields (e.g. have been seeking light and radio waves) that antennae detect. To generate to directly detect gravitational waves that can be detected by LIGO, the gravitational waves. objects must be highly compact and very massive, such as neutron stars and black holes. Gravitational-wave In the 1970s, the National Science Foundation (NSF) detectors act as a “receiver.” Gravitational waves travel joined this quest and began funding the science to Earth much like ripples travel outward across a pond. and technological innovations behind the Laser However, these ripples in the fabric of space-time carry Interferometer Gravitational-Wave Observatory (LIGO), information about their violent origins and about the the instruments that would ultimately yield a direct nature of gravity – information that cannot be obtained detection of gravitational waves.
    [Show full text]