An Analysis of Recent Applications of Multiple Instruction Multiple Data (MIMD) Computer Dosti Kh

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of Recent Applications of Multiple Instruction Multiple Data (MIMD) Computer Dosti Kh ISSN 2321 3361 © 2021 IJESC Research Article Volume 11 Issue No.05 An Analysis of Recent Applications of Multiple Instruction Multiple Data (MIMD) Computer Dosti Kh. Abbas Faculty of Engineering, Soran University, Kurdistan, Iraq Soran, Erbil, Kurdistan Regional, Iraq Abstract: MIMD means Multiple Instruction Multiple Data, which is an Architecture to acquire parallelism. It has been an interesting subject for many researchers in the past and recent years. To boost the computer performance, multiple instructions processes on multiple data. MIMD architecture works with distributed memory programming design and shared memory programming design. Each of the models has its benefits and drawbacks. MIMD computer architecture has been an interesting subject for many researchers in the past and recent years. In the literature, many studies have been done and different applications implemented on both of the architectures of MIMD computer devices. Nowadays, the architecture of parallel computers is improved from most angles. But, it still requires researches and testing applications on different kinds of its architecture. Our objective in this article review is to collect and review some works that have been done on MIMD architecture to evaluate and analyze the outcomes of the reviewed researches. Keywords: MIMD, Computer Parallel architecture, Shared Memory, Distributed Memory. I. INTRODUCTION was a group-based multiprocessor with an appropriated memory and a non-uniform access time. The nonappearance The requirement for increment in computer frameworks of stores and a long distant access inertness made information performance cannot be over-estimated, as it improves the arrangement basic. A large number of the thoughts in these processing of instructions. Parallel processing [1] is an multiprocessors would be reused during the 1980s when the approach in which instruction and data are operated at the microchip made it a lot less expensive to fabricate same time through computer devices. This technique works by multiprocessors. With the essential special case of the parallel partitioning huge issues into more modest parts which are then vector multiprocessors and all the more as of late of the IBM settled all the while. In a perfect world, it makes instruction Blue Gene model, any remaining ongoing MIMD computers execution quicker since there are numerous processors process have been worked from off-the-rack microchips utilizing on the program, yet it's frequently hard to partition an logically central memory and a bus or a distributed memory instruction such that different CPUs can execute various and interconnection network. MIMD computer architecture segments without meddling with each other. Subsequently, it has been an interesting subject for many researchers in the has become a dominant paradigm in architecture that past and recent years. In the literature, many studies have been machines have multi-core processors. In the case of multi-core done and different applications implemented on both of the processors, the execution of instruction will happen at the architectures of MIMD computer devices. Nowadays, the same time by any processor.The processors hold the execution architecture of parallel computers is improved from most of instruction separately depending on their structure. In a angles. But, it still requires researches and testing applications taxonomy, Michael J. Flynn categorized architectures of a on different kinds of its architecture. Our objective in this parallel computer into four kinds depending on the number of article review is to collect and review some works that have data and instructions that they can hold at a time [2]. Our been done on MIMDs to evaluate and analyze the outcomes of focus here is on MIMD parallel architecture. MIMD is a the reviewed researches. The following of this study is multiprocessor design in which different sets of instruction are structured as follows. In section two, MIMD architecture and in operation simultaneous sly and each cycle brings instruction its types are presented. Some recent works that had been done at the same time independently and perform the procedure on on MIMD computer machines will be reviewed in section the instructions simultaneously on numerous CPUs. It is hard three. Section four contains the discussion of our study. to differentiate the primary MIMD multiprocessor. Finally, we conclude our study in section 5. Shockingly, the primary computer from the Eckert-Mauchly Corporation, for instance, had copy units to improve II. MIMD ARCHITECTURE accessibility. Two of the best-recorded multi processor projects were embraced during the 1970s at University of In the field of computing, the MIMD is a procedure utilized to Carnegie Mellon. The first of these was C.mmp, which accomplish parallelism. Those devices, which are utilizing comprised 16 PDP-11s associated with a crossbar switch to 16 MIMD, have some processors that function independently and memory units. It was among the main multiprocessors with in asynchronously. Different instructions on a different part of excess of a couple of processors, and it had a shared memory data may be executed by different processors at any time. programming model. A large part of the focal point of the MIMD structures might be utilized in various application exploration in the C.mmp project was on programming, fields, for example, computer-aided, modeling, simulation, particularly in the OS region. A later multiprocessor, Cm*, and communication switches. MIMD computers can be of two IJESC, May 2021 28011 http:// ijesc.org/ categories such as distributed memory and shared memory. Through sending messages, Each PE can communicate The categorization is depending on accessing memory by with others. MIMD processors. Distributed memory computers may have By providing all the processors their memory, this type of mesh interconnection or hypercube schemes. In contrast, the architecture bypasses the downsides of the architecture of the shared memory computers may be of the types of extended, shared memory. A processor may just access the memory that bus-based, or hierarchical [3]. The architecture of MIMD is straightforwardly associated with it. contains a set of tightly coupled, N-individual processors. A memory that is common to the entire of processors is included and it cannot be accessed directly by the other processors. 2.1 SHARED MEMORY MIMD structure works with two kinds of memory, shared memory is one of them. All Processing Elements (PE) share a typical memory address. Each handling component can get to any module through an interconnected network straightforwardly. They impart by composing into normal location space. PE's are independent yet they have a typical memory [4]. The structure of a shared memory MIMD is illustrated in fig. 1. Figure.2. Distributed Memory [4] III. MIMD ARCHITECTURE APPLICATIONS The parallel instructions coding is more convoluted than consecutively writing instruction. By using this technique, different models or different architectures can be beneficial for various applications, specifically MIMD. Now, it is based on the application’s features indicating which structure is more functional to make the application and selecting preferable parallel hardware to be utilized for the application. In this section, some research works that used MIMD computer architecture for some scientific applications are reviewed in different areas of software computing. Neural network is one of the most used and most proposed algorithms for learning and Figure.1. Shared Memory [4] training different software applications in different areas. In our article review, we reviewed two different articles that the Feature of Shared Memory MIMD architecture is MIMD was used in the researches for evaluating the neural analyzed as follow: networks and the architectures. In one of the research works • Creates a set of processors and memory modules. [5], Abbas proposed to use an MIMD architecture. The way • Any memory module can be directly accessed by any toward preparing neural networks on parallel structures was processor through an interconnection network. utilized to survey the exhibition of such countless parallel • A universal address space is outlined by the group of machines. The authors explored the usage of backpropagation memory modules that are shared between the processors. (BP) on the Alex AVX-2 coarse-grained MIMD machine. A A vital advantage of this design type is that it is extremely host–worker parallel usage was completed to prepare various simple to program since there exists no unequivocal models to train the NetTalk dictionary. At the first, they connections among processors with interchanges tended to developed a computational design utilizing a single processor through the worldwide memory store. to finish the learning cycle. Additionally, they created a connection model for the host–worker topology to compute the 2.1 DISTRIBUTED MEMORY connection. The two models were then used to forecast the The other type of MIMD architecture is distributed memory. performance of the machine when processors were utilized and In this kind of architecture, all Processing components have a comparison was carried out with the genuine estimated their own location space. They interact with one another performance of the implementation of the parallel architecture. through message passing. Each handling component is Their study results show that the two models can be utilized blocking or waiting for a message. A software
Recommended publications
  • 2.5 Classification of Parallel Computers
    52 // Architectures 2.5 Classification of Parallel Computers 2.5 Classification of Parallel Computers 2.5.1 Granularity In parallel computing, granularity means the amount of computation in relation to communication or synchronisation Periods of computation are typically separated from periods of communication by synchronization events. • fine level (same operations with different data) ◦ vector processors ◦ instruction level parallelism ◦ fine-grain parallelism: – Relatively small amounts of computational work are done between communication events – Low computation to communication ratio – Facilitates load balancing 53 // Architectures 2.5 Classification of Parallel Computers – Implies high communication overhead and less opportunity for per- formance enhancement – If granularity is too fine it is possible that the overhead required for communications and synchronization between tasks takes longer than the computation. • operation level (different operations simultaneously) • problem level (independent subtasks) ◦ coarse-grain parallelism: – Relatively large amounts of computational work are done between communication/synchronization events – High computation to communication ratio – Implies more opportunity for performance increase – Harder to load balance efficiently 54 // Architectures 2.5 Classification of Parallel Computers 2.5.2 Hardware: Pipelining (was used in supercomputers, e.g. Cray-1) In N elements in pipeline and for 8 element L clock cycles =) for calculation it would take L + N cycles; without pipeline L ∗ N cycles Example of good code for pipelineing: §doi =1 ,k ¤ z ( i ) =x ( i ) +y ( i ) end do ¦ 55 // Architectures 2.5 Classification of Parallel Computers Vector processors, fast vector operations (operations on arrays). Previous example good also for vector processor (vector addition) , but, e.g. recursion – hard to optimise for vector processors Example: IntelMMX – simple vector processor.
    [Show full text]
  • Computer Hardware Architecture Lecture 4
    Computer Hardware Architecture Lecture 4 Manfred Liebmann Technische Universit¨atM¨unchen Chair of Optimal Control Center for Mathematical Sciences, M17 [email protected] November 10, 2015 Manfred Liebmann November 10, 2015 Reading List • Pacheco - An Introduction to Parallel Programming (Chapter 1 - 2) { Introduction to computer hardware architecture from the parallel programming angle • Hennessy-Patterson - Computer Architecture - A Quantitative Approach { Reference book for computer hardware architecture All books are available on the Moodle platform! Computer Hardware Architecture 1 Manfred Liebmann November 10, 2015 UMA Architecture Figure 1: A uniform memory access (UMA) multicore system Access times to main memory is the same for all cores in the system! Computer Hardware Architecture 2 Manfred Liebmann November 10, 2015 NUMA Architecture Figure 2: A nonuniform memory access (UMA) multicore system Access times to main memory differs form core to core depending on the proximity of the main memory. This architecture is often used in dual and quad socket servers, due to improved memory bandwidth. Computer Hardware Architecture 3 Manfred Liebmann November 10, 2015 Cache Coherence Figure 3: A shared memory system with two cores and two caches What happens if the same data element z1 is manipulated in two different caches? The hardware enforces cache coherence, i.e. consistency between the caches. Expensive! Computer Hardware Architecture 4 Manfred Liebmann November 10, 2015 False Sharing The cache coherence protocol works on the granularity of a cache line. If two threads manipulate different element within a single cache line, the cache coherency protocol is activated to ensure consistency, even if every thread is only manipulating its own data.
    [Show full text]
  • Threading SIMD and MIMD in the Multicore Context the Ultrasparc T2
    Overview SIMD and MIMD in the Multicore Context Single Instruction Multiple Instruction ● (note: Tute 02 this Weds - handouts) ● Flynn’s Taxonomy Single Data SISD MISD ● multicore architecture concepts Multiple Data SIMD MIMD ● for SIMD, the control unit and processor state (registers) can be shared ■ hardware threading ■ SIMD vs MIMD in the multicore context ● however, SIMD is limited to data parallelism (through multiple ALUs) ■ ● T2: design features for multicore algorithms need a regular structure, e.g. dense linear algebra, graphics ■ SSE2, Altivec, Cell SPE (128-bit registers); e.g. 4×32-bit add ■ system on a chip Rx: x x x x ■ 3 2 1 0 execution: (in-order) pipeline, instruction latency + ■ thread scheduling Ry: y3 y2 y1 y0 ■ caches: associativity, coherence, prefetch = ■ memory system: crossbar, memory controller Rz: z3 z2 z1 z0 (zi = xi + yi) ■ intermission ■ design requires massive effort; requires support from a commodity environment ■ speculation; power savings ■ massive parallelism (e.g. nVidia GPGPU) but memory is still a bottleneck ■ OpenSPARC ● multicore (CMT) is MIMD; hardware threading can be regarded as MIMD ● T2 performance (why the T2 is designed as it is) ■ higher hardware costs also includes larger shared resources (caches, TLBs) ● the Rock processor (slides by Andrew Over; ref: Tremblay, IEEE Micro 2009 ) needed ⇒ less parallelism than for SIMD COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 1 COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 3 Hardware (Multi)threading The UltraSPARC T2: System on a Chip ● recall concurrent execution on a single CPU: switch between threads (or ● OpenSparc Slide Cast Ch 5: p79–81,89 processes) requires the saving (in memory) of thread state (register values) ● aggressively multicore: 8 cores, each with 8-way hardware threading (64 virtual ■ motivation: utilize CPU better when thread stalled for I/O (6300 Lect O1, p9–10) CPUs) ■ what are the costs? do the same for smaller stalls? (e.g.
    [Show full text]
  • Computer Architecture: Parallel Processing Basics
    Computer Architecture: Parallel Processing Basics Onur Mutlu & Seth Copen Goldstein Carnegie Mellon University 9/9/13 Today What is Parallel Processing? Why? Kinds of Parallel Processing Multiprocessing and Multithreading Measuring success Speedup Amdhal’s Law Bottlenecks to parallelism 2 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi PDL'09 © 2007-9 Goldstein5 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi Parallel PDL'09 © 2007-9 Goldstein6 Concurrent Systems Physical Geographical Cloud Parallel Geophysical +++ ++ --- --- location Relative +++ +++ + - location Faults ++++ +++ ++++ -- Number of +++ +++ + - Processors + Network varies varies fixed fixed structure Network --- --- + + connectivity 7 Concurrent System Challenge: Programming The old joke: How long does it take to write a parallel program? One Graduate Student Year 8 Parallel Programming Again?? Increased demand (multicore) Increased scale (cloud) Improved compute/communicate Change in Application focus Irregular Recursive data structures PDL'09 © 2007-9 Goldstein9 Why Parallel Computers? Parallelism: Doing multiple things at a time Things: instructions,
    [Show full text]
  • Thread-Level Parallelism I
    Great Ideas in UC Berkeley UC Berkeley Teaching Professor Computer Architecture Professor Dan Garcia (a.k.a. Machine Structures) Bora Nikolić Thread-Level Parallelism I Garcia, Nikolić cs61c.org Improving Performance 1. Increase clock rate fs ú Reached practical maximum for today’s technology ú < 5GHz for general purpose computers 2. Lower CPI (cycles per instruction) ú SIMD, “instruction level parallelism” Today’s lecture 3. Perform multiple tasks simultaneously ú Multiple CPUs, each executing different program ú Tasks may be related E.g. each CPU performs part of a big matrix multiplication ú or unrelated E.g. distribute different web http requests over different computers E.g. run pptx (view lecture slides) and browser (youtube) simultaneously 4. Do all of the above: ú High fs , SIMD, multiple parallel tasks Garcia, Nikolić 3 Thread-Level Parallelism I (3) New-School Machine Structures Software Harness Hardware Parallelism & Parallel Requests Achieve High Assigned to computer Performance e.g., Search “Cats” Smart Phone Warehouse Scale Parallel Threads Computer Assigned to core e.g., Lookup, Ads Computer Core Core Parallel Instructions Memory (Cache) >1 instruction @ one time … e.g., 5 pipelined instructions Input/Output Parallel Data Exec. Unit(s) Functional Block(s) >1 data item @ one time A +B A +B e.g., Add of 4 pairs of words 0 0 1 1 Main Memory Hardware descriptions Logic Gates A B All gates work in parallel at same time Out = AB+CD C D Garcia, Nikolić Thread-Level Parallelism I (4) Parallel Computer Architectures Massive array
    [Show full text]
  • Parallel Processing! 1! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 2! Suggested Readings! •! Readings! –! H&P: Chapter 7! •! (Over Next 2 Weeks)!
    CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 1! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 2! Suggested Readings! •! Readings! –! H&P: Chapter 7! •! (Over next 2 weeks)! Lecture 23" Introduction to Parallel Processing! University of Notre Dame! University of Notre Dame! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 3! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 4! Processor components! Multicore processors and programming! Processor comparison! vs.! Goal: Explain and articulate why modern microprocessors now have more than one core andCSE how software 30321 must! adapt to accommodate the now prevalent multi- core approach to computing. " Introduction and Overview! Writing more ! efficient code! The right HW for the HLL code translation! right application! University of Notre Dame! University of Notre Dame! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 6! Pipelining and “Parallelism”! ! Load! Mem! Reg! DM! Reg! ALU ! Instruction 1! Mem! Reg! DM! Reg! ALU ! Instruction 2! Mem! Reg! DM! Reg! ALU ! Instruction 3! Mem! Reg! DM! Reg! ALU ! Instruction 4! Mem! Reg! DM! Reg! ALU Time! Instructions execution overlaps (psuedo-parallel)" but instructions in program issued sequentially." University of Notre Dame! University of Notre Dame! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! Multiprocessing (Parallel) Machines! Flynn#s
    [Show full text]
  • Multi-Core Processors and Systems: State-Of-The-Art and Study of Performance Increase
    Multi-Core Processors and Systems: State-of-the-Art and Study of Performance Increase Abhilash Goyal Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT speedup. Some tasks are easily divided into parts that can be To achieve the large processing power, we are moving towards processed in parallel. In those scenarios, speed up will most likely Parallel Processing. In the simple words, parallel processing can follow “common trajectory” as shown in Figure 2. If an be defined as using two or more processors (cores, computers) in application has little or no inherent parallelism, then little or no combination to solve a single problem. To achieve the good speedup will be achieved and because of overhead, speed up may results by parallel processing, in the industry many multi-core follow as show by “occasional trajectory” in Figure 2. processors has been designed and fabricated. In this class-project paper, the overview of the state-of-the-art of the multi-core processors designed by several companies including Intel, AMD, IBM and Sun (Oracle) is presented. In addition to the overview, the main advantage of using multi-core will demonstrated by the experimental results. The focus of the experiment is to study speed-up in the execution of the ‘program’ as the number of the processors (core) increases. For this experiment, open source parallel program to count the primes numbers is considered and simulation are performed on 3 nodes Raspberry cluster . Obtained results show that execution time of the parallel program decreases as number of core increases.
    [Show full text]
  • Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
    Computer Architecture A Quantitative Approach, Fifth Edition Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures Copyright © 2012, Elsevier Inc. All rights reserved. 1 Contents 1. SIMD architecture 2. Vector architectures optimizations: Multiple Lanes, Vector Length Registers, Vector Mask Registers, Memory Banks, Stride, Scatter-Gather, 3. Programming Vector Architectures 4. SIMD extensions for media apps 5. GPUs – Graphical Processing Units 6. Fermi architecture innovations 7. Examples of loop-level parallelism 8. Fallacies Copyright © 2012, Elsevier Inc. All rights reserved. 2 Classes of Computers Classes Flynn’s Taxonomy SISD - Single instruction stream, single data stream SIMD - Single instruction stream, multiple data streams New: SIMT – Single Instruction Multiple Threads (for GPUs) MISD - Multiple instruction streams, single data stream No commercial implementation MIMD - Multiple instruction streams, multiple data streams Tightly-coupled MIMD Loosely-coupled MIMD Copyright © 2012, Elsevier Inc. All rights reserved. 3 Introduction Advantages of SIMD architectures 1. Can exploit significant data-level parallelism for: 1. matrix-oriented scientific computing 2. media-oriented image and sound processors 2. More energy efficient than MIMD 1. Only needs to fetch one instruction per multiple data operations, rather than one instr. per data op. 2. Makes SIMD attractive for personal mobile devices 3. Allows programmers to continue thinking sequentially SIMD/MIMD comparison. Potential speedup for SIMD twice that from MIMID! x86 processors expect two additional cores per chip per year SIMD width to double every four years Copyright © 2012, Elsevier Inc. All rights reserved. 4 Introduction SIMD parallelism SIMD architectures A. Vector architectures B. SIMD extensions for mobile systems and multimedia applications C.
    [Show full text]
  • Multi-Core Architectures
    Multi-core architectures Jernej Barbic 15-213, Spring 2007 May 3, 2007 1 Single-core computer 2 Single-core CPU chip the single core 3 Multi-core architectures • This lecture is about a new trend in computer architecture: Replicate multiple processor cores on a single die. Core 1 Core 2 Core 3 Core 4 Multi-core CPU chip 4 Multi-core CPU chip • The cores fit on a single processor socket • Also called CMP (Chip Multi-Processor) c c c c o o o o r r r r e e e e 1 2 3 4 5 The cores run in parallel thread 1 thread 2 thread 3 thread 4 c c c c o o o o r r r r e e e e 1 2 3 4 6 Within each core, threads are time-sliced (just like on a uniprocessor) several several several several threads threads threads threads c c c c o o o o r r r r e e e e 1 2 3 4 7 Interaction with the Operating System • OS perceives each core as a separate processor • OS scheduler maps threads/processes to different cores • Most major OS support multi-core today: Windows, Linux, Mac OS X, … 8 Why multi-core ? • Difficult to make single-core clock frequencies even higher • Deeply pipelined circuits: – heat problems – speed of light problems – difficult design and verification – large design teams necessary – server farms need expensive air-conditioning • Many new applications are multithreaded • General trend in computer architecture (shift towards more parallelism) 9 Instruction-level parallelism • Parallelism at the machine-instruction level • The processor can re-order, pipeline instructions, split them into microinstructions, do aggressive branch prediction, etc.
    [Show full text]
  • A Hardware-Software Integrated Solution for Improved Single-Instruction Multi-Thread Processor Efficiency Michael Steffen Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 A Hardware-Software Integrated Solution for Improved Single-Instruction Multi-Thread Processor Efficiency Michael Steffen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Computer Engineering Commons Recommended Citation Steffen, Michael, "A Hardware-Software Integrated Solution for Improved Single-Instruction Multi-Thread Processor Efficiency" (2012). Graduate Theses and Dissertations. 12639. https://lib.dr.iastate.edu/etd/12639 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A hardware-software integrated solution for improved single-instruction multi-thread processor efficiency by Michael Anthony Steffen A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Computer Engineering Program of Study Committee: Joseph A. Zambreno, Major Professor Srinivas Aluru Morris Chang Akhilesh Tyagi Zhao Zhang Iowa State University Ames, Iowa 2012 Copyright c Michael Anthony Steffen, 2012. All rights reserved. ii DEDICATION This thesis is dedicated to my parents for their continuous encouragement and support in my education and also dedicated to my wife for her sacrifice and help that allowed me to complete this work iii TABLE OF CONTENTS LIST OF TABLES . v LIST OF FIGURES . vi ACKNOWLEDGEMENTS . xii ABSTRACT . xiii CHAPTER 1. Introduction .
    [Show full text]
  • Chapter 1 Introduction
    Chapter 1 Introduction 1.1 Parallel Processing There is a continual demand for greater computational speed from a computer system than is currently possible (i.e. sequential systems). Areas need great computational speed include numerical modeling and simulation of scientific and engineering problems. For example; weather forecasting, predicting the motion of the astronomical bodies in the space, virtual reality, etc. Such problems are known as grand challenge problems. On the other hand, the grand challenge problem is the problem that cannot be solved in a reasonable amount of time [1]. One way of increasing the computational speed is by using multiple processors in single case box or network of computers like cluster operate together on a single problem. Therefore, the overall problem is needed to split into partitions, with each partition is performed by a separate processor in parallel. Writing programs for this form of computation is known as parallel programming [1]. How to execute the programs of applications in very fast way and on a concurrent manner? This is known as parallel processing. In the parallel processing, we must have underline parallel architectures, as well as, parallel programming languages and algorithms. 1.2 Parallel Architectures The main feature of a parallel architecture is that there is more than one processor. These processors may communicate and cooperate with one another to execute the program instructions. There are diverse classifications for the parallel architectures and the most popular one is the Flynn taxonomy (see Figure 1.1) [2]. 1 1.2.1 The Flynn Taxonomy Michael Flynn [2] has introduced taxonomy for various computer architectures based on notions of Instruction Streams (IS) and Data Streams (DS).
    [Show full text]
  • Sisd, Simd, Misd, Mimd
    Chapter 12: Multiprocessor Architectures Lesson 02: Flynn Classification of parallel processing architectures Objective • Be familiar with Flynn classification of parallel processing architectures • SISD, SIMD, MISD, MIMD Schaum’s Outline of Theory and Problems of Computer Architecture 2 Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009 Basic multiprocessor architectures Schaum’s Outline of Theory and Problems of Computer Architecture 3 Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009 Flynn Classification • SISD (single instruction and single data stream) • SIMD (single instruction and multiple data streams) • MISD (Multiple instructions and single data stream) • MIMD (Multiple instructions and multiple data streams) Schaum’s Outline of Theory and Problems of Computer Architecture 4 Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009 SISD • No instruction parallelism • No data parallelism • SISD processing architecture example─ a personal computer processing instructions and data on single processor Schaum’s Outline of Theory and Problems of Computer Architecture 5 Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009 SIMD • Multiple data streams in parallel with a single instruction stream • SIMD processing architecture example─ a graphic processor processing instructions for translation or rotation or other operations are done on multiple data • An array or matrix is also processed in SIMD Schaum’s Outline of Theory and Problems of Computer Architecture 6 Copyright © The McGraw-Hill Companies Inc. Indian Special Edition 2009 MISD • Multiple instruction streams in parallel operating on single instruction stream • Processing architecture example─ processing for critical controls of missiles where single data stream processed on different processors to handle faults if any during processing Schaum’s Outline of Theory and Problems of Computer Architecture 7 Copyright © The McGraw-Hill Companies Inc.
    [Show full text]