Planetary Sciences Section Newsletter: March 2016
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Stardust Sample Return
National Aeronautics and Space Administration Stardust Sample Return Press Kit January 2006 www.nasa.gov Contacts Merrilee Fellows Policy/Program Management (818) 393-0754 NASA Headquarters, Washington DC Agle Stardust Mission (818) 393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation (206) 543-2580 University of Washington, Seattle, Wash. Contents General Release ............................................................................................................... 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Mission Overview …………………………………….................……….....……............…… 7 Recovery Timeline ................................................................................................ 18 Spacecraft ………………………………………………..................…..……...........……… 20 Science Objectives …………………………………..................……………...…..........….. 28 Why Stardust?..................…………………………..................………….....………............... 31 Other Comet Missions .......................................................................................... 33 NASA's Discovery Program .................................................................................. 36 Program/Project Management …………………………........................…..…..………...... 40 1 2 GENERAL RELEASE: NASA PREPARES FOR RETURN OF INTERSTELLAR CARGO NASA’s Stardust mission is nearing Earth after a 2.88 billion mile round-trip journey -
AEOLIAN GEOLOGY of the MARS PATHFINDER SITE. Ronald
AEOLIAN GEOLOGY OF THE MARS PATHFINDER SITE. Ronald Greeley, Michael Kraft, Gregory Wilson (Arizona State University); Robert Sullivan (Cornell University); Ruslan Kuzmin (Vernadsky Institute, Russian Academy of Sciences); Michael Malin (Malin Space Science Systems); Nathan Bridges, Kenneth Herkenhoff, Matthew Golombek (Jet Propulsion Laboratory); Peter Smith (University of Arizona). Introduction wind tails, 2) drift deposits, 3) ripplelike deposits, duneforms of several types, and 4) material on the The Mars Pathfinder landing site contains abun- tops of some rocks and spacecraft components, dant features attributed to aeolian, or wind, proc- presumably settled from atmospheric suspension. esses. These include wind tails, drift deposits, duneforms of various types, ripplelike features, Wind-tails are found in association with many and ventifacts (the first seen on Mars). Many of rocks. Typically they taper to a point away from these features are consistent with formation in- the rock in the inferred downwind direction (at volving sand-size particles. Although some fea- the time of their formation). They range in length tures, such as the barchan dunes, could develop from a cm to nearly a meter and are bright red. from saltating sand-size aggregates of finer Drift deposits are also bright red, but occur as grains, the discovery of ventifact flutes cut in patches, only some of which are associated with rocks strongly suggests that at least some of the rocks. Wind- tails and drift deposits have a grains are crystalline, rather than aggregates. Ex- sculpted appearance and are similar to those seen cluding the ventifacts, the orientations of the at the Viking lander sites (3). wind-related features correlate well with the ori- entations of bright wind streaks seen on Viking Dunelike structures occur as transverse, bar- Orbiter images in the general area. -
RONALD GREELEY Planetary Pioneer
news & views RONALD GREELEY Planetary pioneer Space missions over the past few decades have revolutionized our understanding of the Solar System and our own planet. Instruments on and orbiting Mars have provided a wealth of information on the red planet’s past and present conditions. Many of these missions — including the Viking, Mars Pathfinder, Mars Global Surveyor, Mars Exploration Rovers and the European Mars Express missions — were indebted to the commitment of Ronald Greeley, a Regents’ Professor at Arizona State University, who died on 27 October 2011 at the age of 72. Greeley’s interest in the similarities and differences of far-flung landscapes arose as he and his family moved around frequently — his father was a military serviceman. His PhD research took him to Mississippi’s Barrier Islands, where he combined the study of modern organisms with investigations of their fossil records. This marked the start of a career utilizing / ASU PHOTOGRAPH STORY TOM modern processes on Earth to understand Greeley began teaching at Arizona State every major spacecraft mission that our planet’s past, as well as the surfaces University in 1977. It was there that I first explored the Solar System since the of other planets and satellites. came to work with him in 1986. As I began Apollo Moon landing. In addition to the In 1967 Greeley was assigned to my graduate studies, he reminded me of numerous martian expeditions, Greeley NASA’s Ames Research Center to work the old adage: ‘A journey of 1,000 miles also contributed to the Galileo mission to on questions arising from the Apollo begins with a single step’. -
The Ronald Greeley Center for Planetary Studies: the Nasa Rpif at Arizona State University
47th Lunar and Planetary Science Conference (2016) 2125.pdf THE RONALD GREELEY CENTER FOR PLANETARY STUDIES: THE NASA RPIF AT ARIZONA STATE UNIVERSITY. D. M. Nelson1, D. A. Williams1, and A. E. Zink1, 1 School of Earth and Space Explora- tion, Arizona State University, Tempe, AZ 85287-3603 ([email protected]). Introduction: The NASA Regional Planetary In- and Mars research); 2) photographs, 35 mm slides, and formation Facilities (RPIFs) are a network of 16 cen- 16 mm film movies of field and laboratory experi- ters that archive images, maps, literature, and educa- ments, including the experiment records from the tion outreach materials from past and current planetary NASA Ames Vertical Gun Facility and the Planetary missions. Nine of the RPIFs are located in the US, Aeolian Laboratory wind tunnels; and 3) a series of while seven other are found in Canada, France, Ger- classic NASA Technical Reports, Special Publications, many, Israel, Italy, Japan, and the UK. The RPIFs were and other documents from the 1970s-1990s, many pro- originally established in the 1970s to serve two prima- duced by the late ASU professor Ronald Greeley and ry functions: 1) to archive photographs and literature colleagues. The RGCPS also houses a fully-operational from active and completed planetary missions, and 2) wet darkroom for the generation of photographic prints to provide researchers and the public access to the ar- to support research and EPO activities, and is the only chive for scientific research, future mission planning, RPIF that has such a capability. and education/public outreach (EP/O) [1]. While each The GIS lab in the RGCPS is available to the pub- RPIF houses a variety of similar products, each one lic for planetary research. -
PSS June 22 Teleconference Introductions and Agenda Dr. Ronald Greeley, Chair of the Planetary Science Subcommittee (PSS), Open
PSS June 22 Teleconference Introductions and Agenda Dr. Ronald Greeley, Chair of the Planetary Science Subcommittee (PSS), opened the meeting with a roll call of the PSS membership. He then reviewed the agenda and changed the sequence in order to ensure that the most important topics were covered. Opening Remarks Dr. James Green, Director of the Planetary Science Division (PSD), discussed recent activities of the U.S. House Appropriations Committee regarding the Department of Energy (DOE), which may affect NASA. DOE makes and manages the nation’s Plutonium-238 (Pu-238) supplies. The House Appropriations Committee recently passed a bill for DOE for Fiscal Year 2012 (FY12), in which the appropriation for DOE was $5.9 billion below the President’s FY12 request. Dr. Green told PSS that they should take note of this. It indicates what is likely in store for other Federal agencies. In the bill, which has not yet been sent to the full House or the Senate, there is a discussion of the Pu-238 restart. The Appropriations Committee provides no funds for this project, and “encourages the Administration to devise a plan for this project that more closely aligns the costs paid by Federal agencies with the benefits they receive.” In other words, if this bill goes through the Senate unaltered, NASA cannot expect DOE to receive funds for the restart. It is important to note that the NASA authorization allows the Agency to provide funds to DOE as part of NASA’s share of the restart of Pu-238. In the recently passed FY11 budget, NASA is not allowed to initiate any new starts. -
Introduction to the Planetary Dunes Special Issue, and the Aeolian Career of Ronald Greeley
Icarus 230 (2014) 1–4 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Editorial Introduction to the Planetary Dunes special issue, and the aeolian career of Ronald Greeley The Third International Planetary Dunes Workshop was held local topography on surface winds may explain some of the ob- June 12–15, 2012, at the Lowell Observatory in Flagstaff, Arizona, served inconsistencies. Fenton et al. (2014b) applied the inverse dedicated to Ronald Greeley (Third International Planetary Dunes, maximum gross bedform-normal transport technique to HiRISE 2012). More than sixty researchers and students participated in images of sand dunes in Ganges Chasma on Mars, which show that three days of presentations and discussions, plus a full day field the main sand-moving winds in this canyon system are driven by trip on June 13 to see aeolian sandstones near Page, Arizona. Most large-scale circulation patterns. Putzig et al. (2014) explored the participants also took part in an optional field trip on June 16 to see thermal behavior of the sand dunes that comprise the north polar the active dune field near Grand Falls, a short distance outside of erg on Mars, demonstrating that sand-sized agglomerated dust is Flagstaff. A summary of the main conclusions from this meeting no longer required to explain low observed temperatures, and a is available in Fenton et al. (2013). This special issue of Icarus pre- shallow ice table with in dunes comprised of ordinary sand tends sents seventeen papers that resulted from the discussions that to dominate the observed temperature changes. -
Oral History Whipple.Fm
Meteoritics & Planetary Science 39, Supplement, A199–A213 (2004) Abstract available online at http://meteoritics.org Report Oral histories in meteoritics and planetary science: XIII: Fred L. Whipple Ursula B. MARVIN Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA E-mail: [email protected] (Received 13 June 2004) Abstract–Born in Red Oak, Iowa, in 1906, Fred Lawrence Whipple earned his Ph.D. in astronomy at the University of California at Berkeley in 1931. He immediately accepted a position at the Harvard College Observatory and remained at Harvard throughout his career. In 1950, he was appointed to the Phillips Professorship in the Department of Astronomy, and in 1955, he began serving concurrently as the Director of the Smithsonian Astrophysical Observatory when it moved from Washington, D.C. to Cambridge, Massachusetts. In the 1930s, Whipple established the Harvard Meteor Project in which two cameras, 26 miles apart, simultaneously photographed the same meteors, for which he invariably derived elliptical orbits indicative of their origin within the solar system. In 1950, Whipple introduced his “dirty snowball” model of comet nuclei, which soon became widely accepted and was fully confirmed in 1986 by close-up images of comet Halley taken by the European Space Agency’s Giotto spacecraft. Keenly anticipating the orbiting of satellites during the International Geophysical Year (July 1, 1957-December 31, 1958), Whipple won contracts to build a worldwide network of telescopic cameras for satellite tracking. At least one of the cameras was ready in time to photograph the Soviet Union’s Sputnik I satellite in October 1957, and all 12 stations were in operation by midsummer of 1958. -
Aeolian Features on Venus Preliminary Magellan Results
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. E8, PAGES 13,319-13,345, AUGUST 25, 1992 Aeolian Featureson Venus' Preliminary Magellan Results RONALDGREELEY, • RAYMOND E. ARVIDSON,2 CHARLES ELACHI, 3 MAUREEN A. GERINGER,• JEFFREY J. PLAUT,3 R. STEPHENSAUNDERS, • GERALD SCHUBERT, 4ELLEN R. STOFAN,• Emc J.P. THOUVENOT,3's STEPHEND. WALL)• ANDCATHERINE M. WEITZ• Magellan synthetic aperture radar data reveal numerous surface features that are attributed to aeolian, or wind processes. Wind streaksare the most common aeolian feature. They consistof radar backscatterpatterns that are high, low, or mixed in relation to the surfaceon which they occur. A data base of more than 3400 wind streaksshows that low backscatterlinear forms (long, narrow streaks)are the most common and that most streaksoccur between 17øS to 30øS and 5øN to 53øN on smoothplains. Moreover, most streaksare associatedwith depositsfrom certain impact cratersand some tectonicallydeformed terrains. We infer that both of these geological settingsprovide fine particulatematerial that can be entrainedby the low-velocity winds on Venus. Turbulenceand wind patternsgenerated by the topographicfeatures with which many streaksare associatedcan account for differencesin particle distributionsand in the patternsof the wind streaks. Thus, some high backscatterstreaks are consideredto be zonesthat are swept free of sedimentaryparticles to expose rough bedrock;other high backscatterstreaks may be lag depositsof densematerials from which low-density grains have been removed (densematerials such as ilmenite or pyrite have dielectric propertiesthat would producehigh backscatterpatterns). Wind streaksgenerally occur on slopes < 2 ø and tend to be oriented toward the equator, consistentwith the Hadley model of atmospheric circulation. In additionto wind streaks,other aeolianfeatures on Venusincludg[ yardangs(?) and dune fields. -
Thursday, October 11, 2012 INSTRUMENTATION for in SITU ANALYSIS MISSIONS (VENUS in SITU EXPLORER, TITAN, ETC.) I 8:30 A.M
International Workshop on Instrumentation for Planetary Missions (2012) sess202.pdf Thursday, October 11, 2012 INSTRUMENTATION FOR IN SITU ANALYSIS MISSIONS (VENUS IN SITU EXPLORER, TITAN, ETC.) I 8:30 a.m. Building 34 — Conference Room 150 Chairs: Regis Courtin Shahid Aslam 9:00 a.m. Kraft R. P. * Kenter A. T. Alcock C. R. Murray S. S. Gauron T. M. Loose M. Werner M. Technology Development for the Whipple Mission Concept — Present Status and Future Work [1071] The Whipple mission was proposed to the 2010 Discovery program and funded for technology development. Whipple will conduct the first direct study of the outer solar system using a blind occultation survey. We discuss the status of our project. 9:15 a.m. Kobayashi M. * Shibata H. Nogami K. Fujii M. Miyachi T. Ohashi H. Sasaki S. Iwai T. Hattori M. Kimura H. Hirai T. Takechi S. Yano H. Hasegawa S. Srama R. Grün E. Mercury Dust Monitor for the BepiColombo MMO [1067] Mercury Dust Monitor (MDM) onboard the Mercury Magnetosphere Orbiter (MMO) will observe dust particles in orbit around Mercury during 1 year as nominal operation. In this paper, we report an overview of our instrument onboard the Bepi-Colombo MMO. 9:30 a.m. Reuter D. C. * Simon-Miller A. A. The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission [1074] This paper describes the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS), a 0.4 to 4.3 µm point spectrometer on the the OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer) mission. 9:45 a.m. Robinson M. -
Dust Phenomena Relating to Airless Bodies
Space Sci Rev (2018) 214:98 https://doi.org/10.1007/s11214-018-0527-0 Dust Phenomena Relating to Airless Bodies J.R. Szalay1 · A.R. Poppe2 · J. Agarwal3 · D. Britt4 · I. Belskaya5 · M. Horányi6 · T. Nakamura7 · M. Sachse8 · F. Spahn 8 Received: 8 August 2017 / Accepted: 10 July 2018 © Springer Nature B.V. 2018 Abstract Airless bodies are directly exposed to ambient plasma and meteoroid fluxes, mak- ing them characteristically different from bodies whose dense atmospheres protect their surfaces from such fluxes. Direct exposure to plasma and meteoroids has important con- sequences for the formation and evolution of planetary surfaces, including altering chemical makeup and optical properties, generating neutral gas and/or dust exospheres, and leading to the generation of circumplanetary and interplanetary dust grain populations. In the past two decades, there have been many advancements in our understanding of airless bodies and their interaction with various dust populations. In this paper, we describe relevant dust phenomena on the surface and in the vicinity of airless bodies over a broad range of scale sizes from ∼ 10−3 km to ∼ 103 km, with a focus on recent developments in this field. Keywords Dust · Airless bodies · Interplanetary dust Cosmic Dust from the Laboratory to the Stars Edited by Rafael Rodrigo, Jürgen Blum, Hsiang-Wen Hsu, Detlef Koschny, Anny-Chantal Levasseur-Regourd, Jesús Martín-Pintado, Veerle Sterken and Andrew Westphal B J.R. Szalay [email protected] A.R. Poppe [email protected] 1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA 2 Space Sciences Laboratory, U.C. Berkeley, Berkeley, CA, USA 3 Max Planck Institute for Solar System Research, Göttingen, Germany 4 University of Central Florida, Orlando, FL 32816, USA 5 Institute of Astronomy, V.N. -
Pdf/83/8/2397/3443198/I0016-7606-83-8-2397.Pdf by Guest on 02 October 2021 2398 GREELEY and HYDE
RONALD GREELEY Space Science Division, Ames Research Center, National Aeronautics and Space Administration, Mqffel Field, California 94035 JACK H. HYDE U.S. Geological Survey and Tacoma Community College, Tacoma, Washington 98465 Lava Tubes of the Cave Basalt, Mount St Helens, Washington ABSTRACT tumuli of the Cave Basalt collapsed, probably as a result of withdrawal of supporting lava The Cave Basalt, a high-alumina pahoehoe during drainage of the lava tubes. Raised-rim flow containing numerous lava tubes, originated craters found in many parts of the flow are at the southeast flank of Mount St. Helens, associated with lava tubes and were probably southwestern Washington, and flowed down a formed by collapse of hollow tumuli. stream valley incised in older pyroclastic flow deposits. In situ charcoal samples from two INTRODUCTION localities within lava tubes yield C14 dates of Abundant volcanic structures seen on high- 1,860 + 250 years B.P. and 1,925 + 95 years resolution pictures of the Moon and Mars, and B.P. Detailed survey of 9,125 m of lava tubes, the returned Apollo lunar samples showing correlated with surface geologic mapping, basaltic composition for mare surfaces have yields several geomorphic relations of basalt prompted interest in volcanic landforms as flows. Most of the lava tubes apparently formed analogs to lunar and planetary surface features. between shear planes in laminar lava flow, al- Volcanic geomorphology has been little studied though some tube sections show evidence that recently, particularly in relation to basalt flow the tube roof formed by accretion of spattered surface features. The existence of lunar lava lava in turbulent flow. -
Dust Storms on Mars: Considerations and Simulations
NASA Technical Memorandum 78423 Dust Storms on Mars: Considerations and Simulations Ronald Greeley University of Santa Clara, Moffett Field, California Bruce R. White University of California, Davis, California James B. Pollack Ames Research Center, Moffett Field, California James D. Iversen Iowa State University, Ames, Iowa Rodman N. Leach University of Santa Clara, Moffett Field, California IW\SA National Aeronautics and Space Administration Scientific and Technical Information Office 1977 DUST STORMS ON MARS: CONSIDERATIONS AND SIMULATIONS R. Greeley,* B. R. White,t J. B. Pollack,$ J. D. Iversen,§ and R. N. Leach* SUMMARY Aeolian processes are important in modifying the surface of Mars at present, and appear to have been significant in the geological past. Aeolian activity includes local and global dust storms, the formation of erosional features such as yardangs and depositional features such as sand dunes, and the erosion of rock and soil. As a means of understanding aeolian processes on Mars, an investigation is in progress that includes laboratory simulations, field studies of Earth analogs, and interpretation of spacecraft data. This report describes the Martian Surface Wind Tunnel (MARSWIT), an experimental facility established at NASA-Ames Research Center, and presents some results of the general investigation. Experiments dealing with wind speeds and other condi- tions required for the initiation of particle movement on Mars are described and considerations are given to the resulting effectiveness of aeolian erosion. INTRODUCTION For many years, Earth-based telescopic observations of Mars have revealed surface markings that change size, shape, and position with time, apparently in response to changes in the martian seasons.