Practical Framework for Conditional Non-Gaussian Quantum State Preparation Mattia Walschaers, Valentina Parigi, Nicolas Treps
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Enhancing the Sensitivity of the LIGO Gravitational Wave Detector by Using Squeezed States of Light
, Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light J. Aasi1, J. Abadie1, B. P. Abbott1, R. Abbott1, T. D. Abbott9 M. R. Abernathy1, C. Adams3, T. Adams36, P. Addesso55, R. X. Adhikari1, C. Affeldt4;11, O. D. Aguiar75, P. Ajith1, B. Allen4;5;11, E. Amador Ceron5, D. Amariutei8, S. B. Anderson1, W. G. Anderson5, K. Arai1, M. C. Araya1, C. Arceneaux29, S. Ast4;11, S. M. Aston3, D. Atkinson7, P. Aufmuth4;11, C. Aulbert4;11, L. Austin1, B. E. Aylott10, S. Babak12, P. T. Baker13, S. Ballmer25, Y. Bao8, J. C. Barayoga1, D. Barker7, B. Barr2, L. Barsotti15, M. A. Barton7, I. Bartos17, R. Bassiri2;6, J. Batch7, J. Bauchrowitz4;11, B. Behnke12, A. S. Bell2, C. Bell2, G. Bergmann4;11, J. M. Berliner7, A. Bertolini4;11, J. Betzwieser3, N. Beveridge2, P. T. Beyersdorf19, T. Bhadbhade6, I. A. Bilenko20, G. Billingsley1, J. Birch3, S. Biscans15, E. Black1, J. K. Blackburn1, L. Blackburn30, D. Blair16, B. Bland7, O. Bock4;11, T. P. Bodiya15, C. Bogan4;11, C. Bond10, R. Bork1, M. Born4;11, S. Bose22, J. Bowers9, P. R. Brady5, V. B. Braginsky20, J. E. Brau24, J. Breyer4;11, D. O. Bridges3, M. Brinkmann4;11, M. Britzger4;11, A. F. Brooks1, D. A. Brown25, D. D. Brown10, K. Buckland1, F. Br¨uckner10, B. C. Buchler34, A. Buonanno27, J. Burguet-Castell49, R. L. Byer6, L. Cadonati28, J. B. Camp30, P. Campsie2, K. Cannon63, J. Cao31, C. D. Capano27, L. Carbone10, S. Caride32, A. D. Castiglia61, S. Caudill5, M. Cavagli`a29, C. Cepeda1, T. Chalermsongsak1, S. -
Sudden Death and Revival of Gaussian Einstein–Podolsky–Rosen Steering
www.nature.com/npjqi ARTICLE OPEN Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels ✉ Xiaowei Deng1,2,4, Yang Liu1,2,4, Meihong Wang2,3, Xiaolong Su 2,3 and Kunchi Peng2,3 Einstein–Podolsky–Rosen (EPR) steering is a useful resource for secure quantum information tasks. It is crucial to investigate the effect of inevitable loss and noise in quantum channels on EPR steering. We analyze and experimentally demonstrate the influence of purity of quantum states and excess noise on Gaussian EPR steering by distributing a two-mode squeezed state through lossy and noisy channels, respectively. We show that the impurity of state never leads to sudden death of Gaussian EPR steering, but the noise in quantum channel can. Then we revive the disappeared Gaussian EPR steering by establishing a correlated noisy channel. Different from entanglement, the sudden death and revival of Gaussian EPR steering are directional. Our result confirms that EPR steering criteria proposed by Reid and I. Kogias et al. are equivalent in our case. The presented results pave way for asymmetric quantum information processing exploiting Gaussian EPR steering in noisy environment. npj Quantum Information (2021) 7:65 ; https://doi.org/10.1038/s41534-021-00399-x INTRODUCTION teleportation30–32, securing quantum networking tasks33, and 1234567890():,; 34,35 Nonlocality, which challenges our comprehension and intuition subchannel discrimination . about the nature, is a key and distinctive feature of quantum Besides two-mode EPR steering, the multipartite EPR steering world. Three different types of nonlocal correlations: Bell has also been widely investigated since it has potential application nonlocality1, Einstein–Podolsky–Rosen (EPR) steering2–6, and in quantum network. -
Monday O. Gühne 9:00 – 9:45 Quantum Steering and the Geometry of the EPR-Argument Steering Is a Type of Quantum Correlations
Monday O. Gühne Quantum Steering and the Geometry of the EPR-Argument 9:00 – 9:45 Steering is a type of quantum correlations which lies between entanglement and the violation of Bell inequalities. In this talk, I will first give an introduction into the topic. Then, I will discuss two results on steering: First, I will show how entropic uncertainty relations can be used to derive steering criteria. Second, I will present an algorithmic approach to characterize the quantum states that can be used for steering. With this, one can decide the problem of steerability for two-qubit states. [1] A.C.S. Costa et al., arXiv:1710.04541. [2] C. Nguyen et al., arXiv:1808.09349. J.-Å. Larsson Quantum computation and the additional degrees of freedom in a physical 9:45 – 10:30 system The speed-up of Quantum Computers is the current drive of an entire scientific field with several large research programmes both in industry and academia world-wide. Many of these programmes are intended to build hardware for quantum computers. A related important goal is to understand the reason for quantum computational speed- up; to understand what resources are provided by the quantum system used in quantum computation. Some candidates for such resources include superposition and interference, entanglement, nonlocality, contextuality, and the continuity of state- space. The standard approach to these issues is to restrict quantum mechanics and characterize the resources needed to restore the advantage. Our approach is dual to that, instead extending a classical information processing systems with additional properties in the form of additional degrees of freedom, normally only present in quantum-mechanical systems. -
Approximating Ground States by Neural Network Quantum States
Article Approximating Ground States by Neural Network Quantum States Ying Yang 1,2, Chengyang Zhang 1 and Huaixin Cao 1,* 1 School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China; [email protected] (Y.Y.); [email protected] (C.Z.) 2 School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China * Correspondence: [email protected] Received: 16 December 2018; Accepted: 16 January 2019; Published: 17 January 2019 Abstract: Motivated by the Carleo’s work (Science, 2017, 355: 602), we focus on finding the neural network quantum statesapproximation of the unknown ground state of a given Hamiltonian H in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides, we illustrate our method with some examples. Keywords: approximation; ground state; neural network quantum state 1. Introduction The quantum many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of a large number of interacting particles. In such a quantum system, the repeated interactions between particles create quantum correlations [1–3], quantum entanglement [4–6], Bell nonlocality [7–9], Einstein-Poldolsky-Rosen (EPR) steering [10–12]. As a consequence, the wave function of the system is a complicated object holding a large amount of information, which usually makes exact or analytical calculations impractical or even impossible. Thus, many-body theoretical physics most often relies on a set of approximations specific to the problem at hand, and ranks among the most computationally intensive fields of science. -
Arxiv:2003.13443V1 [Astro-Ph.IM] 26 Mar 2020 Minimum in the Phase Quadrature, Thus Reducing Shot Broadband Improvement in Sensitivity
Frequency-Dependent Squeezing for Advanced LIGO L. McCuller,1, ∗ C. Whittle,1, y D. Ganapathy,1 K. Komori,1 M. Tse,1 A. Fernandez-Galiana,1 L. Barsotti,1 P. Fritschel,1 M. MacInnis,1 F. Matichard,1 K. Mason,1 N. Mavalvala,1 R. Mittleman,1 Haocun Yu,1 M. E. Zucker,1, 2 and M. Evans1 1LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2LIGO, California Institute of Technology, Pasadena, CA 91125, USA (Dated: March 31, 2020) The first detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational wave astronomy. The quest for gravitational wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light is being used to improve the shot noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above 50 Hz. Below this frequency, quantum back action, in the form of radiation pressure induced motion∼ of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30 Hz, using a 16 m long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as \A+." I. -
`Nonclassical' States in Quantum Optics: a `Squeezed' Review of the First 75 Years
Home Search Collections Journals About Contact us My IOPscience `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1 (http://iopscience.iop.org/1464-4266/4/1/201) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 132.206.92.227 The article was downloaded on 27/08/2013 at 15:04 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 4 (2002) R1–R33 PII: S1464-4266(02)31042-5 REVIEW ARTICLE ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years V V Dodonov1 Departamento de F´ısica, Universidade Federal de Sao˜ Carlos, Via Washington Luiz km 235, 13565-905 Sao˜ Carlos, SP, Brazil E-mail: [email protected] Received 21 November 2001 Published 8 January 2002 Online at stacks.iop.org/JOptB/4/R1 Abstract Seventy five years ago, three remarkable papers by Schrodinger,¨ Kennard and Darwin were published. They were devoted to the evolution of Gaussian wave packets for an oscillator, a free particle and a particle moving in uniform constant electric and magnetic fields. From the contemporary point of view, these packets can be considered as prototypes of the coherent and squeezed states, which are, in a sense, the cornerstones of modern quantum optics. Moreover, these states are frequently used in many other areas, from solid state physics to cosmology. -
Arxiv:2002.04674V1 [Physics.Optics] 11 Feb 2020 in SRS, the Sensitivity and the Imaging Speed Are Fun- Be Reduced by Using a Laser Beam in a Squeezed State
Quantum-Enhanced continuous-wave stimulated Raman spectroscopy R. B. Andrade,1 H. Kerdoncuff,2 K. Berg-Srensen,1 T. Gehring,1 M. Lassen,2 and U. L. Andersen1 1Center for Macroscopic Quantum States bigQ, Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kgs. Lyngby. 2Danish Fundamental Metrology, Kogle Alle 5, DK-2970, Denmark. Stimulated Raman spectroscopy has become a powerful tool to study the spatiodynamics of molecular bonds with high sensitivity, resolution and speed. However, sensitivity and speed of state- of-the-art stimulated Raman spectroscopy are currently limited by the shot-noise of the light beam probing the Raman process. Here, we demonstrate an enhancement of the sensitivity of continuous- wave stimulated Raman spectroscopy by reducing the quantum noise of the probing light below the shot-noise limit by means of amplitude squeezed states of light. Probing polymer samples with Raman shifts around 2950 cm−1 with squeezed states, we demonstrate a quantum-enhancement of the stimulated Raman signal-to-noise ratio (SNR) of 3:60 dB relative to the shot-noise limited SNR. Our proof-of-concept demonstration of quantum-enhanced Raman spectroscopy paves the way for a new generation of Raman microscopes, where weak Raman transitions can be imaged without the use of markers or an increase in the total optical power. I. INTRODUCTION In this article, we demonstrate the quantum enhance- ment of continuous-wave (cw) SRS using amplitude Optical quantum sensing exploits the unique quantum squeezed light. We demonstrate its functionality and correlations of non-classical light to enhance the detec- superiority by spectroscopically measuring the carbon- tion of physical parameters beyond classical means [1{ hydrogen (C-H) vibrations of polymethylmethacrylate 5]. -
Squeezed Light for Gravitational Wave Astronomy
Squeezed Light for Gravitational Wave Astronomy Von der Fakultät für Mathematik und Physik der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation von Dipl.-Phys. Henning Vahlbruch geboren am 29. Juli 1976 in Frankfurt am Main 2008 Referent: Prof. Dr. Roman Schnabel Korreferent: Prof. Dr. Karsten Danzmann Tag der Promotion: 28.11.2008 Abstract During the recent years an international network of interferometric gravitational wave (GW) detectors has been commissioned and searches for various classes of GW- signals are ongoing. Although the observatories are beginning to reach astrophysically interesting sensitivity levels, extensive upgrades are aimed for the next decade bringing us into the era of gravitational wave astronomy. One approach to enhance the detector sensitivity is the injection of squeezed vacuum states of light replacing the vacuum fluctuations entering the detector through its antisymmetric port. In this thesis the unprecedented generation of squeezed vacuum states with a noise power 6.5 dB below vacuum noise within the entire detection bandwidth of ground-based GW-detectors (10 Hz - 10 kHz) was experimentally demonstrated at a wavelength of 1064 nm. For the first time a coherent control scheme was employed for comprehensive phase control of the experimental setup. This scheme is directly applicable to future GW-detector topologies. In addition, parasitic interference in- duced by scattered light was found to be a dominant noise source degrading squeezed states in the audio band. The compatibility of squeezed field injection into a detuned operated dual-recycled Michelson interferometer was demonstrated in a table top experiment. -
An Introduction to Blind Quantum Computing and Related Protocols
www.nature.com/npjqi REVIEW ARTICLE OPEN Private quantum computation: an introduction to blind quantum computing and related protocols Joseph F. Fitzsimons1,2 Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area. npj Quantum Information (2017) 3:23 ; doi:10.1038/s41534-017-0025-3 INTRODUCTION from the server executing them, and to ensure the correctness of For almost as long as programmable computers have existed, the result. there has been a strong motivation for users to run calculations on In recent years, a number of protocols have emerged which hardware that they do not personally control. Initially, this was due seek to tackle the privacy issues raised by delegated quantum to the high cost of such devices coupled with the need for computation. Going under the broad heading of blind quantum specialised facilities to house them. Universities, government computation (BQC), these provide a way for a client to execute a agencies and large corporations housed computers in central quantum computation using one or more remote quantum locations where they ran jobs for their users in batches. -
Quantum Technology: Advances and Trends
American Journal of Engineering and Applied Sciences Review Quantum Technology: Advances and Trends 1Lidong Wang and 2Cheryl Ann Alexander 1Institute for Systems Engineering Research, Mississippi State University, Vicksburg, Mississippi, USA 2Institute for IT innovation and Smart Health, Vicksburg, Mississippi, USA Article history Abstract: Quantum science and quantum technology have become Received: 30-03-2020 significant areas that have the potential to bring up revolutions in various Revised: 23-04-2020 branches or applications including aeronautics and astronautics, military Accepted: 13-05-2020 and defense, meteorology, brain science, healthcare, advanced manufacturing, cybersecurity, artificial intelligence, etc. In this study, we Corresponding Author: Cheryl Ann Alexander present the advances and trends of quantum technology. Specifically, the Institute for IT innovation and advances and trends cover quantum computers and Quantum Processing Smart Health, Vicksburg, Units (QPUs), quantum computation and quantum machine learning, Mississippi, USA quantum network, Quantum Key Distribution (QKD), quantum Email: [email protected] teleportation and quantum satellites, quantum measurement and quantum sensing, and post-quantum blockchain and quantum blockchain. Some challenges are also introduced. Keywords: Quantum Computer, Quantum Machine Learning, Quantum Network, Quantum Key Distribution, Quantum Teleportation, Quantum Satellite, Quantum Blockchain Introduction information and the computation that is executed throughout a transaction (Humble, 2018). The Tokyo QKD metropolitan area network was There have been advances in developing quantum established in Japan in 2015 through intercontinental equipment, which has been indicated by the number of cooperation. A 650 km QKD network was established successful QKD demonstrations. However, many problems between Washington and Ohio in the USA in 2016; a still need to be fixed though achievements of QKD have plan of a 10000 km QKD backbone network was been showcased. -
Q-Ctrl's Expertise & Capabilities
Q-CTRL’S EXPERTISE & CAPABILITIES THE WORLD’S LEADING EXPERTS IN QUANTUM CONTROL ENGINEERING For more Information visit q-ctrl.com INTRODUCTION At Q-CTRL we’ve assembled a team comprising many optimization through to quantum computer architecture of the world’s leading experts in quantum control analyses, sensor data fusion to improved clock engineering, with expertise spanning the dominant stabilization using machine learning. quantum computing hardware platforms as well as near-term applications in sensing and metrology. Just imagine how much our team can help you achieve. Our team understands the challenges faced by hardware Explore below for highlights of our capabilities. R&D teams, software architects, and end-users, and has a sustained publication track record demonstrating an ability to drive progress across the field of quantum technology. We solve tough challenges from experimental hardware TRAPPED-ION QUANTUM COMPUTING The Q-CTRL team has extensive experience in trapped-ion quantum logic and experimental hardware. Through our IARPA and ARO sponsored collaborations with the University of Sydney we have demonstrated how Q-CTRL solutions can help identify noise sources and dramatically improve the robustness and speed of Molmer-Sorensen entangling gates. KEY STAFF SELECTED PUBLICATIONS Dr. Harrison Ball Assessing the progress of trapped-ion processors A Study on Fast Gates for Large-Scale Dr. Chris Bentley towards fault-tolerant quantum computation Quantum Simulation with Trapped Ions Prof. Michael J. Biercuk Physical Review X 7 (4), 041061 Scientific Reports 7, 46197 Dr. Andre Carvalho Ms. Claire Edmunds Engineered two-dimensional Ising interactions in a Scaling Trapped Ion Quantum Computers trapped-ion quantum simulator with hundreds of spins Using Fast Gates and Microtraps Nature 484 (7395), 489 Physical Review Letters 120 (22), 220501 Fast gates for ion traps by splitting laser pulses Phase-modulated entangling gates robust New Journal of Physics 15 (4), 043006 against static and time-varying errors Phys. -
Demonstration of Einstein–Podolsky–Rosen Steering with Enhanced Subchannel Discrimination
www.nature.com/npjqi ARTICLE OPEN Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination Kai Sun1,2, Xiang-Jun Ye1,2, Ya Xiao1,2, Xiao-Ye Xu1,2, Yu-Chun Wu1,2, Jin-Shi Xu1,2, Jing-Ling Chen3,4, Chuan-Feng Li1,2 and Guang-Can Guo1,2 Einstein–Podolsky–Rosen (EPR) steering describes a quantum nonlocal phenomenon in which one party can nonlocally affect the other’s state through local measurements. It reveals an additional concept of quantum non-locality, which stands between quantum entanglement and Bell nonlocality. Recently, a quantum information task named as subchannel discrimination (SD) provides a necessary and sufficient characterization of EPR steering. The success probability of SD using steerable states is higher than using any unsteerable states, even when they are entangled. However, the detailed construction of such subchannels and the experimental realization of the corresponding task are still technologically challenging. In this work, we designed a feasible collection of subchannels for a quantum channel and experimentally demonstrated the corresponding SD task where the probabilities of correct discrimination are clearly enhanced by exploiting steerable states. Our results provide a concrete example to operationally demonstrate EPR steering and shine a new light on the potential application of EPR steering. npj Quantum Information (2018) 4:12 ; doi:10.1038/s41534-018-0067-1 INTRODUCTION named subchannel discrimination (SD).17 As an extension of the In the original discussion of Einstein–Podolsky–Rosen (EPR) quantum channel generally representing the physical transforma- paradox,1 Schrödinger2,3 described a quantum non-local phenom- tion of information from an initial state to a final state in which the enon that Alice can steer Bob’s state through her local quantum operation is trace-preserving for all input states,44 a measurements.