Is Quantum Steering Spooky?

Total Page:16

File Type:pdf, Size:1020Kb

Is Quantum Steering Spooky? Imperial College London Department of Physics Is quantum steering spooky? Matthew Fairbairn Pusey September 2013 Supervised by Terry Rudolph & Jonathan Barrett Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Physics of Imperial College London Declaration The following thesis was written solely by me. It presents my own work, and work by others is appropriately referenced. Matthew Fairbairn Pusey The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 2 Abstract In quantum mechanics, if one party performs a measurement on one system, different outcomes can lead to different states for another system. This phenomenon is known as quantum steering. The thesis begins with some general results about steering: a classifi- cation of which states permit the most powerful type of steering, and the implications of this for quantum correlations. The first main topic is steering in two-qubit systems. It turns out that steering provides an excellent way to visualize two-qubit states, leading to a novel criteria for entanglement and a better understanding of separable states. Oddly, the structure of steering can be more subtle in separable states than it can be in entangled ones. Returning to general quantum systems, I then turn to the EPR paradox, and its generalisation using Local Hidden State models. I show that the lack of such models can be used to quantify the amount of entanglement shared by two parties, even when one of them does not trust their measuring devices. Finally, the desire to understand steering without invoking \spooky action- at-a-distance" leads to the idea that quantum states are states of knowledge. I explore some de Finetti theorems that help to make sense of this idea, but then show a significant roadblock the most natural formalisation of it. The main results in chapters 3 and 4 appear in [JPJR13] and [Pus13] respectively. The result in chapter 6 was improved in collaboration with my supervisors and published in [PBR12]. 3 Acknowledgements My research would not have been possible without my good fortune in hav- ing not one, but two, excellent supervisors. Since one was also the lecturer and irritating-problem-setter for my first and only course in quantum in- formation, it is fair to say that almost everything I have learnt about my field I have learnt from them. Terry's impatience with technicalities and Jon's impatience with handwaving complement each other brilliantly when discussing ideas and clash horribly when writing papers. Terry has also dealt with countless bureaucratic necessities with reckless speed, whilst Jon has demonstrated the enticing possibility of getting by in academia without promptly replying to any emails at all (except of course those that offer free items of furniture). The atmosphere in the Whiteley suite, and then the IMS, and then Level 12, has been consistently fantastic, both for learning physics and avoiding doing so. I need to thank the countless people I have discussed and argued about quantum mechanics with, both at Imperial and during conferences and workshops spanning three continents. Thanks also to my brother Joe for his help with proofreading a draft of this document, and to my examiners for finding many other typos. This thesis is dedicated to Sabrina, without whom I probably would have finished it much earlier, and where's the fun in that? 4 Contents 1. Introduction 9 1.1. Operational quantum theory . 9 1.2. Composite systems . 11 1.3. Steered states . 13 1.4. Digression: comparison with other formulations . 14 1.5. The road ahead . 15 2. Steering warm-up: extending two theorems 17 2.1. Complete steering from purifications . 17 2.2. Quantum correlations from local quantum theory . 22 2.3. Summary . 24 3. Two qubits: the quantum steering ellipsoid 25 3.1. One qubit: the Pauli basis and Bloch sphere . 25 3.2. Introducing the steering ellipsoid . 26 3.3. Entangled ellipsoids . 29 3.4. Minimal product states . 36 3.5. Incomplete steering . 37 3.6. Summary . 40 4. Linking steering with negativity 41 4.1. Local hidden state models . 42 4.2. Enter Einstein, Podolsky and Rosen . 43 4.3. LHS models and entanglement . 44 4.4. Quantifying lack of LHS models: steering inequalities . 45 4.5. Quantifying lack of separability: entanglement measures . 46 4.6. Semidefinite programming for LHS models . 47 4.7. The NPA hierarchy for probabilities . 48 4.8. The NPA hierarchy for assemblages . 51 5 Contents Contents 4.9. Making the link to negativity . 52 4.10. Results: stronger Peres conjecture? . 54 4.11. Summary . 58 5. Quantum states as states of knowledge: de Finetti theorems 59 5.1. The de Finetti theorem for probabilities . 60 5.2. The de Finetti theorem for quantum states . 62 5.3. The de Finetti theorem for channels . 63 5.4. The de Finetti theorem for POVMs . 65 5.5. The de Finetti theorem for quantum instruments . 69 5.6. Summary . 70 6. Quantum states as states of knowledge: an obstacle? 71 6.1. Ontological models . 71 6.2. -ontic versus -epistemic . 72 6.3. Basic limits on ontological models: PP-incompatibility . 73 6.4. Preparation independence . 76 6.5. Summary . 79 7. Epilogue: Bell's theorem 80 8. Conclusions and outlook 84 A. Ellipses inside tetrahedra fit inside triangles 86 Bibliography 88 Index 99 6 List of Tables 4.1. Form of χ(ρAB) when mA = nA = mB = nB = 2 . 50 4.2. Steering inequalities consistent with the Peres conjecture . 57 4.3. Parameters for randomly generated steering inequalities . 58 7.1. Summary of three scenarios for bipartite entanglement . 82 7 List of Figures 1.1. The simplest quantum experiment . 9 1.2. Preparation of a mixture . 11 1.3. Preparation of a product state . 12 1.4. Preparation of a reduced state . 13 1.5. Preparation of a steered state . 14 2.1. Summary of argument for condition 3 = condition 2 . 21 ) 3.1. Ellipsoid of a separable state . 29 3.2. The various quantities used in proving lemma 3.1 . 30 3.3. Effect of in 2-dimensional case . 33 A 4.1. Negativity bounds for a simple steering inequality . 55 4.2. Negativity bounds for another steering inequality . 55 5.1. A quantum channel . 63 6.1. n = 2 case in proof of theorem 6.2 . 78 7.1. Setup for Bell test . 83 A.1. Illustration of Poncelet's porism . 86 A.2. Illustrations for the proof of theorem A.2 . 87 8 1. Introduction To investigate quantum steering, we first need to review a little quantum theory. Familiarity with the basics of linear algebra is assumed, chapter 2 of [NC00] provides an good review of the relevant material. Once the key concepts have been established this chapter concludes with a guide to the remainder of this thesis. 1.1. Operational quantum theory Quantum mechanics is a vast subject, but for the purposes of this the- sis we will only require the following \bare-bones" version of the finite- dimensional non-relativistic theory. I will take the following notions to be primitive: quantum system, preparation, and measurement. Examples of quantum systems include the polarization of a photon and the orbital en- ergy of an electron. A preparation is some repeatable procedure which outputs a quantum system. A measurement is some repeatable procedure that receives a quantum system and then produces an \outcome" from some finite set, for example a particular light may switch on. Figure 1.1.: The simplest quantum experiment: preparation of ρ followed by measurement of E , here resulting outcome a = 2. f ag 9 1.1 Operational quantum theory The theory associates these primitives with the following mathematical objects, as described, for example in [NC00, Per95, SW10]. A quantum sys- tem is associated with a finite-dimensional Hilbert space . A preparation H is associated with a unit trace positive operator on , called the quantum H state ρ. A measurement is described by associating each outcome with a positive operator Ea on , with Ea = I, the identity operator. The set H a E is called a Positive Operator Valued Measure (POVM). Finally, the f ag P probability that a preparation associated with ρ followed by a measurement associated with E gives outcome a is given by the Born rule Tr(ρE ), f ag a where Tr is the trace. A word of warning: I will often (indeed, starting with the next paragraph) abuse terminology by referring to the above primitives and their associated mathematical objects interchangeably, but this should not be taken to suggest they are in any sense conceptually equivalent. As Peres put it [Per95]: \Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory.". In this thesis it will be assumed that any quantum state can, at least in principle, be prepared, and likewise any POVM can be measured. For some justifications in the case of specific physical situations, see for example [RZBB94, SW80]. If a POVM E spans the Hermitian operators on , then it is called f ag H informationally-complete [Pru77]. This implies that for all ρ = σ there ex- 6 ists an a such that Tr(ρE ) = Tr(σE ), i.e. the probabilities associated with a 6 a an informationally-complete POVM suffice to specify the quantum state.
Recommended publications
  • Sudden Death and Revival of Gaussian Einstein–Podolsky–Rosen Steering
    www.nature.com/npjqi ARTICLE OPEN Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels ✉ Xiaowei Deng1,2,4, Yang Liu1,2,4, Meihong Wang2,3, Xiaolong Su 2,3 and Kunchi Peng2,3 Einstein–Podolsky–Rosen (EPR) steering is a useful resource for secure quantum information tasks. It is crucial to investigate the effect of inevitable loss and noise in quantum channels on EPR steering. We analyze and experimentally demonstrate the influence of purity of quantum states and excess noise on Gaussian EPR steering by distributing a two-mode squeezed state through lossy and noisy channels, respectively. We show that the impurity of state never leads to sudden death of Gaussian EPR steering, but the noise in quantum channel can. Then we revive the disappeared Gaussian EPR steering by establishing a correlated noisy channel. Different from entanglement, the sudden death and revival of Gaussian EPR steering are directional. Our result confirms that EPR steering criteria proposed by Reid and I. Kogias et al. are equivalent in our case. The presented results pave way for asymmetric quantum information processing exploiting Gaussian EPR steering in noisy environment. npj Quantum Information (2021) 7:65 ; https://doi.org/10.1038/s41534-021-00399-x INTRODUCTION teleportation30–32, securing quantum networking tasks33, and 1234567890():,; 34,35 Nonlocality, which challenges our comprehension and intuition subchannel discrimination . about the nature, is a key and distinctive feature of quantum Besides two-mode EPR steering, the multipartite EPR steering world. Three different types of nonlocal correlations: Bell has also been widely investigated since it has potential application nonlocality1, Einstein–Podolsky–Rosen (EPR) steering2–6, and in quantum network.
    [Show full text]
  • Monday O. Gühne 9:00 – 9:45 Quantum Steering and the Geometry of the EPR-Argument Steering Is a Type of Quantum Correlations
    Monday O. Gühne Quantum Steering and the Geometry of the EPR-Argument 9:00 – 9:45 Steering is a type of quantum correlations which lies between entanglement and the violation of Bell inequalities. In this talk, I will first give an introduction into the topic. Then, I will discuss two results on steering: First, I will show how entropic uncertainty relations can be used to derive steering criteria. Second, I will present an algorithmic approach to characterize the quantum states that can be used for steering. With this, one can decide the problem of steerability for two-qubit states. [1] A.C.S. Costa et al., arXiv:1710.04541. [2] C. Nguyen et al., arXiv:1808.09349. J.-Å. Larsson Quantum computation and the additional degrees of freedom in a physical 9:45 – 10:30 system The speed-up of Quantum Computers is the current drive of an entire scientific field with several large research programmes both in industry and academia world-wide. Many of these programmes are intended to build hardware for quantum computers. A related important goal is to understand the reason for quantum computational speed- up; to understand what resources are provided by the quantum system used in quantum computation. Some candidates for such resources include superposition and interference, entanglement, nonlocality, contextuality, and the continuity of state- space. The standard approach to these issues is to restrict quantum mechanics and characterize the resources needed to restore the advantage. Our approach is dual to that, instead extending a classical information processing systems with additional properties in the form of additional degrees of freedom, normally only present in quantum-mechanical systems.
    [Show full text]
  • Approximating Ground States by Neural Network Quantum States
    Article Approximating Ground States by Neural Network Quantum States Ying Yang 1,2, Chengyang Zhang 1 and Huaixin Cao 1,* 1 School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China; [email protected] (Y.Y.); [email protected] (C.Z.) 2 School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China * Correspondence: [email protected] Received: 16 December 2018; Accepted: 16 January 2019; Published: 17 January 2019 Abstract: Motivated by the Carleo’s work (Science, 2017, 355: 602), we focus on finding the neural network quantum statesapproximation of the unknown ground state of a given Hamiltonian H in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides, we illustrate our method with some examples. Keywords: approximation; ground state; neural network quantum state 1. Introduction The quantum many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of a large number of interacting particles. In such a quantum system, the repeated interactions between particles create quantum correlations [1–3], quantum entanglement [4–6], Bell nonlocality [7–9], Einstein-Poldolsky-Rosen (EPR) steering [10–12]. As a consequence, the wave function of the system is a complicated object holding a large amount of information, which usually makes exact or analytical calculations impractical or even impossible. Thus, many-body theoretical physics most often relies on a set of approximations specific to the problem at hand, and ranks among the most computationally intensive fields of science.
    [Show full text]
  • An Introduction to Blind Quantum Computing and Related Protocols
    www.nature.com/npjqi REVIEW ARTICLE OPEN Private quantum computation: an introduction to blind quantum computing and related protocols Joseph F. Fitzsimons1,2 Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area. npj Quantum Information (2017) 3:23 ; doi:10.1038/s41534-017-0025-3 INTRODUCTION from the server executing them, and to ensure the correctness of For almost as long as programmable computers have existed, the result. there has been a strong motivation for users to run calculations on In recent years, a number of protocols have emerged which hardware that they do not personally control. Initially, this was due seek to tackle the privacy issues raised by delegated quantum to the high cost of such devices coupled with the need for computation. Going under the broad heading of blind quantum specialised facilities to house them. Universities, government computation (BQC), these provide a way for a client to execute a agencies and large corporations housed computers in central quantum computation using one or more remote quantum locations where they ran jobs for their users in batches.
    [Show full text]
  • Quantum Technology: Advances and Trends
    American Journal of Engineering and Applied Sciences Review Quantum Technology: Advances and Trends 1Lidong Wang and 2Cheryl Ann Alexander 1Institute for Systems Engineering Research, Mississippi State University, Vicksburg, Mississippi, USA 2Institute for IT innovation and Smart Health, Vicksburg, Mississippi, USA Article history Abstract: Quantum science and quantum technology have become Received: 30-03-2020 significant areas that have the potential to bring up revolutions in various Revised: 23-04-2020 branches or applications including aeronautics and astronautics, military Accepted: 13-05-2020 and defense, meteorology, brain science, healthcare, advanced manufacturing, cybersecurity, artificial intelligence, etc. In this study, we Corresponding Author: Cheryl Ann Alexander present the advances and trends of quantum technology. Specifically, the Institute for IT innovation and advances and trends cover quantum computers and Quantum Processing Smart Health, Vicksburg, Units (QPUs), quantum computation and quantum machine learning, Mississippi, USA quantum network, Quantum Key Distribution (QKD), quantum Email: [email protected] teleportation and quantum satellites, quantum measurement and quantum sensing, and post-quantum blockchain and quantum blockchain. Some challenges are also introduced. Keywords: Quantum Computer, Quantum Machine Learning, Quantum Network, Quantum Key Distribution, Quantum Teleportation, Quantum Satellite, Quantum Blockchain Introduction information and the computation that is executed throughout a transaction (Humble, 2018). The Tokyo QKD metropolitan area network was There have been advances in developing quantum established in Japan in 2015 through intercontinental equipment, which has been indicated by the number of cooperation. A 650 km QKD network was established successful QKD demonstrations. However, many problems between Washington and Ohio in the USA in 2016; a still need to be fixed though achievements of QKD have plan of a 10000 km QKD backbone network was been showcased.
    [Show full text]
  • Q-Ctrl's Expertise & Capabilities
    Q-CTRL’S EXPERTISE & CAPABILITIES THE WORLD’S LEADING EXPERTS IN QUANTUM CONTROL ENGINEERING For more Information visit q-ctrl.com INTRODUCTION At Q-CTRL we’ve assembled a team comprising many optimization through to quantum computer architecture of the world’s leading experts in quantum control analyses, sensor data fusion to improved clock engineering, with expertise spanning the dominant stabilization using machine learning. quantum computing hardware platforms as well as near-term applications in sensing and metrology. Just imagine how much our team can help you achieve. Our team understands the challenges faced by hardware Explore below for highlights of our capabilities. R&D teams, software architects, and end-users, and has a sustained publication track record demonstrating an ability to drive progress across the field of quantum technology. We solve tough challenges from experimental hardware TRAPPED-ION QUANTUM COMPUTING The Q-CTRL team has extensive experience in trapped-ion quantum logic and experimental hardware. Through our IARPA and ARO sponsored collaborations with the University of Sydney we have demonstrated how Q-CTRL solutions can help identify noise sources and dramatically improve the robustness and speed of Molmer-Sorensen entangling gates. KEY STAFF SELECTED PUBLICATIONS Dr. Harrison Ball Assessing the progress of trapped-ion processors A Study on Fast Gates for Large-Scale Dr. Chris Bentley towards fault-tolerant quantum computation Quantum Simulation with Trapped Ions Prof. Michael J. Biercuk Physical Review X 7 (4), 041061 Scientific Reports 7, 46197 Dr. Andre Carvalho Ms. Claire Edmunds Engineered two-dimensional Ising interactions in a Scaling Trapped Ion Quantum Computers trapped-ion quantum simulator with hundreds of spins Using Fast Gates and Microtraps Nature 484 (7395), 489 Physical Review Letters 120 (22), 220501 Fast gates for ion traps by splitting laser pulses Phase-modulated entangling gates robust New Journal of Physics 15 (4), 043006 against static and time-varying errors Phys.
    [Show full text]
  • Demonstration of Einstein–Podolsky–Rosen Steering with Enhanced Subchannel Discrimination
    www.nature.com/npjqi ARTICLE OPEN Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination Kai Sun1,2, Xiang-Jun Ye1,2, Ya Xiao1,2, Xiao-Ye Xu1,2, Yu-Chun Wu1,2, Jin-Shi Xu1,2, Jing-Ling Chen3,4, Chuan-Feng Li1,2 and Guang-Can Guo1,2 Einstein–Podolsky–Rosen (EPR) steering describes a quantum nonlocal phenomenon in which one party can nonlocally affect the other’s state through local measurements. It reveals an additional concept of quantum non-locality, which stands between quantum entanglement and Bell nonlocality. Recently, a quantum information task named as subchannel discrimination (SD) provides a necessary and sufficient characterization of EPR steering. The success probability of SD using steerable states is higher than using any unsteerable states, even when they are entangled. However, the detailed construction of such subchannels and the experimental realization of the corresponding task are still technologically challenging. In this work, we designed a feasible collection of subchannels for a quantum channel and experimentally demonstrated the corresponding SD task where the probabilities of correct discrimination are clearly enhanced by exploiting steerable states. Our results provide a concrete example to operationally demonstrate EPR steering and shine a new light on the potential application of EPR steering. npj Quantum Information (2018) 4:12 ; doi:10.1038/s41534-018-0067-1 INTRODUCTION named subchannel discrimination (SD).17 As an extension of the In the original discussion of Einstein–Podolsky–Rosen (EPR) quantum channel generally representing the physical transforma- paradox,1 Schrödinger2,3 described a quantum non-local phenom- tion of information from an initial state to a final state in which the enon that Alice can steer Bob’s state through her local quantum operation is trace-preserving for all input states,44 a measurements.
    [Show full text]
  • Experimental Analysis of Einstein-Podolsky-Rosen Steering
    EXPERIMENTALANALYSISOF EINSTEIN-PODOLSKY-ROSENSTEERINGFOR QUANTUMINFORMATIONAPPLICATIONS Von der QUEST-Leibniz-Forschungsschule der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktor der Naturwissenschaften -Dr. rer. nat.- genehmigte Dissertation von DIPL.-PHYS.VITUSHÄNDCHEN 2016 Referent : Prof. Dr. rer. nat. Roman Schnabel Institut für Laserphysik, Hamburg Korreferent : Prof. Dr. rer. nat. Reinhard F. Werner Institut für Theoretische Physik, Hannover Tag der Promotion : 04.03.2016 ABSTRACT The first description of quantum steering goes back to Schrödinger. In 1935 he named it a necessary and indispensable feature of quantum mechanics in response to Einstein’s concerns about the completeness of quantum theory. In recent years investigations of the effect have ex- perienced a revival, as it turned out that steering is a distinct subclass of entanglement. It is strictly stronger than genuine entanglement, meaning that all steerable states are entangled but not vice versa, and strictly weaker than the violation of Bell inequalities. Additionally, the violation of a steering inequality has an intrinsic asymmetry due to the directional construction. One party seemingly steers the other and their roles are in general not interchangeable. The first direct ob- servation of this asymmetry is presented in this thesis. It was demon- strated that certain Gaussian quantum optical states show steering from one party to the other but not in the opposite direction. This is a profound result, as the experiment proves that the class of steerable states itself divides into distinct subclasses. Furthermore, steering found major applications in quantum infor- mation. For example in the field of quantum key distribution (QKD) the non-classical correlations can be exploited to establish a secret, cryptographic key.
    [Show full text]
  • Necessary and Sufficient Quantum Information Characterization Of
    Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering Marco Piani1, 2 and John Watrous3, 4 1Institute for Quantum Computing & Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada 2Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, UK 3Institute for Quantum Computing & School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada 4Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto, Ontario M5G 1Z8, Canada Steering is the entanglement-based quantum effect that embodies the \spooky action at a dis- tance" disliked by Einstein and scrutinized by Einstein, Podolsky, and Rosen. Here we provide a necessary and sufficient characterization of steering, based on a quantum information processing task: the discrimination of branches in a quantum evolution, which we dub subchannel discrimina- tion. We prove that, for any bipartite steerable state, there are instances of the quantum subchannel discrimination problem for which this state allows a correct discrimination with strictly higher probability than in the absence of entanglement, even when measurements are restricted to local measurements aided by one-way communication. On the other hand, unsteerable states are useless in such conditions, even when entangled. We also prove that the above steering advantage can be exactly quantified in terms of the steering robustness, which is a natural measure of the steerability exhibited by the state. PACS numbers: 03.67.Mn, 03.67.Bg, 03.65.Ud Entanglement is a property of distributed quantum for?" can arguably be considered limited [9, 12].
    [Show full text]
  • Arxiv:2103.07712V2 [Quant-Ph] 27 Apr 2021 Same Time, Einstein Podolsky and Rosen Pointed Tum Mechanics of Open Systems [9] (See Also [10])
    Quantum information Ryszard Horodecki∗ International Centre for Theory of Quantum Technologies, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland and Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57,80-308 Gdańsk, Poland Dedicated to memory of Roman Stanisław Ingarden on his centennial birthday “. the quantum information theory is not only scientifically interesting subject, but is a practical need” R.S. Ingarden This article reviews the extraordinary features of quantum information predicted by the quan- tum formalism, which, combined with the development of modern quantum technologies, have opened new horizons in quantum physics that can potentially affect various areas of our live, leading to new technologies such as quantum cybersecurity, quantum communication, quantum metrology, and quantum computation. topics: quantum cryptography, quantum entanglement, nonlocality, entanglement witness 1 Introduction application of quantum information to unforge- able quantum money. Unfortunately, both dis- The concept of quantum information was born on coveries were ahead of their time and passed un- the border between quantum mechanics and in- noticed. Three years later Holevo proved [6] that formation theory science. The stunning success of there is a bound for our ability to access classi- the former has led to think that the concept of cal information from quantum systems which con- information cannot be separated from the math- firmed earlier Gordon’s [7] and Levitin’s [8] con- ematical structure of quantum formalism that jectures. This strengthened the conviction that imposes fundamental constraints on the form of Shannon’s communication theory is incomplete, in physical laws.
    [Show full text]
  • Fundamental Limits on Key Rates in Device-Independent Quantum Key Distribution
    Fundamental limits on key rates in device-independent quantum key distribution Eneet Kaur∗ Mark M. Wilde∗ Andreas Wintery March 2, 2020 Abstract In this paper, we introduce intrinsic non-locality and quantum intrinsic non-locality as quan- tifiers for Bell non-locality, and we prove that they satisfy certain desirable properties such as faithfulness, convexity, and monotonicity under local operations and shared randomness. We then prove that intrinsic non-locality is an upper bound on the secret-key-agreement capacity of any device-independent protocol conducted using a device characterized by a correlation p, while quantum intrinsic non-locality is an upper bound on the same capacity for a correlation arising from an underlying quantum model. We also prove that intrinsic steerability is faithful, and it is an upper bound on the secret-key-agreement capacity of any one-sided device-independent protocol conducted using a device characterized by an assemblageρ ^. Finally, we prove that quantum intrinsic non-locality is bounded from above by intrinsic steerability. 1 Introduction In principle, quantum key distribution (QKD) [BB84, Eke91, SBPC+09] provides unconditional security [May01, SP00, LCT14] for establishing secret key at a distance. In the standard QKD setting, Alice and Bob (two spatially separated parties) trust the functioning of their devices. That is, it is assumed that they know the ensemble of states that their sources are preparing and the measurement that their devices are performing. However, this is a very strong set of assumptions. It is possible to consider other scenarios in which the trust assumptions are relaxed while still obtaining unconditional security.
    [Show full text]
  • Mapping Criteria Between Nonlocality and Steerability in Qudit-Qubit Systems and Between Steerability and Entanglement in Qubit-Qudit Systems
    PHYSICAL REVIEW A 98, 052114 (2018) Mapping criteria between nonlocality and steerability in qudit-qubit systems and between steerability and entanglement in qubit-qudit systems Changbo Chen,1,*,† Changliang Ren,2,3,*,‡ Xiang-Jun Ye,3 and Jing-Ling Chen4,5,§ 1Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People’s Republic of China 2Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People’s Republic of China 3CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People’s Republic of China 4Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China 5Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Received 16 March 2018; revised manuscript received 15 July 2018; published 12 November 2018) Entanglement, quantum steering, and nonlocality are distinct quantum correlations which are the resources behind various quantum information and quantum computation applications. However, a central question of determining the precise quantitative relation among them is still unresolved. Here we present a mapping criterion between Bell nonlocality and quantum steering in the bipartite qudit-qubit system, as well as a mapping criterion between quantum steering and quantum entanglement in the bipartite qubit-qudit system, starting from the fundamental concepts of quantum correlations. Precise quantitative mapping criteria are derived analytically. Such mapping criteria are independent of the form of the state. In particular, they cover several previous well-known research results which are only special cases in our simple mapping criteria.
    [Show full text]