Allender Et Al., 2015)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Phylogeny of the Genus Arachnomyces and Its Anamorphs and the Establishment of Arachnomycetales, a New Eurotiomycete Order in the Ascomycota
STUDIES IN MYCOLOGY 47: 131-139, 2002 Phylogeny of the genus Arachnomyces and its anamorphs and the establishment of Arachnomycetales, a new eurotiomycete order in the Ascomycota 1, 2 1* 3 2 C. F. C. Gibas , L. Sigler , R. C. Summerbell and R. S. Currah 1University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada; 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; 3Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands Abstract: Arachnomyces is a genus of cleistothecial ascomycetes that has morphological similarities to the Onygenaceae and the Gymnoascaceae but is not accommodated well in either taxon. The phylogeny of the genus and its related anamorphs was studied using nuclear SSU rDNA gene sequences. Partial sequences were determined from ex-type cultures representing A. minimus, A. nodosetosus (anamorph Onychocola canadensis), A. kanei (anamorph O. kanei) and A. gracilis (anamorph Malbranchea sp.) and aligned together with published sequences of onygenalean and other ascomycetes. Phylogenetic analysis based on maximum parsimony showed that Arachnomyces is monophyletic, that it includes the hyphomycete Malbranchea sclerotica, and it forms a distinct lineage within the Eurotiomycetes. Based on molecular and morphological data, we propose the new order Arachnomycetales and a new family Arachnomycetaceae. All known anamorphs in this lineage are arthroconidial and have been placed either in Onychocola (A. nodosetosus, A. kanei) or in Malbranchea (A. gracilis). Onychocola is considered appropriate for disposition of the arthroconidial states of Arachnomyces and thus Malbranchea sclerotica and the unnamed anamorph of A. gracilis are redisposed as Onychocola sclerotica comb. nov. and O. gracilis sp. nov. Keywords: Eurotiomycetes, Arachnomycetales, Arachnomycetaceae, Arachnomyces, Onychocola, Malbranchea sclerotica, SSU rDNA, Ascomycota, phylogeny Introduction described from herbivore dung maintained in damp chambers (Singh & Mukerji, 1978; Mukerji, pers. -
25 Chrysosporium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM 25 Chrysosporium Dongyou Liu and R.R.M. Paterson contents 25.1 Introduction ..................................................................................................................................................................... 197 25.1.1 Classification and Morphology ............................................................................................................................ 197 25.1.2 Clinical Features .................................................................................................................................................. 198 25.1.3 Diagnosis ............................................................................................................................................................. 199 25.2 Methods ........................................................................................................................................................................... 199 25.2.1 Sample Preparation .............................................................................................................................................. 199 25.2.2 Detection Procedures ........................................................................................................................................... 199 25.3 Conclusion .......................................................................................................................................................................200 -
Aphanoascus Fulvescens (Cooke) Apinis
The ultimate benchtool for diagnostics. Introduction Introduction of ATLAS Introduction CLINICAL FUNGI Introduction The ultimate benchtool for diagnostics Introduction Introduction Introduction Sample pages Introduction G.S. de Hoog, J. Guarro, J. Gené, S. Ahmed, Introduction A.M.S. Al-Hatmi, M.J. Figueras and R.G. Vitale 1 ATLAS of CLINICAL FUNGI The ultimate benchtool for diagnostics Overview of approximate effective application of comparative techniques in mycology Use Strain Variety Species Genus Family Order Class Keyref Cell wall Tax Kreger & Veenhuis (191) Pore Tax Moore (198) Karyology Tax Takeo & de Hoog (1991) Co- Tax Yamada et al. (198) Carbohydrate pattern Tax eijman & Golubev (198) Classical physiology Tax Yarrow (1998) API 32C Diag Guého et al. (1994b) API-Zym Diag Fromentin et al. (1981) mole% G+C Tax Guého et al. (1992b) SSU seq Tax Gargas et al. (1995) SSU-RFLP Tax Machouart et al. (2006) LSU Diag Kurtzman & Robnett (1998) ITS seq/RFLP Diag Lieckfeldt & Seifert (2000) IGS Epid Diaz & Fell (2000) Tubulin Tax Keeling et al. (2000) Actin Tax Donnelly et al. (1999) Chitin synthase Tax Karuppayil et al. (1996) Elongation factor Diag Helgason et al. (2003) NASBA Tax Compton (1991) nDNA homology Epid Voigt et al. (199) RCA Epid Barr et al. (199) LAMP Tax Guého et al. (199) MLPA Diag Sun et al. (2010) Isoenzymes (MLEE) Epid Pujol et al. (199) Maldi-tof Diag Schrödl et al. (2012) Fish Diag Rigby et al. (2002) RLB Diag Bergmans et al. (2008) PCR-ELISA Diag Beifuss et al. (2011) Secondary metabolites Tax/Diag Frisvad & Samson (2004) SSR Epid Karaoglu et al. -
Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %). -
Chrysosporium Keratinophilum IFM 55160 (AB361656)Biorxiv Preprint 99 Aphanoascus Terreus CBS 504.63 (AJ439443) Doi
bioRxiv preprint doi: https://doi.org/10.1101/591503; this version posted April 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of novel Chrysosporium morrisgordonii sp. nov., from bat white-nose syndrome (WNS) affected mines, northeastern United States Tao Zhang1, 2, Ping Ren1, 3, XiaoJiang Li1, Sudha Chaturvedi1, 4*, and Vishnu Chaturvedi1, 4* 1Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA 2 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China 3Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA 4Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA *Corresponding authors: Sudha Chaturvedi, [email protected]; Vishnu Chaturvedi, [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/591503; this version posted April 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Psychrotolerant hyphomycetes including unrecognized taxon are commonly found in bat hibernation sites in Upstate New York. During a mycobiome survey, a new fungal species, Chrysosporium morrisgordonii sp. nov., was isolated from bat White-nose syndrome (WNS) afflicted Graphite mine in Warren County, New York. This taxon was distinguished by its ability to grow at low temperature spectra from 6°C to 25°C. Conidia were tuberculate and thick-walled, globose to subglobose, unicellular, 3.5-4.6 µm ×3.5-4.6 µm, sessile or borne on narrow stalks. -
Geophilic Dermatophytes and Other Keratinophilic Fungi in the Nests of Wetland Birds
ACTA MyCoLoGICA Vol. 46 (1): 83–107 2011 Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds Teresa KoRnIŁŁoWICz-Kowalska1, IGnacy KIToWSKI2 and HELEnA IGLIK1 1Department of Environmental Microbiology, Mycological Laboratory University of Life Sciences in Lublin Leszczyńskiego 7, PL-20-069 Lublin, [email protected] 2Department of zoology, University of Life Sciences in Lublin, Akademicka 13 PL-20-950 Lublin, [email protected] Korniłłowicz-Kowalska T., Kitowski I., Iglik H.: Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds. Acta Mycol. 46 (1): 83–107, 2011. The frequency and species diversity of keratinophilic fungi in 38 nests of nine species of wetland birds were examined. nine species of geophilic dermatophytes and 13 Chrysosporium species were recorded. Ch. keratinophilum, which together with its teleomorph (Aphanoascus fulvescens) represented 53% of the keratinolytic mycobiota of the nests, was the most frequently observed species. Chrysosporium tropicum, Trichophyton terrestre and Microsporum gypseum populations were less widespread. The distribution of individual populations was not uniform and depended on physical and chemical properties of the nests (humidity, pH). Key words: Ascomycota, mitosporic fungi, Chrysosporium, occurrence, distribution INTRODUCTION Geophilic dermatophytes and species representing the Chrysosporium group (an arbitrary term) related to them are ecologically classified as keratinophilic fungi. Ke- ratinophilic fungi colonise keratin matter (feathers, hair, etc., animal remains) in the soil, on soil surface and in other natural environments. They are keratinolytic fungi physiologically specialised in decomposing native keratin. They fully solubilise na- tive keratin (chicken feathers) used as the only source of carbon and energy in liquid cultures after 70 to 126 days of growth (20°C) (Korniłłowicz-Kowalska 1997). -
SINGLE DOSE PHARMACOKINETICS of AZITHROMYCIN in BALL PYTHONS (Python Regius)
SINGLE DOSE PHARMACOKINETICS OF AZITHROMYCIN IN BALL PYTHONS (Python regius) Rob L. Coke, DVM,1* Robert P. Hunter, MS, PhD,2 Ramiro Isaza, MS, DVM,1 James W. Carpenter, MS, DVM,1 David Koch, MS,2 and Marie Goatley, BS2 1Department of Clinical Sciences and the 2Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA Abstract Azithromycin is a new sub-class of macrolide antibiotics classified as an azalide. This antimicrobial has a similar mechanism of action to the other macrolides (i.e., erythromycin) by binding to the 50S ribosomal subunit.2 Azithromycin provides broad-spectrum antibiosis against gram-positive and gram-negative bacteria.2 It also has the ability to obtain sustained drug concentrations in tissues much greater than the corresponding plasma concentration.1,3 This study determined the pharmacokinetics of azithromycin (Zithromax®, Pfizer Inc., New York, NY 10017 USA) in ball pythons (Python regius), a species that is representative of the Boidae family. Snakes were administered azithromycin intravenously (i.v.) to determine distribution and orally (p.o.) to determine bioavailability and absorption. Seven ball pythons (two males, five females), weighing approximately 0.67-0.96 kg, were used in this experiment. Using a crossover design, each snake was given a single 10 mg/kg i.v. dose of azithromycin via cardiocentesis. For the oral study, each snake was dosed at 10 mg/kg using the same i.v. azithromycin preparation. Blood samples were collected prior to dosing and at 1, 3, 6, 12, 24, 48, 72, and 96 hr post-azithromycin administration. -
Phylogeny of Chrysosporia Infecting Reptiles: Proposal of the New Family Nannizziopsiaceae and Five New Species
CORE Metadata, citation and similar papers at core.ac.uk Provided byPersoonia Diposit Digital 31, de Documents2013: 86–100 de la UAB www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X669698 Phylogeny of chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species A.M. Stchigel1, D.A. Sutton2, J.F. Cano-Lira1, F.J. Cabañes3, L. Abarca3, K. Tintelnot4, B.L. Wickes5, D. García1, J. Guarro1 Key words Abstract We have performed a phenotypic and phylogenetic study of a set of fungi, mostly of veterinary origin, morphologically similar to the Chrysosporium asexual morph of Nannizziopsis vriesii (Onygenales, Eurotiomycetidae, animal infections Eurotiomycetes, Ascomycota). The analysis of sequences of the D1-D2 domains of the 28S rDNA, including rep- ascomycetes resentatives of the different families of the Onygenales, revealed that N. vriesii and relatives form a distinct lineage Chrysosporium within that order, which is proposed as the new family Nannizziopsiaceae. The members of this family show the mycoses particular characteristic of causing skin infections in reptiles and producing hyaline, thin- and smooth-walled, small, Nannizziopsiaceae mostly sessile 1-celled conidia and colonies with a pungent skunk-like odour. The phenotypic and multigene study Nannizziopsis results, based on ribosomal ITS region, actin and β-tubulin sequences, demonstrated that some of the fungi included Onygenales in this study were different from the known species of Nannizziopsis and Chrysosporium and are described here as reptiles new. They are N. chlamydospora, N. draconii, N. arthrosporioides, N. pluriseptata and Chrysosporium longisporum. Nannizziopsis chlamydospora is distinguished by producing chlamydospores and by its ability to grow at 5 °C. -
25 Chrysosporium
25 Chrysosporium Dongyou Liu and R.R.M. Paterson contents 25.1 Introduction ..................................................................................................................................................................... 197 25.1.1 Classification and Morphology ............................................................................................................................ 197 25.1.2 Clinical Features .................................................................................................................................................. 198 25.1.3 Diagnosis ............................................................................................................................................................. 199 25.2 Methods ........................................................................................................................................................................... 199 25.2.1 Sample Preparation .............................................................................................................................................. 199 25.2.2 Detection Procedures ........................................................................................................................................... 199 25.3 Conclusion .......................................................................................................................................................................200 References .................................................................................................................................................................................200 -
Complete Issue
J. Fernholz and Q.E. Phelps – Influence of PIT tags on growth and survival of banded sculpin (Cottus carolinae): implications for endangered grotto sculpin (Cottus specus). Journal of Cave and Karst Studies, v. 78, no. 3, p. 139–143. DOI: 10.4311/2015LSC0145 INFLUENCE OF PIT TAGS ON GROWTH AND SURVIVAL OF BANDED SCULPIN (COTTUS CAROLINAE): IMPLICATIONS FOR ENDANGERED GROTTO SCULPIN (COTTUS SPECUS) 1 2 JACOB FERNHOLZ * AND QUINTON E. PHELPS Abstract: To make appropriate restoration decisions, fisheries scientists must be knowledgeable about life history, population dynamics, and ecological role of a species of interest. However, acquisition of such information is considerably more challenging for species with low abundance and that occupy difficult to sample habitats. One such species that inhabits areas that are difficult to sample is the recently listed endangered, cave-dwelling grotto sculpin, Cottus specus. To understand more about the grotto sculpin’s ecological function and quantify its population demographics, a mark-recapture study is warranted. However, the effects of PIT tagging on grotto sculpin are unknown, so a passive integrated transponder (PIT) tagging study was performed. Banded sculpin, Cottus carolinae, were used as a surrogate for grotto sculpin due to genetic and morphological similarities. Banded sculpin were implanted with 8.3 3 1.4 mm and 12.0 3 2.15 mm PIT tags to determine tag retention rates, growth, and mortality. Our results suggest sculpin species of the genus Cottus implanted with 8.3 3 1.4 mm tags exhibited higher growth, survival, and tag retention rates than those implanted with 12.0 3 2.15 mm tags. -
Isolates Relationship with Some Human-Associated Nannizziopsis Vriesii Complex and the Chrysosporium Anamorph of of Pathogens Cu
Downloaded from http://jcm.asm.org/ on October 1, 2013 by UNIV OF ALBERTA of more» 2013, 51(10):3338. DOI: http://journals.asm.org/site/subscriptions/ http://journals.asm.org/site/misc/reprints.xhtml http://jcm.asm.org/content/51/10/3338#ref-list-1 Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), This article cites 32 articles, 5 of which can be accessed free at: Updated information and services can be found at: http://jcm.asm.org/content/51/10/3338 These include: the Chrysosporium Anamorph of Nannizziopsis vriesii Complex and Relationship with Some Human-Associated Isolates 10.1128/JCM.01465-13. Published Ahead of Print 7 August 2013. Lynne Sigler, Sarah Hambleton and Jean A. Paré J. Clin. Microbiol. Molecular Characterization of Reptile Pathogens Currently Known as Members REFERENCES CONTENT ALERTS To subscribe to to another ASM Journal go to: Information about commercial reprint orders: Molecular Characterization of Reptile Pathogens Currently Known as Members of the Chrysosporium Anamorph of Nannizziopsis vriesii Complex and Relationship with Some Human-Associated Isolates Lynne Sigler,a Sarah Hambleton,b Jean A. Paréc University of Alberta Microfungus Collection and Herbarium, Devonian Botanic Garden, Edmonton, Alberta, Canadaa; Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canadab; Zoological Health Program, Wildlife Conservation Society, Bronx, New York, USAc In recent years, the Chrysosporium anamorph of Nannizziopsis vriesii (CANV), Chrysosporium guarroi, Chrysosporium ophio- diicola, and Chrysosporium species have been reported as the causes of dermal or deep lesions in reptiles. These infections are contagious and often fatal and affect both captive and wild animals. -
Animal Groups: Reptiles Causative Organism: Nannizziopsis Spp., Ophidiomyces Spp., Paranannizziopsis Spp
American Association of Zoo Veterinarians Infectious Disease Manual Chrysosporium anamorph of Nannizziopsis vriesii: Nannizziopsis, Paranannizziopsis, and Ophiodiomyces ophidiicola (Under reclassification) Animal Transmission Clinical Severity Treatment Prevention Zoonotic Group(s) Signs and Control Affected Reptiles -Direct Variable Mild to Itraconazole; Proper No direct -Indirect (via dermatitis; severe but Voriconazole, disinfection of transmission fomites and Cellulitis high Terbinafine housing areas; from environmental and edema mortality (nebulization/ avoid animals contamination) may be is possible SQ implants/ contaminated reported but present. injection) fomites; humans can Internal prevent be infected organ contact with invasion infected with O. animals ophidiicola Fact Sheet compiled by: E. Marie Rush Sheet completed on: updated 1 May 2018 Fact Sheet Reviewed by: Bonnie Raphael, Tim Georoff Susceptible animal groups: Reptiles Causative organism: Nannizziopsis spp., Ophidiomyces spp., Paranannizziopsis spp. Formerly, this grouping was Chrysosporium anamorph of Nannizziopsis vriesii (CANV) fungus. Recent taxonomic publications have identified new epidemiological information about these fungi grouped under the CANV appellation. While Nannizziopsis vriesii does produce a Chrysosporium anamorph in culture, all CANV-like isolates differ so that an overarching CANV appellation is discouraged. For example, the “CANV” isolates that caused fatal disease in tentacled snakes have been reclassified as two species of Paranannizziopsis, which has not been isolated from other reptile species. Paranannizziopsis includes four species that infect squamates and tuataras. Ophidiomyces (belonging to the Order Onygenales) is a potent pathogen of snakes and associated with “Snake Fungal Disease,” but it has not yet been recovered from ill lizards or crocodiles so may not be a threat to these taxa. Nannizziopsis guarroi is the main causative agent of “Yellow Fungus Disease,” a common infection in bearded dragons, green iguanas, and other lizards.