Questionários Digitais On-Line –

Total Page:16

File Type:pdf, Size:1020Kb

Questionários Digitais On-Line – FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Questionários Digitais On‐Line – QDO Sistema de Apresentação, Recolha e Tratamento de Inquéritos em tempo real Nuno Gonçalves Antunes Dissertação submetida para satisfação parcial dos requisitos do grau de mestre em Tecnologia Multimédia Dissertação realizada sob a supervisão do Professor Doutor Eurico Carrapatoso, do Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Engenharia da Universidade do Porto Porto, Julho de 2007 RESUMO ............................................................................................................................................. 9 ABSTRACT ........................................................................................................................................ 11 RÉSUMÉ ........................................................................................................................................... 13 AGRADECIMENTOS ........................................................................................................................... 14 1. INTRODUÇÃO ......................................................................................................................... 20 1.1. O PANORAMA MOTIVADOR ................................................................................................................ 20 1.2. PROBLEMÁTICA ................................................................................................................................ 21 1.3. ESTRUTURA DA DISSERTAÇÃO.............................................................................................................. 23 2. ACERCA DA COMUNICAÇÃO .................................................................................................... 25 2.1. BREVE ABORDAGEM À HISTÓRIA DA COMUNICAÇÃO ................................................................................ 25 2.2. A SOCIEDADE DE INFORMAÇÃO ........................................................................................................... 28 2.3. A INTERNET ..................................................................................................................................... 29 2.3.1. Origem e breve história da Internet ................................................................................... 30 2.3.2. Serviços disponibilizados .................................................................................................... 32 2.3.3. A Internet como ferramenta pedagógica ........................................................................... 32 2.4. AS NOVAS TECNOLOGIAS DA INFORMAÇÃO E COMUNICAÇÃO ................................................................... 36 2.5. AS NTIC E O ENSINO ........................................................................................................................ 37 2.6. IMPLICAÇÕES DAS TIC NO CONTEXTO SOCIAL ......................................................................................... 41 2.7. A INTEGRAÇÃO OFICIAL DAS TIC NO SISTEMA DE ENSINO BÁSICO .............................................................. 42 2.8. SUMÁRIO........................................................................................................................................ 43 3. AS TIC NO SISTEMA EDUCATIVO PORTUGUÊS .......................................................................... 44 3.1. COMPETÊNCIAS ESSENCIAIS ................................................................................................................ 45 3.2. A INCLUSÃO CURRICULAR DAS TIC NO ENSINO BÁSICO ............................................................................ 47 3.3. FINALIDADES DA INTEGRAÇÃO DAS TIC NO CURRÍCULO DO ENSINO BÁSICO ................................................. 47 3.4. AS VANTAGENS DA INTEGRAÇÃO DA INTERNET NO CURRÍCULO .................................................................. 49 3.5. OS ALUNOS .................................................................................................................................... 49 3.6. OS DOCENTES ................................................................................................................................. 51 3.7. INFRAESTRUTURAS E RECURSOS FÍSICOS ................................................................................................ 53 3.8. SUMÁRIO........................................................................................................................................ 54 4. PROJECTOS, PROGRAMAS E MEDIDAS ..................................................................................... 55 4.1. PROGRAMA “A ESCOLA INFORMADA: APRENDER NA SOCIEDADE DA INFORMAÇÃO” ...................................... 55 4.1.1. Objectivos e desafios da Escola Informada ........................................................................ 55 4.1.2. Dinamização estratégica .................................................................................................... 56 4.2. PROJECTO MINERVA ...................................................................................................................... 57 4.3. PROGRAMA NÓNIO‐SÉCULO XXI ......................................................................................................... 58 4.4. PROJECTO DE REDE DE COMUNICAÇÃO PARA UNIVERSITÁRIOS .................................................................. 59 4.5. PROGRAMA GLOBE ......................................................................................................................... 59 4.6. MEDIDAS ESTRUTURAIS IMPLEMENTADAS OU A IMPLEMENTAR ................................................................. 60 4.7. PROGRAMA INTERNET NA ESCOLA ....................................................................................................... 61 4.8. PROGRAMA PARCEIROS NA EDUCAÇÃO ................................................................................................. 63 4.8.1. Promover o Acesso às Tecnologias ..................................................................................... 64 4.9. PROFESSORES INOVADORES ................................................................................................................ 66 4.10. PROJECTO‐PILOTO CLASS SERVER .................................................................................................... 66 4.11. MICROSOFT IT ACADEMY .............................................................................................................. 66 4.12. 1000 SALAS TIC ......................................................................................................................... 67 4.13. PROFESSORES TIC ........................................................................................................................ 67 4.14. INICIATIVA ESCOLAS, PROFESSORES E COMPUTADORES PORTÁTEIS ........................................................ 68 4.15. A FORMAÇÃO CONTÍNUA DOS DOCENTES ......................................................................................... 69 4.16. OUTROS AGENTES EDUCATIVOS ...................................................................................................... 69 4.17. SUMÁRIO ................................................................................................................................... 70 5. METODOLOGIA DE INVESTIGAÇÃO .......................................................................................... 71 5.1. O DESENHO CLÁSSICO DE UMA INVESTIGAÇÃO TÍPICA ............................................................................. 72 5.1.1. Etapas de uma Investigação Típica .................................................................................... 74 5.1.1.1. Selecção do Tema da Investigação ........................................................................................... 74 5.1.1.2. Formulação do Problema ......................................................................................................... 74 5.1.1.3. Explicitação do Marco Teórico ................................................................................................. 74 5.1.1.4. Revisão de Investigações Anteriores ........................................................................................ 74 5.1.1.5. Explicitação dos Objectivos ...................................................................................................... 75 5.1.1.6. Selecção do Tipo de Investigação ............................................................................................. 75 5.1.1.7. Formulação das hipóteses ........................................................................................................ 75 5.1.1.8. Variáveis – Identificação e definição das Variáveis .................................................................. 75 5.1.1.9. Selecção da População ............................................................................................................. 76 5.1.1.10. Selecção da Amostra .............................................................................................................. 76 5.1.1.11. Instrumentos de Medição ...................................................................................................... 76 5.1.1.12. Recolha de Dados. .................................................................................................................. 77 5.1.1.13. Construção da Matriz de Dados ............................................................................................. 77 5.1.1.14.
Recommended publications
  • Towards a Fully Automated Extraction and Interpretation of Tabular Data Using Machine Learning
    UPTEC F 19050 Examensarbete 30 hp August 2019 Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Per Hedbrant Master Thesis in Engineering Physics Department of Engineering Sciences Uppsala University Sweden Abstract Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Teknisk- naturvetenskaplig fakultet UTH-enheten Motivation A challenge for researchers at CBCS is the ability to efficiently manage the Besöksadress: different data formats that frequently are changed. Significant amount of time is Ångströmlaboratoriet Lägerhyddsvägen 1 spent on manual pre-processing, converting from one format to another. There are Hus 4, Plan 0 currently no solutions that uses pattern recognition to locate and automatically recognise data structures in a spreadsheet. Postadress: Box 536 751 21 Uppsala Problem Definition The desired solution is to build a self-learning Software as-a-Service (SaaS) for Telefon: automated recognition and loading of data stored in arbitrary formats. The aim of 018 – 471 30 03 this study is three-folded: A) Investigate if unsupervised machine learning Telefax: methods can be used to label different types of cells in spreadsheets. B) 018 – 471 30 00 Investigate if a hypothesis-generating algorithm can be used to label different types of cells in spreadsheets. C) Advise on choices of architecture and Hemsida: technologies for the SaaS solution. http://www.teknat.uu.se/student Method A pre-processing framework is built that can read and pre-process any type of spreadsheet into a feature matrix. Different datasets are read and clustered. An investigation on the usefulness of reducing the dimensionality is also done.
    [Show full text]
  • Kwame Nkrumah University of Science and Technology, Kumasi
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA Assessing the Social Impacts of Illegal Gold Mining Activities at Dunkwa-On-Offin by Judith Selassie Garr (B.A, Social Science) A Thesis submitted to the Department of Building Technology, College of Art and Built Environment in partial fulfilment of the requirement for a degree of MASTER OF SCIENCE NOVEMBER, 2018 DECLARATION I hereby declare that this work is the result of my own original research and this thesis has neither in whole nor in part been prescribed by another degree elsewhere. References to other people’s work have been duly cited. STUDENT: JUDITH S. GARR (PG1150417) Signature: ........................................................... Date: .................................................................. Certified by SUPERVISOR: PROF. EDWARD BADU Signature: ........................................................... Date: ................................................................... Certified by THE HEAD OF DEPARTMENT: PROF. B. K. BAIDEN Signature: ........................................................... Date: ................................................................... i ABSTRACT Mining activities are undertaken in many parts of the world where mineral deposits are found. In developing nations such as Ghana, the activity is done both legally and illegally, often with very little or no supervision, hence much damage is done to the water bodies where the activities are carried out. This study sought to assess the social impacts of illegal gold mining activities at Dunkwa-On-Offin, the capital town of Upper Denkyira East Municipality in the Central Region of Ghana. The main objectives of the research are to identify factors that trigger illegal mining; to identify social effects of illegal gold mining activities on inhabitants of Dunkwa-on-Offin; and to suggest effective ways in curbing illegal mining activities. Based on the approach to data collection, this study adopts both the quantitative and qualitative approach.
    [Show full text]
  • Assessing the Environmental Adaptation of Wildlife And
    Assessing the Environmental Adaptation of Wildlife and Production Animals Production and Wildlife of Adaptation Assessing Environmental the Assessing the Environmental Adaptation of Wildlife and • Edward Narayan Edward • Production Animals Applications of Physiological Indices and Welfare Assessment Tools Edited by Edward Narayan Printed Edition of the Special Issue Published in Animals www.mdpi.com/journal/animals Assessing the Environmental Adaptation of Wildlife and Production Animals: Applications of Physiological Indices and Welfare Assessment Tools Assessing the Environmental Adaptation of Wildlife and Production Animals: Applications of Physiological Indices and Welfare Assessment Tools Editor Edward Narayan MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Edward Narayan The University of Queensland Australia Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Animals (ISSN 2076-2615) (available at: https://www.mdpi.com/journal/animals/special issues/ environmental adaptation). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0142-0 (Hbk) ISBN 978-3-0365-0143-7 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher areproperly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • General Linear Models - Part II
    Introduction to General and Generalized Linear Models General Linear Models - part II Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby October 2010 Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall October 2010 1 / 32 Today Test for model reduction Type I/III SSQ Collinearity Inference on individual parameters Confidence intervals Prediction intervals Residual analysis Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall October 2010 2 / 32 Tests for model reduction Assume that a rather comprehensive model (a sufficient model) H1 has been formulated. Initial investigation has demonstrated that at least some of the terms in the model are needed to explain the variation in the response. The next step is to investigate whether the model may be reduced to a simpler model (corresponding to a smaller subspace),. That is we need to test whether all the terms are necessary. Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall October 2010 3 / 32 Successive testing, type I partition Sometimes the practical problem to be solved by itself suggests a chain of hypothesis, one being a sub-hypothesis of the other. In other cases, the statistician will establish the chain using the general rule that more complicated terms (e.g. interactions) should be removed before simpler terms. In the case of a classical GLM, such a chain of hypotheses n corresponds to a sequence of linear parameter-spaces, Ωi ⊂ R , one being a subspace of the other. n R ⊆ ΩM ⊂ ::: ⊂ Ω2 ⊂ Ω1 ⊂ R ; where Hi : µ 2
    [Show full text]
  • Título Del Artículo
    Software for learning and for doing statistics and probability – Looking back and looking forward from a personal perspective Software para aprender y para hacer estadística y probabilidad – Mirando atrás y adelante desde una perspectiva personal Rolf Biehler Universität Paderborn, Germany Abstract The paper discusses requirements for software that supports both the learning and the doing of statistics. It looks back into the 1990s and looks forward to new challenges for such tools stemming from an updated conception of statistical literacy and challenges from big data, the exploding use of data in society and the emergence of data science. A focus is on Fathom, TinkerPlots and Codap, which are looked at from the perspective of requirements for tools for statistics education. Experiences and success conditions for using these tools in various educational contexts are reported, namely in primary and secondary education and pre- service and in-service teacher education. New challenges from data science require new tools for education with new features. The paper finishes with some ideas and experience from a recent project on data science education at the upper secondary level Keywords: software for learning and doing statistics, key attributes of software, data science education, statistical literacy Resumen El artículo discute los requisitos que el software debe cumplir para que pueda apoyar tanto el aprendizaje como la práctica de la estadística. Mira hacia la década de 1990 y hacia el futuro, para identificar los nuevos desafíos que para estas herramientas surgen de una concepción actualizada de la alfabetización estadística y los desafíos que plantean el uso de big data, la explosión del uso masivo de datos en la sociedad y la emergencia de la ciencia de los datos.
    [Show full text]
  • Antibiotic De-Escalation Experience in the Setting of Emergency Department: a Retrospective, Observational Study
    Journal of Clinical Medicine Article Antibiotic De-escalation Experience in the Setting of Emergency Department: A Retrospective, Observational Study Silvia Corcione 1,2, Simone Mornese Pinna 1 , Tommaso Lupia 3,* , Alice Trentalange 1, Erika Germanò 1, Rossana Cavallo 4, Enrico Lupia 1 and Francesco Giuseppe De Rosa 1,2 1 Department of Medical Sciences, University of Turin, 10126 Turin, Italy; [email protected] (S.C.); [email protected] (S.M.P.); [email protected] (A.T.); [email protected] (E.G.); [email protected] (E.L.); [email protected] (F.G.D.R.) 2 Tufts University School of Medicine, Boston, MA 02129, USA 3 Infectious Diseases Unit, Cardinal Massaia Hospital, 14100 Asti, Italy 4 Microbiology and Virology Unit, University of Turin, 10126 Turin, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0141-486-404 or +39-3462-248-637 Abstract: Background: Antimicrobial de-escalation (ADE) is a part of antimicrobial stewardship strategies aiming to minimize unnecessary or inappropriate antibiotic exposure to decrease the rate of antimicrobial resistance. Information regarding the effectiveness and safety of ADE in the setting of emergency medicine wards (EMW) is lacking. Methods: Adult patients admitted to EMW and receiving empiric antimicrobial treatment were retrospectively studied. The primary outcome was the rate and timing of ADE. Secondary outcomes included factors associated with early ADE, length of stay, and in-hospital mortality. Results: A total of 336 patients were studied. An initial regimen combining two agents was prescribed in 54.8%. Ureidopenicillins and carbapenems were Citation: Corcione, S.; Mornese the most frequently empiric treatment prescribed (25.1% and 13.6%).
    [Show full text]
  • Security Systems Services World Report
    Security Systems Services World Report established in 1974, and a brand since 1981. www.datagroup.org Security Systems Services World Report Database Ref: 56162 This database is updated monthly. Security Systems Services World Report SECURITY SYSTEMS SERVICES WORLD REPORT The Security systems services Report has the following information. The base report has 59 chapters, plus the Excel spreadsheets & Access databases specified. This research provides World Data on Security systems services. The report is available in several Editions and Parts and the contents and cost of each part is shown below. The Client can choose the Edition required; and subsequently any Parts that are required from the After-Sales Service. Contents Description ....................................................................................................................................... 5 REPORT EDITIONS ........................................................................................................................... 6 World Report ....................................................................................................................................... 6 Regional Report ................................................................................................................................... 6 Country Report .................................................................................................................................... 6 Town & Country Report ......................................................................................................................
    [Show full text]
  • A SAS* Macro System David S. Frankel, Exxon Company, USA Abstract the Statistical-Model Toolbo
    The Statistical-Model Toolbox: A SAS* Macro System David S. Frankel, Exxon Company, U.S.A. Abstract However, if the objective is to estimate the expected value of • nonlinear function of the The statistical-model toolbox (SMT) is a SAS predicted variable and if the scatter in the macro system written in the Production Depart­ sample is Significant, the conventional approach ment of Exxon Company, U.S.A_, that provides two can lead to significant errors. In this case; powerful capabilities: a systematic way to model it is preferable to model the popUlation in scattered data and to model calculated results terms of conditional probability-density 'that are based on the scattered data; and, a way functions (PDF's) that are determined by central to create and manipulate synthetic probabil ity tendency ("1ocationll) and by variance ("scale"). distributions in the absence of measured data. PDF's are also referred to as distributions or The Production Department uses these capabi1 i­ statistical models. ties to address problems in petroleum reservoir description, where rock properties are Figure 2 depicts this statistical-model stochastic by nature. However, the tools are approac~. In a procedure analogous to complete 1y general and can be aPfl i ed to any regressl0n t the location and scale parameters continuous, numeric, random variab es. The most are estimated for normal (Gaussian) PDF's. The frequently used tool calculates expected values expected value of any function of the variable of arbitrary functions of one or two random is calculated by integrating the product of the variables. Other tools display distributions, function and the PDF over the entire range of calculate statistics, and generate random variable.
    [Show full text]
  • Types of Sums of Squares
    Types of Sums of Squares With flexibility (especially unbalanced designs) and expansion in mind, this ANOVA package was implemented with general linear model (GLM) approach. There are different ways to quantify factors (categorical variables) by assigning the values of a nominal or ordinal variable, but we adopt binary coding for each factor level and all applicable interactions into dummy (indicator) variables. An ANOVA can be written as a general linear model: Y = b0 + b1X1 + b2X2 + ... + bkXk+e With matrix notation, it is reduced to a simple form Y = Xb + e The design matrix for a 2-way ANOVA with factorial design 2X3 looks like Data Design Matrix A B A*B A B A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 2 1 1 0 0 1 0 0 1 0 0 0 0 1 3 1 1 0 0 0 1 0 0 1 0 0 0 2 1 1 0 1 1 0 0 0 0 0 1 0 0 2 2 1 0 1 0 1 0 0 0 0 0 1 0 2 3 1 0 1 0 0 1 0 0 0 0 0 1 After removing an effect of a factor or an interaction from the above full model (deleting some columns from matrix X), we obtain the increased error due to the removal as a measure of the effect. And the ratio of this measure relative to some overall error gives an F value, revealing the significance of the effect.
    [Show full text]
  • A Case-Guided Tutorial to Statistical Analysis and Plagiarism Detection
    38HIPPOKRATIA 2010, 14 (Suppl 1): 38-48 PASCHOS KA REVIEW ARTICLE Revisiting Information Technology tools serving authorship and editorship: a case-guided tutorial to statistical analysis and plagiarism detection Bamidis PD, Lithari C, Konstantinidis ST Lab of Medical Informatics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece Abstract With the number of scientific papers published in journals, conference proceedings, and international literature ever increas- ing, authors and reviewers are not only facilitated with an abundance of information, but unfortunately continuously con- fronted with risks associated with the erroneous copy of another’s material. In parallel, Information Communication Tech- nology (ICT) tools provide to researchers novel and continuously more effective ways to analyze and present their work. Software tools regarding statistical analysis offer scientists the chance to validate their work and enhance the quality of published papers. Moreover, from the reviewers and the editor’s perspective, it is now possible to ensure the (text-content) originality of a scientific article with automated software tools for plagiarism detection. In this paper, we provide a step-by- step demonstration of two categories of tools, namely, statistical analysis and plagiarism detection. The aim is not to come up with a specific tool recommendation, but rather to provide useful guidelines on the proper use and efficiency of either category of tools. In the context of this special issue, this paper offers a useful tutorial to specific problems concerned with scientific writing and review discourse. A specific neuroscience experimental case example is utilized to illustrate the young researcher’s statistical analysis burden, while a test scenario is purpose-built using open access journal articles to exemplify the use and comparative outputs of seven plagiarism detection software pieces.
    [Show full text]
  • The Role of Adipokines in Obesity-Associated Asthma
    The role of adipokines in obesity-associated asthma By David Gibeon A thesis submitted to Imperial College London for the degree of Doctor of Philosophy in the Faculty of Medicine 2016 National Heart and Lung Institute Dovehouse Street, London SW3 6LY 1 Author’s declaration The following tests on patients were carried out by myself and nurses in the asthma clinic at the Royal Brompton Hospital: lung function measurements, exhaled nitric oxide (FENO) measurement, skin prick testing, methacholine provocation test (PC20), weight, height, waist/hip measurement, bioelectrical impedance analysis (BIA), and skin fold measurements. Fibreoptic bronchoscopies were performed by me and previous research fellows in the Airways Disease Section at the National Heart and Lung Institute (NHLI), Imperial College London. The experiments carried out in this PhD were carried out using the latest equipment available to me at the NHLI. The staining of bronchoalveolar lavage cytospins with Oil red O (Chapter 4) and the staining of endobronchial biopsies with perilipin (Chapter 5) was performed by Dr. Jie Zhu. The multiplex assay (Chapter 7) was performed by Dr. Christos Rossios. The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. Signed………………………………… David Gibeon 2 Abstract Obesity is a risk factor for the development of asthma and plays a role in disease control, severity and airway inflammation.
    [Show full text]
  • Pedro Valero Mora Universitat De València I Have Worn Many Hats
    DYNAMIC INTERACTIVE GRAPHICS PEDRO VALERO MORA UNIVERSITAT DE VALÈNCIA I HAVE WORN MANY HATS • Degree in Psycology • Phd on Human Computer Interaction (HCI): Formal Methods for Evaluation of Interfaces • Teaching Statistics in the Department of Psychology since1990, Full Professor (Catedrático) in 2012 • Research interest in Statistical Graphics, Computational Statistics • Comercial Packages (1995-) Statview, DataDesk, JMP, Systat, SPSS (of course) • Non Comercial 1998- Programming in Lisp-Stat, contributor to ViSta (free statistical package) • Book on Interactive Dynamic Graphics 2006 (with Forrest Young and Michael Friendly). Wiley • Editor of two special issues of the Journal of Statistical Software (User interfaces for R and the Health of Lisp-Stat) • Papers, conferences, seminars, etc. DYNAMIC-INTERACTIVE GRAPHICS • Working on this topic since mid 90s • Other similar topics are visualization, computer graphics, etc. • They are converging in the last few years • I see three periods in DIG • Special hardware • Desktop computers • The internet...and beyond • This presentation will make a review of the History of DIG and will draw lessons from its evolution 1. THE SPECIAL HARDWARE PERIOD • Tukey's Prim 9 • Tukey was not the only one, in 1988 a book summarized the experiences of many researchers on this topic • Lesson#1: Hire a genius and give him unlimited resources, it always works • Or not... • Great ideas but for limited audience, not only because the cost but also the complexity… 2. DESKTOP COMPUTERS • About 1990, the audience augments...macintosh users • Many things only possible previously for people with deep pockets were now possible for…the price of a Mac • Not cheap but affordable • Several packages with a graphical user interface: • Commercial: Statview, DataDesk, SuperANOVA (yes super), JMP, Systat… • Non Commercial: Lisp-Stat, ViSta, XGobi, MANET..
    [Show full text]