Knee Diagnosis: an Aid to Pattern Recognition
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Knee Flow Chart Acute
Symptom chart for acute knee pain START HERE Did the knee pain begin Does the knee joint You may have a fracture or Stop what you are doing immediately and go to a hospital emergency room YES YES suddenly, with an injury, appear deformed, or dislocated patella. or an orthopedic surgeon specializing in knee problems. slip, fall, or collision? out of position? If possible, splint the leg to limit the movement of the knee until you reach NO the doctor. Do not put any weight on the knee. Use a wheelchair, a cane, or NO crutch to prevent putting any weight on the leg, which might cause further damage to the joint. GO TO FLOW CHART #2 Go to an orthopedic surgeon Stop what you are doing. Continuing activity despite the feeling that the knee ON CHRONIC KNEE Did you hear a “pop” YES immediately, you may have is unstable can cause additional damage to other ligaments, meniscus , and PROBLEMS THAT DEVELOP and does your knee feel torn your anterior cruciate, or cartilage. Try ice on the knee to control swelling. Take anti-in ammatories OR WORSEN OVER TIME. unstable or wobbly? other ligaments in the knee. like Advil or Nuprin until your doctor’s appointment. About a third of ligament tears get better with exercises, a third may need a brace, and a third may need sur gery. NO Use R•I•C•E for sore knees Does your knee hurt YES You may have damaged the articular Try anti-in ammatories, as directed on the bottle, for two days to reduce R: Rest as you bend it? cartilage on the bottom of the the chronic in ammation. -
Patellofemoral Pain Syndrome and Chondromalacia: the Effect of Ozone on Pain, Function and Quality of Life. a Non-Randomized Control-Trial
Central JSM Physical Medicine and Rehabilitation Bringing Excellence in Open Access Research Article *Corresponding author Marcos Edgar Fernández-Cuadros, Calle del Ánsar, 44, piso Segundo, CP 28047, Madrid, Spain, Tel: Patellofemoral Pain Syndrome 34-620314558; Email: [email protected]; Submitted: 23 November 2016 and Chondromalacia: The Effect Accepted: 05 December 2016 Published: 06 December 2016 of Ozone on Pain, Function Copyright © 2016 Fernández-Cuadros et al. and Quality of Life. A Non- OPEN ACCESS Keywords Randomized Control-Trial • Patellofemoral pain syndrome • Chondromalacia Marcos Edgar Fernández-Cuadros1,2*, Olga Susana Pérez-Moro1, • Pain and María Jesús Albaladejo-Florin1 • Ozone therapy • Quality of life 1Servicio de Rehabilitación, Hospital Universitario Santa Cristina, Spain 2de Rehabilitación, Fundación, Hospital General Santísima Trinidad, Spain Abstract Objectives: 1) To demonstrate the effectiveness of a treatment protocol with Ozone therapy on pain, function and quality of life in patients with Patellofemoral Pain Syndrome (PFPS) and Chondromalacia; and 2) to apply Ozone as a conservative treatment option with a demonstrable level of scientific evidence. Material and Methods: Prospective quasi-experimental before-after study (non-randomized control-trial) on 41 patients with PFPS and Chondromalacia grade 2 or more, who attended to Santa Cristina’s University Hospital, from January 2012 to November 2016 The protocol consisted of an intra articular infiltration of a medical mixture of Oxygen-Ozone (95% -5%) 20ml, at a 20ug / ml concentration, and a total number of 4 sessions (1 per week). Pain and quality of life were measured by Visual Analogical Scale (VAS) and Western Ontario and Mc Master Universities Index for Osteoarthritis (WOMAC) at the beginning / end of treatment. -
SODIUM HYALURONATE Policy Number: PHARMACY 059.37 T2 Effective Date: April 1, 2018
UnitedHealthcare® Oxford Clinical Policy SODIUM HYALURONATE Policy Number: PHARMACY 059.37 T2 Effective Date: April 1, 2018 Table of Contents Page Related Policies INSTRUCTIONS FOR USE .......................................... 1 Autologous Chondrocyte Transplantation in the CONDITIONS OF COVERAGE ...................................... 1 Knee BENEFIT CONSIDERATIONS ...................................... 2 Unicondylar Spacer Devices for Treatment of Pain COVERAGE RATIONALE ............................................. 2 or Disability APPLICABLE CODES ................................................. 4 DESCRIPTION OF SERVICES ...................................... 5 CLINICAL EVIDENCE ................................................. 5 U.S. FOOD AND DRUG ADMINISTRATION ................... 10 REFERENCES .......................................................... 12 POLICY HISTORY/REVISION INFORMATION ................ 14 INSTRUCTIONS FOR USE This Clinical Policy provides assistance in interpreting Oxford benefit plans. Unless otherwise stated, Oxford policies do not apply to Medicare Advantage members. Oxford reserves the right, in its sole discretion, to modify its policies as necessary. This Clinical Policy is provided for informational purposes. It does not constitute medical advice. The term Oxford includes Oxford Health Plans, LLC and all of its subsidiaries as appropriate for these policies. When deciding coverage, the member specific benefit plan document must be referenced. The terms of the member specific benefit plan document [e.g., -
Telemedicine Management of Musculoskeletal Issues Nicole T
Telemedicine Management of Musculoskeletal Issues Nicole T. Yedlinsky, MD, University of Kansas Medical Center, Kansas City, Kansas Rebecca L. Peebles, DO, Ehrling Bergquist Family Medicine Residency Program, Offutt Air Force Base, Nebraska; Uniformed Services University of the Health Sciences, Bethesda, Maryland Telemedicine can provide patients with cost-effective, quality care. The coronavirus disease 2019 pandemic has highlighted the need for alternative methods of delivering health care. Family physi- cians can benefit from using a standardized approach to evaluate and diagnose musculoskeletal issues via telemedicine visits. Previsit planning establishes appropriate use of telemedicine and ensures that the patient and physician have functional telehealth equipment. Specific instructions to patients regard- ing ideal setting, camera angles, body positioning, and attire enhance virtual visits. Physicians can obtain a thorough history and perform a structured musculoskel- etal examination via telemedicine. The use of common household items allows physicians to replicate in-person clinical examination maneuvers. Home care instructions and online rehabilitation resources are available for ini- tial management. Patients should be scheduled for an in-person visit when the diagnosis or management plan is in question. Patients with a possible deformity or neuro- vascular compromise should be referred for urgent evaluation. Follow-up can be done virtually if the patient’s condition is improving as expected. If the condition is worsening or not improving, the patient should have an in-office assessment, with consideration for referral to formal physical therapy or spe- cialty services when appropriate. (Am Fam Physician. 2021;103:online. Copyright © 2021 American Academy of Family Physicians.) Illustration by Jennifer Fairman by Jennifer Illustration Published online January 12, 2021. -
OES Site Color Scheme 1
Nuisance Problems You will Grow to Love Thomas V Gocke, MS, ATC, PA-C, DFAAPA President & Founder Orthopaedic Educational Services, Inc. Boone, NC [email protected] www.orthoedu.com Orthopaedic Educational Services, Inc. © 2016 Orthopaedic Educational Services, Inc. all rights reserved. Faculty Disclosures • Orthopaedic Educational Services, Inc. Financial Intellectual Property No off label product discussions American Academy of Physician Assistants Financial PA Course Director, PA’s Guide to the MSK Galaxy Urgent Care Association of America Financial Intellectual Property Faculty, MSK Workshops Ferring Pharmaceuticals Consultant Orthopaedic Educational Services, Inc. © 2016 Orthopaedic Educational Services, Inc. all rights reserved. 2 LEARNING GOALS At the end of this sessions you will be able to: • Recognize nuisance conditions in the Upper Extremity • Recognize nuisance conditions in the Lower Extremity • Recognize common Pediatric Musculoskeletal nuisance problems • Recognize Radiographic changes associates with common MSK nuisance problems • Initiate treatment plans for a variety of MSK nuisance conditions Orthopaedic Educational Services, Inc. © 2016 Orthopaedic Educational Services, Inc. all rights reserved. Inflammatory Response Orthopaedic Educational Services, Inc. © 2016 Orthopaedic Educational Services, Inc. all rights reserved. Inflammatory Response* When does the Inflammatory response occur: • occurs when injury/infection triggers a non-specific immune response • causes proliferation of leukocytes and increase in blood flow secondary to trauma • increased blood flow brings polymorph-nuclear leukocytes (which facilitate removal of the injured cells/tissues), macrophages, and plasma proteins to injured tissues *Knight KL, Pain and Pain relief during Cryotherapy: Cryotherapy: Theory, Technique and Physiology, 1st edition, Chattanooga Corporation, Chattanooga, TN 1985, p 127-137 Orthopaedic Educational Services, Inc. © 2016 Orthopaedic Educational Services, Inc. -
Carpal-Instability-Slide-Summary.Pdf
Carpal Instabilities Definition by IFSSH Orthopaedic Hand Conference Wrist is unstable only if it exhibits • symptomatic dysfunction Bernard F. Hearon, M.D. inability to bear loads Clinical Assistant Professor, Department of Surgery • University of Kansas School of Medicine - Wichita May 7, 2019 • abnormal carpal kinematics Garcia-Elias, JHS 1999 Carpal Instability Mayo Classification CID - Dissociative Wright, JHS (Br) 1994 Instability within carpal row usually due to intrinsic ligament injury • Carpal Instability Dissociative (CID) • Carpal Instability Non-Dissociative (CIND) • Scapholunate dissociation • Carpal Instability Adaptive (CIA) • Lunotriquetral dissociation • Carpal Instability Complex (CIC) • Scaphoid fracture Carpal Instability Carpal Instability CIND - Nondissociative Instability between carpal rows due CIA - Adaptive to extrinsic ligament injury Extra-carpal derangement causing carpal malalignment • CIND - Volar Intercalated Segment Instability (VISI) Midcarpal instability caused by malunited • CIND - Dorsal Intercalated fractures of the distal radius Segment Instability (DISI) Taleisnik, JHS 1984 • Combined CIND Carpal Instability Carpal Instability CIC - Complex Instability patterns with qualities of both CID and CIND patterns • Dorsal perilunate dislocations (lesser arc) Perilunate • Dorsal perilunate fracture-dislocations (greater arc injuries) Instability • Volar perilunate dislocations • Axial dislocations, fracture-dislocations Carpal Instability Carpal Instability Perilunate Dislocations Mayfield Classification Progressive -
Knee Pain Prevention
DOCTORS CARE OSTEOARTHRITIS PROGRAM FOR Knee Pain Prevention Our program offers a non-surgical option that is safe and effective What Is Osteoarthritis of the Knee? In most cases osteoarthritis is caused by a slow degenerative process whereby, as we age and become less active, we tend to get tighter joints and weaker muscles. This in turn causes our joints to become dysfunctional and then become inflamed. The inflammation causes decreased blood flow to the joint tissues and thus decreased production of joint fluid. This, in turn, causes wear and tear on the joint which causes more inflammation and even less nutrients to the joint tissues. As a result, range of motion and strength are further decreased causing greater dysfunction Aand Healthy greater Joint inflammation. Left untreated, this will lead to a Medialdownward collateral ligamentspiral of degeneration. Joint capsule Muscles Tendons A Healthy Joint Medial collateral ligament Joint capsule Muscles TendonsBone Cartilage Synovial uid In a healthy joint, the ends of bones are encased in smooth cartilage. Together, they are protected by a joint capsule lined with a Bonesynovial membrane thatCartilage produces synovial uid. e capsule and uid protect the cartilage, muscles, and connective tissues.Synovial uid InA aJoint healthy With joint, theSevere ends of Osteoarthritis bones are encased in smooth cartilage. Together, they are protected by a joint capsule lined with a synovial membrane that produces synovialMedial uid. collateral e capsule ligament and uid protect the cartilage, muscles, and connectiveBone spurs tissues. Muscles A Joint With Severe Osteoarthritis Tendons Medial collateral ligament Bone spurs Muscles TendonsBone Worn-away Cartilage cartilage Synovial uid fragments in uid With osteoarthritis, the cartilage becomes worn away. -
Knee Osteoarthritis
BRIGHAM AND WOMEN’S HOSPITAL Department of Rehabilitation Services Standard of Care: _Osteoarthritis of the Knee Case Type / Diagnosis: Knee Osteoarthritis. ICD-9: 715.16, 719.46 Osteoarthritis/Osteoarthrosis (OA) is the most common joint disease causing disability, affecting more than 7 million people in the United States 1. OA is a disease process of axial and peripheral joints. It is characterized by progressive deterioration and loss of articular cartilage and by reactive bone changes at the margins of the joints and in the subchondral bone. Clinical manifestations are characterized by slowly developing joint pain, stiffness, and joint enlargement with limitations of motion. Knee osteoarthritis (OA) results from mechanical and idiopathic factors that alter the balance between degradation and synthesis of articular cartilage and subchondral bone. The etiology of knee OA is not entirely clear, yet its incidence increases with age and in women. 1 The etiology may have genetic factors affecting collagen, or traumatic factors, such as fracture or previous meniscal damage. Obesity is a risk factor for the development and progression of OA. Early degenerative changes predict progression of the disease. Underlying biomechanical factors, such as varum or valgum of the tibial femoral joint may predispose people to OA. However Hunter et al 2reported knee alignment did not predict OA, but rather was a marker of the disease severity. Loss of quadriceps muscle strength is associated with knee pain and disability in OA. Clinical criteria for the diagnosis of OA of the knee has been established by Altman3 Subjects with examination finding consistent with any of the three categories were considered to have Knee OA. -
Disorders of the Knee
DisordersDisorders ofof thethe KneeKnee PainPain Swelling,Swelling, effusioneffusion oror hemarthrosishemarthrosis LimitedLimited jointjoint motionmotion Screw home mechanism – pain, stiffness, fluid, muscular weakness, locking InstabilityInstability – giving way, laxity DeformityDeformity References: 1. Canale ST. Campbell’s operative orthopaedics. 10th edition 2003 Mosby, Inc. 2. Netter FH. The Netter collection of Medical illustrations – musculoskeletal system, Part I & II. 1997 Novartis Pharmaceuticals Corporation. 3. Magee DJ. Orthopedic Physical assessment. 2nd edition 1992 W. B. Saunders Company. 4. Hoppenfeld S. Physical examination of the spine and extremities. 1976 Appleton-century-crofts. AnteriorAnterior CruciateCruciate LigamentLigament Tibial insertion – broad, irregular, diamond-shaped area located directly in front of the intercondylar eminence Femoral attachment Femoral attachment Figure 43-24 In addition to their – semicircular area on the posteromedial synergistic functions, cruciate aspect of the lateral condyle and collateral ligaments exercise 33 mm in length basic antagonistic function 11 mm in diameter during rotation. A, In external Anteromedial bundle — tight in flexion rotation it is collateral ligaments that tighten and inhibit excessive Posterolateral bundle — tight in extension rotation by becoming crossed in 90% type I collagen space. B, In neutral rotation none 10% type III collagen of the four ligaments is under unusual tension. C, In internal Middle geniculate artery rotation collateral ligaments Fat -
Knee Joint Distraction Compared with Total Knee Arthroplasty a RANDOMISED CONTROLLED TRIAL
KNEE Knee joint distraction compared with total knee arthroplasty A RANDOMISED CONTROLLED TRIAL J. A. D. van der Woude, Aims K. Wiegant, Knee joint distraction (KJD) is a relatively new, knee-joint preserving procedure with the R. J. van Heerwaarden, goal of delaying total knee arthroplasty (TKA) in young and middle-aged patients. We S. Spruijt, present a randomised controlled trial comparing the two. P. J. E m ans , Patients and Methods S. C. Mastbergen, The 60 patients ≤ 65 years with end-stage knee osteoarthritis were randomised to either F. P. J. G. Lafeber KJD (n = 20) or TKA (n = 40). Outcomes were assessed at baseline, three, six, nine, and 12 months. In the KJD group, the joint space width (JSW) was radiologically assessed, From UMC Utrecht, representing a surrogate marker of cartilage thickness. Utrecht, The Netherlands Results In total 56 patients completed their allocated treatment (TKA = 36, KJD = 20). All patient reported outcome measures improved significantly over one year (p < 0.02) in both groups. J. A. D. van der Woude, MD, At one year, the TKA group showed a greater improvement in only one of the 16 patient- PhD, Resident in Orthopaedic Surgery, Limb and Knee related outcome measures assessed (p = 0.034). Outcome Measures in Rheumatology- Reconstruction Unit, Department of Orthopaedic Osteoarthritis Research Society International clinical response was 83% after TKA and 80% Surgery after KJD. A total of 12 patients (60%) in the KJD group sustained pin track infections. In the R. J. van Heerwaarden, MD, PhD, Orthopaedic Surgeon, KJD group both mean minimum (0.9 mm, standard deviation (SD) 1.1) and mean JSW (1.2 mm, Limb and Knee Reconstruction Unit, Department of SD 1.1) increased significantly (p = 0.004 and p = 0.0003). -
Knee Examination (ACL Tear) (Please Tick)
Year 4 Formative OSCE (September) 2018 Station 3 Year 4 Formative OSCE (September) 2018 Reading for Station 3 Candidate Instructions Clinical Scenario You are an ED intern at the Gold Coast University Hospital. Alex Jones, 20-years-old, was brought into the hospital by ambulance. Alex presents with knee pain following an injury playing soccer a few hours ago. Alex has already been sent for an X-ray. The registrar has asked you to examine Alex. Task In the first six (6) minutes: • Perform an appropriate physical examination of Alex and explain what you are doing to the registrar as you go. In the last two (2) minutes, you will be given Alex’s X-ray and will be prompted to: • Interpret the radiograph • Provide a provisional diagnosis to the registrar • Provide a management plan to the registrar You do not need to take a history. The examiner will assume the role of the registrar. Year 4 Formative OSCE (September) 2018 Station 3 Simulated Patient Information The candidate has the following scenario and task Clinical Scenario You are an ED intern at the Gold Coast University Hospital. Alex Jones, 20-years-old, was brought into the hospital by ambulance. Alex presents with knee pain following an injury playing soccer a few hours ago. Alex has already been sent for an X-ray. The registrar has asked you to examine Alex. Task In the first six (6) minutes: • Perform an appropriate physical examination of Alex and explain what you are doing to the registrar as you go. In the last two (2) minutes, you will be given Alex’s X-ray and will be prompted to: • Interpret the radiograph • Provide a provisional diagnosis to the registrar • Provide a management plan to the registrar You do not need to take a history. -
Fluorescent Advanced Glycation End Products in the Detection of Factual Stages of Cartilage Degeneration
Physiol. Res. 56: 235-242, 2007 Fluorescent Advanced Glycation End Products in the Detection of Factual Stages of Cartilage Degeneration M. HANDL1,3, E. FILOVÁ2,3, M. KUBALA4, Z. LÁNSKÝ5, L. KOLÁČNÁ2,3, J. VORLÍČEK6, T. TRČ1, M. PACH7, E. AMLER2,3 1Orthopedic Clinic, Second Faculty of Medicine, Charles University in Prague, Czech Republic, 2Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Czech Republic, 3Department of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 4Department of Biophysics, Faculty of Science, Palacky University in Olomouc, Czech Republic, 5Department of Protein Structure, Institute of Physiology, Academy of Sciences of the Czech Republic, Czech Republic, 6Department of Biomathematics, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic and 7Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Czech Republic Received January 2, 2006 Accepted February 27, 2006 On-line available March 23, 2006 Summary Patients treated for knee disorders were included in this study. They were examined clinically (Lequesne and Tegner scores) and by standard X-ray investigation. Patients underwent a surgical procedure, either arthroscopy or knee replacement. At the initial phase of surgery, a sample of cartilage was taken for laboratory examination. Progression of the disorder and the clinical examination was correlated with the actual state of the cartilage using a novel fluorescence approach. The intrinsic fluorescence of cartilages was shown as a suitable and sensitive method for detection of the actual state of cartilages because the correlation with X-ray examination and clinical status was found.