Suprascapular Vascular Anomalies As a Cause of Suprascapular Nerve Compression
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
ANGIOGRAPHY of the UPPER EXTREMITY Printed in the Netherlands by Koninklijke Drukkerij G.J.Thieme Bv, Nijmegen ANGIOGRAPHY of the UPPER EXTREMITY
1 f - h-' ^^ ANGIOGRAPHY OF THE UPPER EXTREMITY Printed in The Netherlands by Koninklijke drukkerij G.J.Thieme bv, Nijmegen ANGIOGRAPHY OF THE UPPER EXTREMITY PROEFSCHRIFT ter verkrijging van de graad van Doctor in de Geneeskunde aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magni- ficus Dr. A. A. H. Kassenaar, Hoogleraar in de faculteit der Geneeskunde, volgens besluit van het college van dekanen te verdedigen op donderdag 6 mei 1982 te klokke 15.15 uur DOOR BLAGOJA K. JANEVSKI geborcn 8 februari 1934 te Gradsko, Joegoslavie MARTINUS NIJHOFF PUBLISHERS THE HAGUE - BOSTON - LONDON 1982 PROMOTOR: Prof. Dr. A. E. van Voorthuisen REPERENTEN: Prof. Dr. J. M. F. LandLandsmees r 1 Prof. Dr. J. L. Terpstra ! I Copyright © 1982 by Martinus Nijhoff Publishers, The Hague All rights reserved. No part of this publication may be repro- duced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub- lishers, Martinus Nijhoff Publishers,P.O. Box 566,2501 CN The Hague, The Netherlands if ••»• 7b w^ wife Charlotte To Lucienne, Lidia and Dejan h {, ,;T1 ii-"*1 ™ ffiffp"!»3^>»'*!W^iyJiMBiaMMrar^ ACKNOWLEDGEMENTS This thesis was produced in the Department of Radiology, Sirit Annadal Hospital, Maastricht. i Case material: Prof. Dr. H. A. J. Lemmens, surgeon. Technical assistence: Miss J. Crijns, Mrs. A. Rousie-Panis, Miss A. Mordant and Miss H. Nelissen. Secretarial help: Mrs. M. Finders-Velraad and Miss Y. Bessems. Photography: Mr. C. Evers. Graphical illustrations: Mr. C. Voskamp. Correction English text: Dr. -
Suprascapular Nerve Lesions at the Spinoglenoid Notch: Report of Three Cases and Review of the Literature 243
Journal ofNeurology, Neurosurgery, and Psychiatry 1991;54:241-243 241 Suprascapular nerve lesions at the spinoglenoid J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.54.3.241 on 1 March 1991. Downloaded from notch: report of three cases and review of the literature Jay A Liveson, Michael J Bronson, Michael A Pollack Abstract of root involvement (cervical pain, and change Lesions of the suprascapular nerve can from Valsalva's manoeuvre). His past medical occur at the supraspinatus notch (SSN) history was negative. On physical examination or at the spinoglenoid notch (SGN). Elec- cranial nerves were normal. No weakness was tromyographic (EMG), evaluation of the detected on careful manual muscle examin- infraspinatus, and especially the supra- ation. Sensation was intact. Deep tendon spinatus muscles distinguishes SGN reflexes were active and symmetrical with no from SSN lesions. Three cases of SGN pathological reflexes. There was no Homer's lesions, which are more common than sign. SSN lesions, are presented. The patient gave up weight lifting and started a programme of physiotherapy. His shoulder ache resolved rapidly, but his muscle Entrapment of the suprascapular nerve at the bulk did not return to normal for another 12 suprascapular notch (SSN) was first described months. He reported completely normal func- in 1963 by Kopell and Thompson.' No alter- tion. native entrapment site was recognised until 1981 when the first case of spinoglenoid notch Case 2 (SGN) entrapmnt was described by Ganzhorn A 22 year old right handed male was skeet et al.2 Since then nine additional cases of SGN shooting, a month before his examination. -
Arthroscopic Decompression of the Suprascapular Nerve at the Spinoglenoid Notch and Suprascapular Notch Through the Subacromial Space
Technical Note Arthroscopic Decompression of the Suprascapular Nerve at the Spinoglenoid Notch and Suprascapular Notch Through the Subacromial Space Neil Ghodadra, M.D., Shane J. Nho, M.D., M.S., Nikhil N. Verma, M.D., Stefanie Reiff, B.A., Dana P. Piasecki, M.D., Matthew T. Provencher, M.D., and Anthony A. Romeo, M.D. Abstract: Suprascapular nerve entrapment can cause disabling shoulder pain. Suprascapular nerve release is often performed for compression neuropathy and to release pressure on the nerve associated with arthroscopic labral repair. This report describes a novel all-arthroscopic technique for decom- pression of the suprascapular nerve at the suprascapular notch or spinoglenoid notch through a subacromial approach. Through the subacromial space, spinoglenoid notch cysts can be visualized between the supraspinatus and infraspinatus at the base of the scapular spine. While viewing the subacromial space through the lateral portal, the surgeon can use a shaver through the posterior portal to decompress a spinoglenoid notch cyst at the base of the scapular spine. To decompress the suprascapular nerve at the suprascapular notch, a shaver through the posterior portal removes the soft tissue on the acromion and distal clavicle to expose the coracoclavicular ligaments. The medial border of the conoid ligament is identified and followed to its coracoid attachment. The supraspinatus muscle is retracted with a blunt trocar placed through an accessory Neviaser portal. The transverse scapular ligament, which courses inferior to the suprascapular artery, is sectioned with arthroscopic scissors, and the suprascapular nerve is decompressed. Key Words: Arthroscopy—Suprascapular nerve—Transverse scapular ligament—Suprascapular notch—Rotator cuff—Shoulder. -
The Variations of the Subclavian Artery and Its Branches Ahmet H
Okajimas Folia Anat. Jpn., 76(5): 255-262, December, 1999 The Variations of the Subclavian Artery and Its Branches By Ahmet H. YUCEL, Emine KIZILKANAT and CengizO. OZDEMIR Department of Anatomy, Faculty of Medicine, Cukurova University, 01330 Balcali, Adana Turkey -Received for Publication, June 19,1999- Key Words: Subclavian artery, Vertebral artery, Arterial variation Summary: This study reports important variations in branches of the subclavian artery in a singular cadaver. The origin of the left vertebral artery was from the aortic arch. On the right side, no thyrocervical trunk was found. The two branches which normally originate from the thyrocervical trunk had a different origin. The transverse cervical artery arose directly from the subclavian artery and suprascapular artery originated from the internal thoracic artery. This variation provides a short route for posterior scapular anastomoses. An awareness of this rare variation is important because this area is used for diagnostic and surgical procedures. The subclavian artery, the main artery of the The variations of the subclavian artery and its upper extremity, also gives off the branches which branches have a great importance both in blood supply the neck region. The right subclavian arises vessels surgery and in angiographic investigations. from the brachiocephalic trunk, the left from the aortic arch. Because of this, the first part of the right and left subclavian arteries differs both in the Subjects origin and length. The branches of the subclavian artery are vertebral artery, internal thoracic artery, This work is based on a dissection carried out in thyrocervical trunk, costocervical trunk and dorsal the Department of Anatomy in the Faculty of scapular artery. -
Head & Neck Muscle Table
Robert Frysztak, PhD. Structure of the Human Body Loyola University Chicago Stritch School of Medicine HEAD‐NECK MUSCLE TABLE PROXIMAL ATTACHMENT DISTAL ATTACHMENT MUSCLE INNERVATION MAIN ACTIONS BLOOD SUPPLY MUSCLE GROUP (ORIGIN) (INSERTION) Anterior floor of orbit lateral to Oculomotor nerve (CN III), inferior Abducts, elevates, and laterally Inferior oblique Lateral sclera deep to lateral rectus Ophthalmic artery Extra‐ocular nasolacrimal canal division rotates eyeball Inferior aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Depresses, adducts, and laterally Inferior rectus Common tendinous ring Ophthalmic artery Extra‐ocular corneoscleral junction division rotates eyeball Lateral aspect of eyeball, posterior to Lateral rectus Common tendinous ring Abducent nerve (CN VI) Abducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction Medial aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Medial rectus Common tendinous ring Adducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction division Passes through trochlea, attaches to Body of sphenoid (above optic foramen), Abducts, depresses, and medially Superior oblique superior sclera between superior and Trochlear nerve (CN IV) Ophthalmic artery Extra‐ocular medial to origin of superior rectus rotates eyeball lateral recti Superior aspect of eyeball, posterior to Oculomotor nerve (CN III), superior Elevates, adducts, and medially Superior rectus Common tendinous ring Ophthalmic artery Extra‐ocular the corneoscleral junction division -
Suprascapular Nerve Entrapment: Technique for Arthroscopic Release
Techniques in Shoulder and Elbow Surgery 7(2):000–000, 2006 Ó 2006 Lippincott Williams & Wilkins, Philadephia | REVIEW | Suprascapular Nerve Entrapment: Technique for Arthroscopic Release Peter J. Millett, MD, MSc Steadman Hawkins Clinic, Vail, CO Harvard Medical School Boston, MA R. Shane Barton, MD, Iva´n H. Pacheco, MD, and Reuben Gobezie, MD Harvard Shoulder Service Harvard Medical School Brigham and Women’s Hospital Massachusetts General Hospital Boston, MA | ABSTRACT with suprascapular nerve palsy may present with an often vague range of symptoms or even be asympto- Suprascapular neuropathy can be caused by a variety of matic.3 Pain over the posterolateral shoulder or easy anatomic and pathologic entities as the nerve courses fatigability with overhead activities may be reported, or from the brachial plexus through the suprascapular and painless weakness of external rotation with or without spinoglenoid notches to innervate the supraspinatus and spinatus muscle atrophy may be noted. Compression of infraspinatus muscles. We describe techniques for arthro- the nerve at both the suprascapular and spinoglenoid scopically accessing the nerve at both the suprascapular notches are commonly reported mechanisms of injury and spinoglenoid notches and decompressing structural and will be discussed in detail. lesions that may be contributing to the neuropathy. The physical examination plays a critical role in Keywords: suprascapular neuropathy, suprascapular discerning the site of suprascapular nerve injury. notches, spinoglenoid notches, cyst decompression, arthro- Clinical observation of the patient’s shoulder girdle is scopic release important. More proximal injury, as seen with supra- | HISTORICAL PERSPECTIVE scapular notch compression, may result in atrophy of both the supraspinatus and infraspinatus, whereas more Isolated injury to the suprascapular nerve has long been distal compression at the spinoglenoid notch will result recognized as an etiologic entity producing shoulder pain in isolated infraspinatus weakness and atrophy (Fig. -
Bone Limb Upper
Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior -
Complications Associated with Clavicular Fracture
NOR200061.qxd 9/11/09 1:23 PM Page 217 Complications Associated With Clavicular Fracture George Mouzopoulos ▼ Emmanuil Morakis ▼ Michalis Stamatakos ▼ Mathaios Tzurbakis The objective of our literature review was to inform or- subclavian vein, due to its stable connection with the thopaedic nurses about the complications of clavicular frac- clavicle via the cervical fascia, can also be subjected to ture, which are easily misdiagnosed. For this purpose, we injuries (Casbas et al., 2005). Damage to the internal searched MEDLINE (1965–2005) using the key words clavicle, jugular vein, the suprascapular artery, the axillary, and fracture, and complications. Fractures of the clavicle are usu- carotid artery after a clavicular fracture has also been ally thought to be easily managed by symptomatic treatment reported (Katras et al., 2001). About 50% of injuries to the subclavian arteries are in a broad arm sling. However, it is well recognized that not due to fractures of the clavicle because the proximal all clavicular fractures have a good outcome. Displaced or part is dislocated superiorly by the sternocleidomas- comminuted clavicle fractures are associated with complica- toid, causing damage to the vessel (Sodhi, Arora, & tions such as subclavian vessels injury, hemopneumothorax, Khandelwal, 2007). If no injury happens during the ini- brachial plexus paresis, nonunion, malunion, posttraumatic tial displacement of the fractured part, then it is un- arthritis, refracture, and other complications related to os- likely to happen later, because the distal segment is dis- teosynthesis. Herein, we describe what the orthopaedic nurse placed downward and forward due to shoulder weight, should know about the complications of clavicular fractures. -
Dr. Neelesh Kanasker Original Research Paper Anatomy Dr.Preeti
Original Research Paper Volume - 11 | Issue - 04 | April - 2021 | PRINT ISSN No. 2249 - 555X | DOI : 10.36106/ijar Anatomy SURGICAL IMPORTANCE OF VARIABLE BRANCHING PATTERN OF THYROCERVICAL TRUNK IN NECK ROOT SURGERIES Dr. Neelesh Associate professor, Department of Anatomy, Dr. D. Y. Patil Medical College, Hospital Kanasker and Research Center, Dr.D.Y.Patil Vidyapeeth , Pimpri Pune. Professor, Department of Anatomy, Dr. D. Y. Patil Medical College, Hospital and Dr.Preeti Sonje* Research Center, Dr.D.Y.Patil Vidyapeeth , Pimpri Pune. *Corresponding Author Dr. P. Professor and Director Academics, Department of Anatomy, Dr. D. Y. Patil Medical Vatsalaswamy College, Hospital and Research Center, Dr.D.Y.Patil Vidyapeeth , Pimpri Pune. ABSTRACT Objectives: Variations in the arteries of human body are important clinically as well as anatomically. Accurate knowledge and understanding of anomalous variations in the origin and course of arteries have serious implications in angiographic and surgical procedures hence it is of great importance to be aware of such possibilities of variations. Background and Results: Thyrocervical Trunk is short wide vessel arising from rst part of subclavian artery and divides into its three terminal branches i.e. Suprascapular, Inferior Thyroid and Transverse cervical artery. 30 formalin xed cadavers were dissected to study variations in Thyrocervical Trunk and its branches if any. Conclusion: Awareness of variations in the origin and branching pattern is of utmost importance during Doppler scanning of blood vessels for clinical diagnosis and surgical management and to avoid major complications in head and neck surgeries. KEYWORDS : Thyrocervical Trunk, Anomalous variations, Doppler scanning, Head and neck surgeries. INTRODUCTION anterior muscle and then arches medially at the level of C7 vertebra Subclavian artery is the artery of upper limb, but is supplies a between the vertebral vessels behind and carotid sheath in front. -
Arterial Supply to the Rotator Cuff Muscles
Int. J. Morphol., 32(1):136-140, 2014. Arterial Supply to the Rotator Cuff Muscles Suministro Arterial de los Músculos del Manguito Rotador N. Naidoo*; L. Lazarus*; B. Z. De Gama*; N. O. Ajayi* & K. S. Satyapal* NAIDOO, N.; LAZARUS, L.; DE GAMA, B. Z.; AJAYI, N. O. & SATYAPAL, K. S. Arterial supply to the rotator cuff muscles.Int. J. Morphol., 32(1):136-140, 2014. SUMMARY: The arterial supply to the rotator cuff muscles is generally provided by the subscapular, circumflex scapular, posterior circumflex humeral and suprascapular arteries. This study involved the bilateral dissection of the scapulohumeral region of 31 adult and 19 fetal cadaveric specimens. The subscapularis muscle was supplied by the subscapular, suprascapular and circumflex scapular arteries. The supraspinatus and infraspinatus muscles were supplied by the suprascapular artery. The infraspinatus and teres minor muscles were found to be supplied by the circumflex scapular artery. In addition to the branches of these parent arteries, the rotator cuff muscles were found to be supplied by the dorsal scapular, lateral thoracic, thoracodorsal and posterior circumflex humeral arteries. The variations in the arterial supply to the rotator cuff muscles recorded in this study are unique and were not described in the literature reviewed. Due to the increased frequency of operative procedures in the scapulohumeral region, the knowledge of variations in the arterial supply to the rotator cuff muscles may be of practical importance to surgeons and radiologists. KEY WORDS: Arterial supply; Variations; Rotator cuff muscles; Parent arteries. INTRODUCTION (Abrassart et al.). In addition, the muscular parts of infraspinatus and teres minor muscles were supplied by the circumflex scapular artery while the tendinous parts of these The rotator cuff is a musculotendionous cuff formed muscles received branches from the posterior circumflex by the fusion of the tendons of four muscles – viz. -
The Rare Origin of the Suprascapular Artery Arising Off The
eISSN 1308-4038 International Journal of Anatomical Variations (2011) 4: 182–184 Case Report The rare origin of the suprascapular artery arising off the internal thoracic artery in the presence of the thyrocervical trunk: clinical and surgical implications Published online December 2nd, 2011 © http://www.ijav.org Stavros ATSAS ABSTRACT Jacob N. FOX During routine dissection of the subclavian artery and its branches, the suprascapular artery was found arising from H. Wayne LAMBERT the proximal end of the internal thoracic artery in only the left side of a 68-year-old Caucasian male, despite the presence of the thyrocervical trunk on the ipsilateral side. The suprascapular artery ran deep to the proximal one- third of the clavicle then continued its usual course, running parallel to the suprascapular nerve and passing over the superior transverse scapular ligament distally. Knowledge of this variant origin of the suprascapular artery is clinically Department of Neurobiology and Anatomy, West Virginia University School of Medicine, important because the internal thoracic artery is utilized for a majority of the 800,000 coronary artery bypass surgeries Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, USA. performed worldwide each year. Its course deep to the clavicle is also significant due to clavicular fractures accounting for approximately 5-15% of adult bone fractures. © IJAV. 2011; 4: 182–184. Dr. H. Wayne Lambert, PhD Associate Professor West Virginia University School of Medicine Robert C. Byrd Health Sciences Center Department of Neurobiology and Anatomy HSN 4052; P.O. Box 9128 Morgantown, WV, 26506-9128, USA. +1 304 293-0610 [email protected] Key words [anatomical variant] [suprascapular artery] [internal thoracic artery] [branches of subclavian artery] [thyrocervical trunk] [coronary bypass Received June 21st, 2011; accepted October 12th, 2011 surgery] [radical and modified neck dissections] Introduction In 2005, Weiglein et al. -
Suprascapular Nerve Entrapment Isolated to the Spinoglenoid Notch: Surgical Technique and Results of Open Decompression
J Shoulder Elbow Surg (2013) 22, e1-e8 www.elsevier.com/locate/ymse Suprascapular nerve entrapment isolated to the spinoglenoid notch: surgical technique and results of open decompression Nathan A. Mall, MD*, James E. Hammond, DO, Brett A. Lenart, MD, Daniel J. Enriquez, MA, Stacy L. Twigg, PA-C, Gregory P. Nicholson, MD Department of Orthopaedic Surgery, Division of Sports Medicine and Shoulder and Elbow Surgery, Rush University Medical Center, St Louis, MO, USA Background: Entrapment of the suprascapular nerve (SSN) at the spinoglenoid notch (SGN) specifically affects the infraspinatus, and isolated external rotation (ER) weakness can result. We describe the tech- nique of open SSN decompression at the SGN for infraspinatus involvement and report the results of a consecutive series. Materials and methods: Twenty-nine shoulders underwent SSN decompression at the SGN. The mean age was 44 years (range, 15-69 years), and the mean follow-up was 4.3 years (range, 1-7 years). On manual muscle testing, ER strength was abnormal in all patients: 2/5 in 3, 3/5 in 21, and 4/5 in 5. The mean preop- erative American Shoulder and Elbow Surgeons (ASES) score was 48 (range, 23-83). Atrophy of the infra- spinatus was visible or palpable in 72% of shoulders. Magnetic resonance imaging showed ganglion cysts at the SGN in only 20.7% of shoulders. Results: Of the patients, 19 (66%) regained full ER strength, 9 (31%) improved to 4/5, and 1 (3%) had ER strength of 3/5. The mean ASES score improved to 75 (range, 60-100) (P < .05).