Download the Print Version of Inside Stanford

Total Page:16

File Type:pdf, Size:1020Kb

Download the Print Version of Inside Stanford Researchers have developed an iPhone app to study peripheral STANFORD artery disease. Page 4 INSIDE Volume 8, No. 17MEDICINE September 26, 2016 Published by the Office of Communication & Public Affairs $600 million health research effort launches TYLER MaLLORY Chan Zuckerberg Initiative and Priscilla in both sophisticated tools and an unprecedented Bay Area-wide funds collaboration between university collaboration that will enable Stanford, UCSF, UC-Berkeley groundbreaking discovery.” Former Stanford President John Hen- By Amy Adams nessy, PhD, was instrumental in helping establish the initiative, working closely tanford will be one of three Bay with the Chan Zuckerberg Initiative on Area universities — along with its inception. He will serve on the board Sthe University of California-San in his personal capacity as a scientist and Francisco and the University of Califor- technologist. nia-Berkeley — to participate in a new “The vision for the Chan Zuckerberg bioscience collaboration funded through Initiative and the Biohub capitalizes on a $600 million commitment by the the strengths of our Bay Area universi- Chan Zuckerberg Initiative. ties, and also makes a major investment Facebook founder Mark Zuckerberg in early-stage research of the type that and his wife Priscilla Chan, MD, created cannot be readily funded elsewhere,” the Chan Zuckerberg Initiative after the Hennessy said. “It is large-scale collabo- birth of their daughter in 2015. On Sept. ration at its best, and with tremendous 21, the Initiative announced plans for a promise for solving the world’s greatest broader focus on science, its second ma- health challenges.” jor initiative, alongside work to improve Resident Biohub scientists will work education for all students. The Chan on two large-scale overarching projects: Zuckerberg Initiative’s goal is to cure, The Cell Atlas, a comprehensive data set prevent or manage all diseases by the end cataloging all the biologically significant of the century by accelerating basic sci- characteristics of every cell type in the ence research. The Initiative seeks to sup- body, and an Infectious Disease Proj- port new ways of enabling scientists and Stephen Quake (left) and Joseph DeRisi walk through Quake’s laboratory at Stanford. The two scientists ect, devoted to tackling microbial dis- engineers to work together to build new will be co-directors of the Chan Zuckerberg Biohub. eases, including emerging biothreats and tools that will empower the whole scien- pandemics. tific community and advance progress. phen Quake, PhD, Stanford professor of These hubs will establish shared biotech- Technology to improve health The new Bay Area research collabora- bioengineering and of applied physics, nology platforms and make them avail- tion, called the Chan Zuckerberg Bio- who will co-lead the Biohub with Joseph able to members of the collaborating Each of the three partner schools has hub, is the first scientific investment by DeRisi, PhD, professor and chair of bio- universities. a long history of developing biomedical the Chan Zuckerberg Initiative. It will chemistry and biophysics at UCSF. “This initiative will dramatically im- technologies, with combined strengths include a combination of grants, research Collaborative approach to research prove our ability to conduct fundamen- in medicine, engineering and the basic space focused on biotechnology-tool de- tal research at the intersection of biology sciences. New opportunities created by velopment, and large-scale collaborative The Biohub will be an independent and engineering that can lead to impor- the Biohub will focus the universities’ projects. research organization with two locations, tant applications for human health,” said individual strengths around the com- “The Biohub will be the sinew that a headquarters in the San Francisco Mis- Stanford President Marc Tessier-Lavigne, mon goal of developing technologies to ties together these three institutions in sion Bay district and an outstation at PhD, who is a neuroscientist. “We are cure and prevent human disease, said the Bay Area like never before,” said Ste- Stanford known as the Stanford Biohub. grateful for the investment by Mark Tessier-Lavigne. See BIOHUB, page 6 Leadership reflects Iron nanoparticles make immune cells on Stanford Medicine attack cancer, according to new study accomplishments, By Erin Digitale could complement existing cancer treatments. The dis- covery, described in a paper published online today in looks to the future Iron nanoparticles can activate the immune system Nature Nanotechnology, was made by accident while By Kathy Zonana to attack cancer cells, according to a study led by re- testing whether the nanoparticles could serve as Trojan searchers at the School of Medicine. horses by sneaking chemotherapy into tumors in mice. Calling it “a time for us to come together and reflect The nanoparticles, which are commercially available “It was really surprising to us that the nanoparticles on where we are today and the exciting opportunities as the injectable iron supplement ferumoxytol, are ap- activated macrophages so that they started to attack that we have moving forward,” School of Medicine proved by the Food and Drug Administration to treat cancer cells in mice,” said Heike Daldrup-Link, MD, Dean Lloyd Minor, MD, kicked off the first State of iron deficiency anemia. who is the study’s senior author and an associate profes- Stanford Medicine event on Sept. 22 before an over- The mouse study found that ferumoxytol prompts sor of radiology at the School of Medicine. “We think flow crowd of faculty, staff and students. immune cells called tumor-associated macrophages to this concept should hold in human patients, too.” The event at the Li Ka Shing Center for Learning destroy cancer cells, suggesting that the nanoparticles Daldrup-Link’s team See IRON, page 6 and Knowledge included an address by the dean fol- lowed by a panel discussion with David Entwistle, AMY THOMAS president and CEO of Stanford Health Care; Chris- topher Dawes, president and CEO of Lucile Packard Children’s Hospital Stanford and Stanford Children’s Health; and Minor. Megan Mahoney, MD, a clinical associate professor of medicine, moderated the panel. Accomplishments of the past year Standing in front of a screen listing several of the past year’s accomplishments in research, education and teaching, Minor quipped, “This slide is already out of date, and we just made it yesterday.” The number of faculty who had won major international awards had grown by one overnight, with assistant professor of bioengineering Manu Prakash, PhD, being named the recipient of a MacArthur Foundation “genius grant.” Among the year’s See STANFORD MEDICINE, page 6 A mouse study found that ferumoxytol prompts immune cells called tumor-associated macrophages to destroy cancer cells. School’s Grant Writing Academy honored with AAMC award By Becky Bach and postdoctoral scholars write some of the most com- class at the academy, and in the days before the deadline Success as a professional scientist is increasingly de- mon grants offered by the National Institutes of Health we helped each other as proofreaders.” termined by the ability to secure funding. Yet grant and the National Science Foundation, they are welcome So far, the academy has worked with about 180 stu- writing — the nitty-gritty work of distilling ideas into a to use it to apply for any bioscience grant, Botham said. dents and trainees, Botham said. She attributes its suc- winning pitch — is rarely taught in graduate school or Proposal boot camp cess, in part, to its use of peer mentors. “Peer feedback postdoctoral training. is really valued. There’s only one of me, and I can’t read Recognizing this gap, Stanford Biosciences launched Chandramouli Chandrasekaran, PhD, a postdoc- 100 grants, but I can train grant coaches to work with the Grant Writing Academy in 2014. Though young, toral scholar in neurosciences and electrical engineer- 100 postdocs or graduate students,” she said. the program has already boosted the number of both ing, turned to the Grant Writing Academy for assistance Lamia Wahba, PhD, a postdoctoral scholar in pa- grant submissions and funded grants, said its director, applying for a NIH Pathway to Independence Award thology, is one of the academy’s grant coaches. She said Crystal Botham, PhD. It recently earned national rec- from the National Institute of Neurological Disorders the academy has helped her refine her own grants, but it ognition as well: It was honored as the third-prize win- and Stroke. The grant can provide up to five years of has also taught her a lot about teaching. Teaching writ- ner of the Association of American Medical Colleges’ funding, but it demands as many as 30 documents ing is quite different from teaching genetics, she said. Innovations in Research Education Award. that need to be nearly perfect, Chandrasekaran said. It requires trainees to examine their research critically, Though the program specializes in helping students That seemed a bit overwhelming, so he attended the she said. NORBERT VON DER GROEBEN academy’s proposal boot ‘You become a better scientist’ camp, a two-month course that meets weekly and “By being able to write and articulate your research walks a cohort of gradu- goals, you become a better scientist,” said Botham. ate students and postdocs And some of the most common mistakes inexpe- through each step of the rienced grant writers make? Many make assumptions grant-application process. about what the reviewers know, Wahba said. Even ex- The boot camp helped perts in the field may not be familiar with new or un- Chandrasekaran, who usual techniques, she said. In addition, beginning grant studies the neural mecha- writers often struggle to keep their writing concise and nisms underlying decision- to resist the temptation to include every detail, she said. making in primates, secure “The big take-home lesson is we weren’t taught one of the coveted awards. enough about writing about science,” Wahba said.
Recommended publications
  • Simon W.-L Chan Full CV
    Simon W.-L. Chan University of California, Davis Department of Plant Biology 1 Shields Ave. Davis, CA 95616 (530) 754 9652 [email protected] Education and Research Experience July 2006- University of California, Davis, Davis, CA Assistant Professor 2002-2006 University of California, Los Angeles, Los Angeles, CA Postdoctoral fellowship Advisor: Dr. Steven E. Jacobsen 1996-2002 University of California, San Francisco, San Francisco, CA Ph.D. in Cell Biology. Advisor: Dr. Elizabeth H. Blackburn 1992-1995 University of Auckland, Auckland, New Zealand Bachelor of Science (with Honours) in Biochemistry. Advisor: Dr. Nigel P. Birch Awards 2010 Basil O’Connor Starter Scholar Award, March of Dimes 2006 American Society of Plant Biologists Early Career Award 2004 UCLA Boyer-Parvin Postdoctoral Award 2003-2006 Life Sciences Research Foundation Postdoctoral Fellowship (sponsored by the U.S. Department of Energy, Energy BioSciences division) 1997-2002 Howard Hughes Medical Institute Predoctoral Fellowship Advanced Coursework 2008 National Academies Education Fellow in the Life Sciences (attended The National Academies Summer Institute on Undergraduate Education in Biology). 2003 QB3 Microarray Course at UC Santa Cruz (taught by Dr. Joseph Derisi and colleagues). Publications Marimuthu, M.P.A.*, Jolivet, S.*, Ravi, M.*, Pereira, L., Davda, J.N., Cromer, L., Wang, L., Nogué, F., Chan, S.W.L.#, Siddiqi, I.# & Mercier, R.# Synthetic clonal reproduction through seeds Science in press * co-first authors, # corresponding authors Greenberg, M.V.C., Ausin, I., Chan, S.W.L, Cokus, S.J., Cuperus, J.T., Feng, S., Law, J.A., Chu, C., Pellegrini, M., Carrington, J.C. and Jacobsen, S.E. Identification of genes required for de novo DNA methylation in Arabidopsis Epigenetics 6, 344-354 (2011) Chan, S.W.L.
    [Show full text]
  • Alex Greninger [email protected] 415-439-3448 Nominator Information
    Nominee Information: Alex Greninger [email protected] 415-439-3448 Nominator Information: Keith Jerome [email protected] (206) 667-6793 Award: Young Investigator Award Statement of Recommendation January 5, 2017 To the selection committee: It gives me great pleasure to nominate Dr. Alex Greninger, a resident physician at the University of Washington, for an ASM/PASCV Young Investigator Award. Alex is an exceptional young scientist, and committed to a career in diagnostic virology. I hope I am able to convey the reasons behind my enthusiastic endorsement. Alex joined our laboratory 18 months ago, coming to us out of an MD/PhD program at UCSF, where he had worked with Drs. Joe DeRisi and Charles Chiu. Alex was remarkably productive during his graduate training, publishing approximately 40(!) papers in the peer-reviewed literature. His main focus was the use of unbiased technologies such as next-generation sequencing and mass spectrometry with an emphasis on viral illnesses. His first first-author paper detailed the discovery of salivirus, a new picornavirus that is associated with up to 4% of pediatric diarrhea. He then went on to perform an affinity purification mass-spectrometry screen of all culturable picornaviruses to find novel host protein interactors. This work culminated in the discovery of a new host protein ACBD3 that acts as a hub for PI4KB recruitment by a wide-array picornavirus 3A proteins, including the enteroviruses and rhinoviruses. Four years later, the crystal structures of these complexes are just being completed and forming the basis for the development of broadly-active 3A inhibitors against enteroviruses and other picornaviruses, similar to the NS5A inhibitors for hepatitis C virus.
    [Show full text]
  • 2019 Annual Report
    BECKMAN CENTER 279 Campus Drive West Stanford, CA 94305 650.723.8423 Stanford University | Beckman Center 2019 Annual Report Annual 2019 | Beckman Center University Stanford beckman.stanford.edu 2019 ANNUAL REPORT ARNOLD AND MABEL BECKMAN CENTER FOR MOLECULAR AND GENETIC MEDICINE 30 Years of Innovation, Discovery, and Leadership in the Life Sciences CREDITS: Cover Design: Neil Murphy, Ghostdog Design Graphic Design: Jack Lem, AlphaGraphics Mountain View Photography: Justin Lewis Beckman Center Director Photo: Christine Baker, Lotus Pod Designs MESSAGE FROM THE DIRECTOR Dear Friends and Trustees, It has been 30 years since the Beckman Center for Molecular and Genetic Medicine at Stanford University School of Medicine opened its doors in 1989. The number of translational scientific discoveries and technological innovations derived from the center’s research labs over the course of the past three decades has been remarkable. Equally remarkable have been the number of scientific awards and honors, including Nobel prizes, received by Beckman faculty and the number of young scientists mentored by Beckman faculty who have gone on to prominent positions in academia, bio-technology and related fields. This year we include several featured articles on these accomplishments. In the field of translational medicine, these discoveries range from the causes of skin, bladder and other cancers, to the identification of human stem cells, from the design of new antifungals and antibiotics to the molecular underpinnings of autism, and from opioids for pain
    [Show full text]
  • Viral Outbreak: the Science of Emerging Disease Lecture 4 – Solving SARS and Other Viral Mysteries Joe Derisi, Ph.D
    Viral Outbreak: The Science of Emerging Disease Lecture 4 – Solving SARS and other Viral Mysteries Joe Derisi, Ph.D. 1. Begin of Lecture 4 (0:16) [ANNOUNCER:] From the Howard Hughes Medical Institute. The 2010 Holiday Lectures on Science. This year's lectures, "Viral Outbreak: The Science of Emerging Disease", will be given by Dr. Joseph DeRisi, Howard Hughes Medical Institute investigator at the University of California, San Francisco, and by Dr. Eva Harris, Professor of Infectious Diseases at the University of California, Berkeley. The fourth lecture is titled Solving SARS and Other Viral Mysteries. And now to introduce our program, the President of the Howard Hughes Medical Institute, Dr. Robert Tjian 2. Welcome by HHMI President Dr. Robert Tjian (01:07) [DR. TJIAN:] Welcome back to this final presentation of this year's Holiday Lectures on Science. It's a great pleasure once again to introduce Joe DeRisi to give our fourth and last lecture in the series. Previously, Joe told us about how using bioengineering, computers, and molecular biology, he has been able to combine these tools for a potent approach to hunt for new viruses. In this lecture, Joe is going to show you how he can use his Virochip in real-time and in real life situations to discover and quickly diagnosis new viral outbreaks. Joe will also, I think, give us a glimpse of what the future in biotechnology holds towards the end of his talk. And now a brief video about Joe. 3. Profile of Dr. Joseph DeRisi (02:07) [DR. DERISI:] Science as we know it now is a highly interdisciplinary endeavor.
    [Show full text]
  • A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium Falciparum Fails to Mount Protective Responses to Lethal Antifolates
    A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium falciparum Fails to Mount Protective Responses to Lethal Antifolates Karthikeyan Ganesan1.¤, Napawan Ponmee1,2,3., Lei Jiang1, Joseph W. Fowble1, John White1, Sumalee Kamchonwongpaisan3, Yongyuth Yuthavong3, Prapon Wilairat2, Pradipsinh K. Rathod1* 1 Department of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America, 2 Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand, 3 National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand Abstract Genome sequences of Plasmodium falciparum allow for global analysis of drug responses to antimalarial agents. It was of interest to learn how DNA microarrays may be used to study drug action in malaria parasites. In one large, tightly controlled study involving 123 microarray hybridizations between cDNA from isogenic drug-sensitive and drug-resistant parasites, a lethal antifolate (WR99210) failed to over-produce RNA for the genetically proven principal target, dihydrofolate reductase- thymidylate synthase (DHFR-TS). This transcriptional rigidity carried over to metabolically related RNA encoding folate and pyrimidine biosynthesis, as well as to the rest of the parasite genome. No genes were reproducibly up-regulated by more than 2-fold until 24 h after initial drug exposure, even though clonal viability decreased by 50% within 6 h. We predicted and showed that while the parasites do not mount protective transcriptional responses to antifolates in real time, P. falciparum cells transfected with human DHFR gene, and adapted to long-term WR99210 exposure, adjusted the hard-wired transcriptome itself to thrive in the presence of the drug.
    [Show full text]
  • Croi 2021 Program Committee
    General Information CONTENTS WELCOME . 2 General Information General Information OVERVIEW . 2 CONTINUING MEDICAL EDUCATION . 3 CONFERENCE SUPPORT . 4 VIRTUAL PLATFORM . 5 ON-DEMAND CONTENT AND WEBCASTS . 5 CONFERENCE SCHEDULE AT A GLANCE . 6 PRECONFERENCE SESSIONS . 9 LIVE PLENARY, ORAL, AND INTERACTIVE SESSIONS, AND ON-DEMAND SYMPOSIA BY DAY . 11 SCIENCE SPOTLIGHTS™ . 47 SCIENCE SPOTLIGHT™ SESSIONS BY CATEGORY . 109 CROI FOUNDATION . 112 IAS–USA . 112 CROI 2021 PROGRAM COMMITTEE . 113 Scientific Program Committee . 113 Community Liaison Subcommittee . 113 Former Members . 113 EXTERNAL REVIEWERS . .114 SCHOLARSHIP AWARDEES . 114 AFFILIATED OR PROXIMATE ACTIVITIES . 114 EMBARGO POLICIES AND SOCIAL MEDIA . 115 CONFERENCE ETIQUETTE . 115 ABSTRACT PROCESS Scientific Categories . 116 Abstract Content . 117 Presenter Responsibilities . 117 Abstract Review Process . 117 Statistics for Abstracts . 117 Abstracts Related to SARS-CoV-2 and Special Study Populations . 117. INDEX OF SPECIAL STUDY POPULATIONS . 118 INDEX OF PRESENTING AUTHORS . .122 . Version 9 .0 | Last Update on March 8, 2021 Printed in the United States of America . © Copyright 2021 CROI Foundation/IAS–USA . All rights reserved . ISBN #978-1-7320053-4-1 vCROI 2021 1 General Information WELCOME TO vCROI 2021 Welcome to vCROI 2021! The COVID-19 pandemic has changed the world for all of us in so many ways . Over the past year, we have had to put some of our HIV research on hold, learned to do our research in different ways using different tools, to communicate with each other in virtual formats, and to apply the many lessons in HIV research, care, and community advocacy to addressing the COVID-19 pandemic . Scientists and community stakeholders who have long been engaged in the endeavor to end the epidemic of HIV have pivoted to support and inform the unprecedented progress made in battle against SARS-CoV-2 .
    [Show full text]
  • Respiratory Illness in Nicaragua Isolated from a Case of Acute Pediatric Interspecies Recombinant Enterovirus Human Enterovirus
    Human Enterovirus 109: a Novel Interspecies Recombinant Enterovirus Isolated from a Case of Acute Pediatric Respiratory Illness in Nicaragua Nathan L. Yozwiak, Peter Skewes-Cox, Aubree Gordon, Saira Saborio, Guillermina Kuan, Angel Balmaseda, Don Ganem, Eva Harris and Joseph L. DeRisi J. Virol. 2010, 84(18):9047. DOI: 10.1128/JVI.00698-10. Downloaded from Published Ahead of Print 30 June 2010. Updated information and services can be found at: http://jvi.asm.org/content/84/18/9047 http://jvi.asm.org/ These include: REFERENCES This article cites 49 articles, 27 of which can be accessed free at: http://jvi.asm.org/content/84/18/9047#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on August 6, 2014 by UCSF Library & CKM Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ JOURNAL OF VIROLOGY, Sept. 2010, p. 9047–9058 Vol. 84, No. 18 0022-538X/10/$12.00 doi:10.1128/JVI.00698-10 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Human Enterovirus 109: a Novel Interspecies Recombinant Enterovirus Isolated from a Case of Acute Pediatric Respiratory Illness in Nicaraguaᰔ† Nathan L. Yozwiak,1 Peter Skewes-Cox,2 Aubree Gordon,1,6 Saira Saborio,7 Guillermina Kuan,8 Angel Balmaseda,7 Don Ganem,3,5 Eva Harris,1 and Joseph L. DeRisi3,4,5* Division of Infectious Diseases and Vaccinology, School of Public Health, University of California,
    [Show full text]
  • A Field Guide to Computational Biology
    NATURALISM IN THE COMPUTER AGE A Field Guide to Computational Biology HARLES DARWIN WOULD The Computational Biology and Bio- vast amount of information that holds never have predicted that informatics Discussion Group, one of a the very secrets of humanity. Bioinfor- his disciplinary decendents – diverse set of groups that participates in maticists – who specialize in the mathe- C biologists driven by a passion the Academy’s Frontiers of Science pro- matical analysis of large data sets – are for exploration and observation of the gram, never fails to intrigue its members, working feverishly to mine this data to natural world – would do their most pro- not least because of its unpredictability. discover the inestimable gems it holds. ductive work in an office. But a rapidly The questions computational biologists Although we have collected the infor- growing army of modern day naturalists seek to answer are as broad as the prob- mation we need to understand life, it is focuses on understanding the complex lems that constitute all of biology. The encoded in layers of complexity – a tri- details of the biological world through common link is not the nature of the umvirate of sequences (DNA, RNA, and an exploration instrument highly diver- questions, but the approach to answering protein) stores the instructions for the gent from Darwin’s Beagle – the desktop them. Still, a handful of problems have molecules that regulate life processes. computer. Computers have revolutionized the way we meet, carry out business, tell jokes, The questions computational biologists seek to answer are share photographs, and pay our bills. It is no surprise that they have also radically as broad as the problems that constitute all of biology.
    [Show full text]
  • PARRA Spring Luncheon Tuesday, April 11 President's Message
    President’s and Regents’ Retiree Association Spring 2017 Published for Retirees of the Office of the President and Office of The Regents, University of California President’s Message PARRA Spring Luncheon Welcome to our “Spring” newsletter and congratula- tions to new retirees. Yep, I realize if we meet the Tuesday, April 11 schedule we’ve laid out that you’ll be receiving this Please join us at the PARRA Spring newsletter before the start of Spring. luncheon at Hs. Lordship’s Restau- The last newsletter noted that the Council of UC rant in Berkeley. The speaker will Retiree Associations (CUCRA) was conducting a be UCSF Professor Joseph DeRisi. survey of all UC retirees. The results of that survey Dr. DeRisi will explore the applica- are not yet distributed but I do know the percent- tion of genomics, the study of the age of PARRA retirees who participated was one of complete set of the highest across the State. I will be sure to share DNA within a cell, the results as soon as they are available. In the to biomedical meantime, not to overwhelm you with surveys, but research, using PARRA is also conducting a survey. The PARRA survey a series of case is complementary to the CUCRA survey, so you won’t examples from be asked to respond to the same questions as in the his own lab to CUCRA survey. I encourage your participation in what illustrate both I believe may be only the second PARRA survey since the promise and its inception. When you take the survey you will see pitfalls of precision that the PARRA Executive Committee is trying to medicine.
    [Show full text]
  • Scientists Invent New Way to Disarm Malaria Parasite 30 August 2011
    Scientists invent new way to disarm malaria parasite 30 August 2011 A novel technique to "tame" the malaria parasite, Plasmodium are injected into the bloodstream. The by forcing it to depend on an external supply of a resulting infection causes some 1 million deaths vital chemical, has been developed by researchers annually, largely among children under the age of at the Stanford University School of Medicine and 5. the University of California-San Francisco. The scientists have, in effect, created a domesticated At present, no effective malaria vaccines exist. strain of Plasmodium - the one-celled parasite that What's more, Plasmodium strains usually develop causes malaria - that would no longer cause this resistance to drugs that have been approved to dreaded disease. combat the disease. The World Health Organization, for instance, currently recommends Their findings not only make it possible to grow artemesinin in combination with other, older anti- large volumes of this modified parasite, but also malarials for combating Plasmodium falciparum, reveal how the parasite's very survival turns on the the deadliest and most widespread form of the production of one chemical - isopentenyl malaria parasite. But while that drug is still believed pyrophosphate, or IPP. These developments could to be effective, reports of resistance are starting to help to speed up drug development and provide emerge, said Yeh. the basis for the first effective vaccine against malaria. "If resistance becomes widespread, we're in big trouble, because there's little else in the pipeline The study, which will be published online Aug. 30 that's not based on artemesinin," Yeh said.
    [Show full text]
  • Download the PDF to Read the Full Article
    Beckman Women Scientists 21 Women Scientists of the Beckman Center BY ANNA AZVOLINSKY “Science was an evolution of curiosity for me. My father was a chemist and in grade school, I spent time on the weekends in his lab, watching dry ice skate on water. In high school, I got into writing code with my friends. My high school was in Bethesda, Maryland, and a lab investigator came to our high school and asked if anyone likes to write code because he wanted students to come to his biophysics lab and write code for his research. My friend and I put our hands up to volunteer and after school, and in the summer, we worked in his lab. The lab needed a computer program to automatically analyze their data from a spectroscopy instrument. Today, the instrument would come with its own software, but that was not the case back then. The scientist gave us a scientific paper on how to implement a Fourier transformation and we had no idea what that meant, but we said, ‘Ok, let’s figure this out.’ I loved solving puzzles and through that experience became fascinated by biology. The friend, Felasfa Wodajo, as it turns out, also came to Stanford. He worked as a computer programmer in Bill Newsome’s laboratory before going to medical school and is now a musculosketal tumor surgeon.” –Miriam Goodman, Professor of Molecular and Cellular Physiology 22 “When I was seven, my dad took me out in the backyard with a yellow kitchen stepstool, a few jars and tubes: we put a jar full of water on each step and he taught me how to make a siphon.
    [Show full text]
  • Genomic Study of Plasmodium Falciparum Gene Regulation and S of Drug Action and Resistance
    Genomic study of Plasmodium falciparum gene regulation and s of drug action and resistance by Jennifer Leigh Shock DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY m BIOCHEMISTRY in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Copyright (2008) Jennifer Shock ii Acknowledgements I would like to acknowledge my advisor, Dr. Joseph DeRisi for his guidance, encouragement and enthusiasm during my graduate work. His support and interest in my future plans is also greatly appreciated. I would also like to acknowledge the people who participated in the work done throughout this dissertation. Kael Fischer is not only extremely knowledgeable, but also a patient teacher, and helped me through all of the data analysis in Chapter 2. Erica Dahl did many of the preliminary and follow up experiments for Chapter 3, and stayed positive even when our paper had been rejected. I would definitely like to thank the DeRisi lab for their support through all of the good and bad times of graduate school. I would especially like to thank Manuel Llinás, Z.B. Bozdech and Edith Wong for all their friendship and guidance when I first joined the lab. I would also like to thank Charlie Kim, Polly Fordyce and Matt Miller for their friendship and guidance as I’m leaving. Lastly, I would like to thank my friends and family for helping me through six years of grad school. My parents have been supportive through the whole process and have never pestered me about when I will be done. My sister Terry has been there every step of the way, and knows exactly what it is like to be a grad student at UCSF.
    [Show full text]