A Field Guide to Computational Biology

Total Page:16

File Type:pdf, Size:1020Kb

A Field Guide to Computational Biology NATURALISM IN THE COMPUTER AGE A Field Guide to Computational Biology HARLES DARWIN WOULD The Computational Biology and Bio- vast amount of information that holds never have predicted that informatics Discussion Group, one of a the very secrets of humanity. Bioinfor- his disciplinary decendents – diverse set of groups that participates in maticists – who specialize in the mathe- C biologists driven by a passion the Academy’s Frontiers of Science pro- matical analysis of large data sets – are for exploration and observation of the gram, never fails to intrigue its members, working feverishly to mine this data to natural world – would do their most pro- not least because of its unpredictability. discover the inestimable gems it holds. ductive work in an office. But a rapidly The questions computational biologists Although we have collected the infor- growing army of modern day naturalists seek to answer are as broad as the prob- mation we need to understand life, it is focuses on understanding the complex lems that constitute all of biology. The encoded in layers of complexity – a tri- details of the biological world through common link is not the nature of the umvirate of sequences (DNA, RNA, and an exploration instrument highly diver- questions, but the approach to answering protein) stores the instructions for the gent from Darwin’s Beagle – the desktop them. Still, a handful of problems have molecules that regulate life processes. computer. Computers have revolutionized the way we meet, carry out business, tell jokes, The questions computational biologists seek to answer are share photographs, and pay our bills. It is no surprise that they have also radically as broad as the problems that constitute all of biology. changed the landscape of scientific The common link is not the nature of the questions, but the research. Though not all experimentalists have packed up their benches to make approach to answering them. room for rows of processors, a consider- able number of scientists are relying on computers as research equipment. Burk- emerged as the centerpieces of computa- One method of mining this information hard Rost, a bioinformaticist at Colum- tional biology and it is worth noting that is to create sequence libraries – raw DNA bia University, predicts that compu- each deals with a complex system and an from cancerous tumors, RNA coding tational tools are so powerful that “no enormous amount of data. For a brief regions, amino acid recipes for proteins – experimental lab will live without [them] tour of the state-of-the-science and a small and enlisting computers to chug through by the end of this decade.” taste of the past year’s talks, keep reading. the vast amounts of data they hold to The overarching field encompassing find patterns, repetitions, or other inter- the application of computers to answer MINING THE TINIEST GEMS esting anomalies. biological problems has been dubbed When asked to name the key advantages Put simply, sequence libraries are computational biology, although, as with of using computational approaches to enormous databases filled with the codes all emerging disciplines, there is consid- answer biological questions, Cold Spring that underlie nature. Researchers who erable murkiness surrounding the label. Harbor Laboratory molecular biologist employ brute force approaches to crack You would be hard pressed to find a 21st Michael Zhang does not hesitate: “Speed, them will likely fall short of a break- century scientific laboratory that does economy, and necessity.” Such an incisive through. Analyzing this vast data requires not rely heavily on computers. But response resonates with researchers work- creative, intelligent analysis, and, more searching PubMed online for the latest ing on one of today’s biggest biological often than not, the development of clever research paper or running a microscope problems: understanding human health mathematical algorithms. Laxmi Parida, from a desktop machine does not a com- and treating disease. The past few years of the IBM T.J. Watson Research Center, putational biologist make. Computa- have brought great leaps forward in this developed a sophisticated mathematical tional biology, along with its close endeavor. Most strikingly, the comple- technique for identifying important pat- relative, bioinformatics, is a science whose tion of the human genome project terns in protein sequences. “Once biology practitioners use computerized theoreti- (which itself relied on serious computa- went molecular it paved the way for cal models as their primary research tool. tional prowess) has brought scientists a computational approaches,” she noted, 18 Update November/December 2005 www.nyas.org alluding to the sequences of biological can lead to the design of therapeutic theoretical model of the electrostatic molecules that can easily be converted into drugs. Comments Tamar Schlick, an interactions in chromosomes can be digital strings of 1s and 0s for computers applied mathematician who directs the worked out with a pencil and paper: to read. Her statistical method seeks to computational biology doctoral pro- DNA’s phosphate backbone is negatively demystify the large data set of protein gram at New York University: “Modeling charged and the amino acid side groups sequences, which determines the ultimate and simulation allow us to experiment of histones (the nucleosome’s protein structures and functions of the molecules with situations that are unfeasible, too components) are positive. Everybody responsible for the diversity of life. expensive, or too dangerous to explore in knows that opposites attract, but try Life’s diversity is what inspires MIT’s the wet laboratory.” scaling up to take into account hundreds Christopher Burge, who uses messenger Molecular modeling is one of the cor- of thousands of atomic interactions and RNA libraries to understand the elusive nerstones of computational biology, evi- you will quickly run out of paper and rules of gene expression. To shed light on denced by the number of scientists who patience. Utilizing computing power to how a small set of genes is carefully regu- speak on this topic to the discussion get to the bottom of the nucleosome’s lated to achieve a wide range of purposes, group. Wilma Olson of Rutgers University architecture, Olson discovered that charge Burge’s lab set out to create a library of uses computational modeling to under- neutrality was not, as expected, the pre- exonic splicing silencers – short strings of stand the physical and chemical proper- vailing force dominating the deforma- RNA that turn off a particular gene. Such ties of the nucleosome, a deformed tion. In fact, the actual sequence of DNA a library provides scientists with a refer- region of the chromosomal scaffold. A seems to be encoded in order to best twist ence for understanding the vitally impor- tant RNA splicing code, which edits and translates DNA instructions into protein products. Powerful biological insight, like the peek of nature that Burge is priv- ileged to view, has propelled scores of mathematicians and computer scientists to move into the world of biology, creating ILLUSTRATION: FRED OTNES – IMAGES.COM ILLUSTRATION: an explosion in the field of bioinformat- ics in recent years. MODEL MOLECULE One of the classical rules of scientific research is that if you can replicate a phenomenon, then you truly understand it. Car mechanics well know that there is no better way to grasp the inner workings of an engine than to take one apart and then rebuild it. The most important machines in the world are proteins and nucleic acids, the molecules that direct life. Even though they are unimaginably small, they are orders of magnitude more intricate than any car engine. The size and complexity of objects worth under- standing in biology render most of them impossible to comprehend through experimental tools. This is where computers come in handy. With a few strokes on the key- board – after some sophisticated pro- gramming – computational biologists can create models of interesting systems and simulate their activity. A movie of a protein folding into its native state can provide an incredible degree of insight into the function of a real protein, which www.nyas.org November/December 2005 Update 19 quantum mechan- ested in fighting diseases like cancer. ics provides us with Ronald Dunbrack of the Fox Chase Cancer a set of laws that Center tries to predict the unknown can accurately pre- structures of proteins through a tech- dict the movement nique known as comparative modeling. of molecules in Dunbrack pilfers theoretical methods the natural world. from physics, computer science, mathe- Unfortunately, the matics, robotics, and quantum field the- math that describes ory, and cleverly applies them to better the interactions understand the molecular basis of cancer. between particles is so intensive that PLAYING BATTLESHIP it is not practical IN THE GENE AGE to simulate a bio- One of the unparalleled successes of logical system in computational biology has been the all its glorious development of the gene chip or detail, unless you microarray. Modeled on a silicon chip, have several life- this marvelous device separates individ- times to spare. ual genes or gene regions into the thou- Assumptions must sands of spots on a tiny grid that looks Molecular modeling provides a view of molecules that are too tiny to see, even be made, and something like a Battleship gameboard. with a microscope. This protein-DNA complex (DNA polymerase beta with primer/ determining what As researchers deposit DNA or RNA onto template DNA) was simulated by Tamar Schlick’s computational biology group at NYU (by Ravi Radhakrishnan and Karunesh Arora) to understand at the atomic level approximations the chip, components line up specifically the mechanisms that regulate fidelity, or the faithful duplication and repair of DNA. are appropriate for at the holes where similar DNA or RNA answering a specif- is located. This enables scientists to assess ic question about a all the genome’s DNA or all the RNA into the stable nucleosome structure.
Recommended publications
  • Simon W.-L Chan Full CV
    Simon W.-L. Chan University of California, Davis Department of Plant Biology 1 Shields Ave. Davis, CA 95616 (530) 754 9652 [email protected] Education and Research Experience July 2006- University of California, Davis, Davis, CA Assistant Professor 2002-2006 University of California, Los Angeles, Los Angeles, CA Postdoctoral fellowship Advisor: Dr. Steven E. Jacobsen 1996-2002 University of California, San Francisco, San Francisco, CA Ph.D. in Cell Biology. Advisor: Dr. Elizabeth H. Blackburn 1992-1995 University of Auckland, Auckland, New Zealand Bachelor of Science (with Honours) in Biochemistry. Advisor: Dr. Nigel P. Birch Awards 2010 Basil O’Connor Starter Scholar Award, March of Dimes 2006 American Society of Plant Biologists Early Career Award 2004 UCLA Boyer-Parvin Postdoctoral Award 2003-2006 Life Sciences Research Foundation Postdoctoral Fellowship (sponsored by the U.S. Department of Energy, Energy BioSciences division) 1997-2002 Howard Hughes Medical Institute Predoctoral Fellowship Advanced Coursework 2008 National Academies Education Fellow in the Life Sciences (attended The National Academies Summer Institute on Undergraduate Education in Biology). 2003 QB3 Microarray Course at UC Santa Cruz (taught by Dr. Joseph Derisi and colleagues). Publications Marimuthu, M.P.A.*, Jolivet, S.*, Ravi, M.*, Pereira, L., Davda, J.N., Cromer, L., Wang, L., Nogué, F., Chan, S.W.L.#, Siddiqi, I.# & Mercier, R.# Synthetic clonal reproduction through seeds Science in press * co-first authors, # corresponding authors Greenberg, M.V.C., Ausin, I., Chan, S.W.L, Cokus, S.J., Cuperus, J.T., Feng, S., Law, J.A., Chu, C., Pellegrini, M., Carrington, J.C. and Jacobsen, S.E. Identification of genes required for de novo DNA methylation in Arabidopsis Epigenetics 6, 344-354 (2011) Chan, S.W.L.
    [Show full text]
  • Alex Greninger [email protected] 415-439-3448 Nominator Information
    Nominee Information: Alex Greninger [email protected] 415-439-3448 Nominator Information: Keith Jerome [email protected] (206) 667-6793 Award: Young Investigator Award Statement of Recommendation January 5, 2017 To the selection committee: It gives me great pleasure to nominate Dr. Alex Greninger, a resident physician at the University of Washington, for an ASM/PASCV Young Investigator Award. Alex is an exceptional young scientist, and committed to a career in diagnostic virology. I hope I am able to convey the reasons behind my enthusiastic endorsement. Alex joined our laboratory 18 months ago, coming to us out of an MD/PhD program at UCSF, where he had worked with Drs. Joe DeRisi and Charles Chiu. Alex was remarkably productive during his graduate training, publishing approximately 40(!) papers in the peer-reviewed literature. His main focus was the use of unbiased technologies such as next-generation sequencing and mass spectrometry with an emphasis on viral illnesses. His first first-author paper detailed the discovery of salivirus, a new picornavirus that is associated with up to 4% of pediatric diarrhea. He then went on to perform an affinity purification mass-spectrometry screen of all culturable picornaviruses to find novel host protein interactors. This work culminated in the discovery of a new host protein ACBD3 that acts as a hub for PI4KB recruitment by a wide-array picornavirus 3A proteins, including the enteroviruses and rhinoviruses. Four years later, the crystal structures of these complexes are just being completed and forming the basis for the development of broadly-active 3A inhibitors against enteroviruses and other picornaviruses, similar to the NS5A inhibitors for hepatitis C virus.
    [Show full text]
  • 2019 Annual Report
    BECKMAN CENTER 279 Campus Drive West Stanford, CA 94305 650.723.8423 Stanford University | Beckman Center 2019 Annual Report Annual 2019 | Beckman Center University Stanford beckman.stanford.edu 2019 ANNUAL REPORT ARNOLD AND MABEL BECKMAN CENTER FOR MOLECULAR AND GENETIC MEDICINE 30 Years of Innovation, Discovery, and Leadership in the Life Sciences CREDITS: Cover Design: Neil Murphy, Ghostdog Design Graphic Design: Jack Lem, AlphaGraphics Mountain View Photography: Justin Lewis Beckman Center Director Photo: Christine Baker, Lotus Pod Designs MESSAGE FROM THE DIRECTOR Dear Friends and Trustees, It has been 30 years since the Beckman Center for Molecular and Genetic Medicine at Stanford University School of Medicine opened its doors in 1989. The number of translational scientific discoveries and technological innovations derived from the center’s research labs over the course of the past three decades has been remarkable. Equally remarkable have been the number of scientific awards and honors, including Nobel prizes, received by Beckman faculty and the number of young scientists mentored by Beckman faculty who have gone on to prominent positions in academia, bio-technology and related fields. This year we include several featured articles on these accomplishments. In the field of translational medicine, these discoveries range from the causes of skin, bladder and other cancers, to the identification of human stem cells, from the design of new antifungals and antibiotics to the molecular underpinnings of autism, and from opioids for pain
    [Show full text]
  • Viral Outbreak: the Science of Emerging Disease Lecture 4 – Solving SARS and Other Viral Mysteries Joe Derisi, Ph.D
    Viral Outbreak: The Science of Emerging Disease Lecture 4 – Solving SARS and other Viral Mysteries Joe Derisi, Ph.D. 1. Begin of Lecture 4 (0:16) [ANNOUNCER:] From the Howard Hughes Medical Institute. The 2010 Holiday Lectures on Science. This year's lectures, "Viral Outbreak: The Science of Emerging Disease", will be given by Dr. Joseph DeRisi, Howard Hughes Medical Institute investigator at the University of California, San Francisco, and by Dr. Eva Harris, Professor of Infectious Diseases at the University of California, Berkeley. The fourth lecture is titled Solving SARS and Other Viral Mysteries. And now to introduce our program, the President of the Howard Hughes Medical Institute, Dr. Robert Tjian 2. Welcome by HHMI President Dr. Robert Tjian (01:07) [DR. TJIAN:] Welcome back to this final presentation of this year's Holiday Lectures on Science. It's a great pleasure once again to introduce Joe DeRisi to give our fourth and last lecture in the series. Previously, Joe told us about how using bioengineering, computers, and molecular biology, he has been able to combine these tools for a potent approach to hunt for new viruses. In this lecture, Joe is going to show you how he can use his Virochip in real-time and in real life situations to discover and quickly diagnosis new viral outbreaks. Joe will also, I think, give us a glimpse of what the future in biotechnology holds towards the end of his talk. And now a brief video about Joe. 3. Profile of Dr. Joseph DeRisi (02:07) [DR. DERISI:] Science as we know it now is a highly interdisciplinary endeavor.
    [Show full text]
  • A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium Falciparum Fails to Mount Protective Responses to Lethal Antifolates
    A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium falciparum Fails to Mount Protective Responses to Lethal Antifolates Karthikeyan Ganesan1.¤, Napawan Ponmee1,2,3., Lei Jiang1, Joseph W. Fowble1, John White1, Sumalee Kamchonwongpaisan3, Yongyuth Yuthavong3, Prapon Wilairat2, Pradipsinh K. Rathod1* 1 Department of Chemistry and Global Health, University of Washington, Seattle, Washington, United States of America, 2 Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand, 3 National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand Abstract Genome sequences of Plasmodium falciparum allow for global analysis of drug responses to antimalarial agents. It was of interest to learn how DNA microarrays may be used to study drug action in malaria parasites. In one large, tightly controlled study involving 123 microarray hybridizations between cDNA from isogenic drug-sensitive and drug-resistant parasites, a lethal antifolate (WR99210) failed to over-produce RNA for the genetically proven principal target, dihydrofolate reductase- thymidylate synthase (DHFR-TS). This transcriptional rigidity carried over to metabolically related RNA encoding folate and pyrimidine biosynthesis, as well as to the rest of the parasite genome. No genes were reproducibly up-regulated by more than 2-fold until 24 h after initial drug exposure, even though clonal viability decreased by 50% within 6 h. We predicted and showed that while the parasites do not mount protective transcriptional responses to antifolates in real time, P. falciparum cells transfected with human DHFR gene, and adapted to long-term WR99210 exposure, adjusted the hard-wired transcriptome itself to thrive in the presence of the drug.
    [Show full text]
  • Croi 2021 Program Committee
    General Information CONTENTS WELCOME . 2 General Information General Information OVERVIEW . 2 CONTINUING MEDICAL EDUCATION . 3 CONFERENCE SUPPORT . 4 VIRTUAL PLATFORM . 5 ON-DEMAND CONTENT AND WEBCASTS . 5 CONFERENCE SCHEDULE AT A GLANCE . 6 PRECONFERENCE SESSIONS . 9 LIVE PLENARY, ORAL, AND INTERACTIVE SESSIONS, AND ON-DEMAND SYMPOSIA BY DAY . 11 SCIENCE SPOTLIGHTS™ . 47 SCIENCE SPOTLIGHT™ SESSIONS BY CATEGORY . 109 CROI FOUNDATION . 112 IAS–USA . 112 CROI 2021 PROGRAM COMMITTEE . 113 Scientific Program Committee . 113 Community Liaison Subcommittee . 113 Former Members . 113 EXTERNAL REVIEWERS . .114 SCHOLARSHIP AWARDEES . 114 AFFILIATED OR PROXIMATE ACTIVITIES . 114 EMBARGO POLICIES AND SOCIAL MEDIA . 115 CONFERENCE ETIQUETTE . 115 ABSTRACT PROCESS Scientific Categories . 116 Abstract Content . 117 Presenter Responsibilities . 117 Abstract Review Process . 117 Statistics for Abstracts . 117 Abstracts Related to SARS-CoV-2 and Special Study Populations . 117. INDEX OF SPECIAL STUDY POPULATIONS . 118 INDEX OF PRESENTING AUTHORS . .122 . Version 9 .0 | Last Update on March 8, 2021 Printed in the United States of America . © Copyright 2021 CROI Foundation/IAS–USA . All rights reserved . ISBN #978-1-7320053-4-1 vCROI 2021 1 General Information WELCOME TO vCROI 2021 Welcome to vCROI 2021! The COVID-19 pandemic has changed the world for all of us in so many ways . Over the past year, we have had to put some of our HIV research on hold, learned to do our research in different ways using different tools, to communicate with each other in virtual formats, and to apply the many lessons in HIV research, care, and community advocacy to addressing the COVID-19 pandemic . Scientists and community stakeholders who have long been engaged in the endeavor to end the epidemic of HIV have pivoted to support and inform the unprecedented progress made in battle against SARS-CoV-2 .
    [Show full text]
  • Respiratory Illness in Nicaragua Isolated from a Case of Acute Pediatric Interspecies Recombinant Enterovirus Human Enterovirus
    Human Enterovirus 109: a Novel Interspecies Recombinant Enterovirus Isolated from a Case of Acute Pediatric Respiratory Illness in Nicaragua Nathan L. Yozwiak, Peter Skewes-Cox, Aubree Gordon, Saira Saborio, Guillermina Kuan, Angel Balmaseda, Don Ganem, Eva Harris and Joseph L. DeRisi J. Virol. 2010, 84(18):9047. DOI: 10.1128/JVI.00698-10. Downloaded from Published Ahead of Print 30 June 2010. Updated information and services can be found at: http://jvi.asm.org/content/84/18/9047 http://jvi.asm.org/ These include: REFERENCES This article cites 49 articles, 27 of which can be accessed free at: http://jvi.asm.org/content/84/18/9047#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on August 6, 2014 by UCSF Library & CKM Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ JOURNAL OF VIROLOGY, Sept. 2010, p. 9047–9058 Vol. 84, No. 18 0022-538X/10/$12.00 doi:10.1128/JVI.00698-10 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Human Enterovirus 109: a Novel Interspecies Recombinant Enterovirus Isolated from a Case of Acute Pediatric Respiratory Illness in Nicaraguaᰔ† Nathan L. Yozwiak,1 Peter Skewes-Cox,2 Aubree Gordon,1,6 Saira Saborio,7 Guillermina Kuan,8 Angel Balmaseda,7 Don Ganem,3,5 Eva Harris,1 and Joseph L. DeRisi3,4,5* Division of Infectious Diseases and Vaccinology, School of Public Health, University of California,
    [Show full text]
  • PARRA Spring Luncheon Tuesday, April 11 President's Message
    President’s and Regents’ Retiree Association Spring 2017 Published for Retirees of the Office of the President and Office of The Regents, University of California President’s Message PARRA Spring Luncheon Welcome to our “Spring” newsletter and congratula- tions to new retirees. Yep, I realize if we meet the Tuesday, April 11 schedule we’ve laid out that you’ll be receiving this Please join us at the PARRA Spring newsletter before the start of Spring. luncheon at Hs. Lordship’s Restau- The last newsletter noted that the Council of UC rant in Berkeley. The speaker will Retiree Associations (CUCRA) was conducting a be UCSF Professor Joseph DeRisi. survey of all UC retirees. The results of that survey Dr. DeRisi will explore the applica- are not yet distributed but I do know the percent- tion of genomics, the study of the age of PARRA retirees who participated was one of complete set of the highest across the State. I will be sure to share DNA within a cell, the results as soon as they are available. In the to biomedical meantime, not to overwhelm you with surveys, but research, using PARRA is also conducting a survey. The PARRA survey a series of case is complementary to the CUCRA survey, so you won’t examples from be asked to respond to the same questions as in the his own lab to CUCRA survey. I encourage your participation in what illustrate both I believe may be only the second PARRA survey since the promise and its inception. When you take the survey you will see pitfalls of precision that the PARRA Executive Committee is trying to medicine.
    [Show full text]
  • Scientists Invent New Way to Disarm Malaria Parasite 30 August 2011
    Scientists invent new way to disarm malaria parasite 30 August 2011 A novel technique to "tame" the malaria parasite, Plasmodium are injected into the bloodstream. The by forcing it to depend on an external supply of a resulting infection causes some 1 million deaths vital chemical, has been developed by researchers annually, largely among children under the age of at the Stanford University School of Medicine and 5. the University of California-San Francisco. The scientists have, in effect, created a domesticated At present, no effective malaria vaccines exist. strain of Plasmodium - the one-celled parasite that What's more, Plasmodium strains usually develop causes malaria - that would no longer cause this resistance to drugs that have been approved to dreaded disease. combat the disease. The World Health Organization, for instance, currently recommends Their findings not only make it possible to grow artemesinin in combination with other, older anti- large volumes of this modified parasite, but also malarials for combating Plasmodium falciparum, reveal how the parasite's very survival turns on the the deadliest and most widespread form of the production of one chemical - isopentenyl malaria parasite. But while that drug is still believed pyrophosphate, or IPP. These developments could to be effective, reports of resistance are starting to help to speed up drug development and provide emerge, said Yeh. the basis for the first effective vaccine against malaria. "If resistance becomes widespread, we're in big trouble, because there's little else in the pipeline The study, which will be published online Aug. 30 that's not based on artemesinin," Yeh said.
    [Show full text]
  • Download the PDF to Read the Full Article
    Beckman Women Scientists 21 Women Scientists of the Beckman Center BY ANNA AZVOLINSKY “Science was an evolution of curiosity for me. My father was a chemist and in grade school, I spent time on the weekends in his lab, watching dry ice skate on water. In high school, I got into writing code with my friends. My high school was in Bethesda, Maryland, and a lab investigator came to our high school and asked if anyone likes to write code because he wanted students to come to his biophysics lab and write code for his research. My friend and I put our hands up to volunteer and after school, and in the summer, we worked in his lab. The lab needed a computer program to automatically analyze their data from a spectroscopy instrument. Today, the instrument would come with its own software, but that was not the case back then. The scientist gave us a scientific paper on how to implement a Fourier transformation and we had no idea what that meant, but we said, ‘Ok, let’s figure this out.’ I loved solving puzzles and through that experience became fascinated by biology. The friend, Felasfa Wodajo, as it turns out, also came to Stanford. He worked as a computer programmer in Bill Newsome’s laboratory before going to medical school and is now a musculosketal tumor surgeon.” –Miriam Goodman, Professor of Molecular and Cellular Physiology 22 “When I was seven, my dad took me out in the backyard with a yellow kitchen stepstool, a few jars and tubes: we put a jar full of water on each step and he taught me how to make a siphon.
    [Show full text]
  • Genomic Study of Plasmodium Falciparum Gene Regulation and S of Drug Action and Resistance
    Genomic study of Plasmodium falciparum gene regulation and s of drug action and resistance by Jennifer Leigh Shock DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY m BIOCHEMISTRY in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO Copyright (2008) Jennifer Shock ii Acknowledgements I would like to acknowledge my advisor, Dr. Joseph DeRisi for his guidance, encouragement and enthusiasm during my graduate work. His support and interest in my future plans is also greatly appreciated. I would also like to acknowledge the people who participated in the work done throughout this dissertation. Kael Fischer is not only extremely knowledgeable, but also a patient teacher, and helped me through all of the data analysis in Chapter 2. Erica Dahl did many of the preliminary and follow up experiments for Chapter 3, and stayed positive even when our paper had been rejected. I would definitely like to thank the DeRisi lab for their support through all of the good and bad times of graduate school. I would especially like to thank Manuel Llinás, Z.B. Bozdech and Edith Wong for all their friendship and guidance when I first joined the lab. I would also like to thank Charlie Kim, Polly Fordyce and Matt Miller for their friendship and guidance as I’m leaving. Lastly, I would like to thank my friends and family for helping me through six years of grad school. My parents have been supportive through the whole process and have never pestered me about when I will be done. My sister Terry has been there every step of the way, and knows exactly what it is like to be a grad student at UCSF.
    [Show full text]
  • Program for Breakthrough Biomedical Research 15Th Anniversary Celebration
    Program for Breakthrough Biomedical Research 15th Anniversary Celebration IN MEMORY OF MARION O. SANDLER Unconventional Wisdom: Advancing scientific discovery by breaking the rules MAY 23, 2013 Today, no other program in the world supports scientists like the Program for Breakthrough Biomedical Research (PBBR). A beacon for the most courageous among UC San Francisco investigators, PBBR uses private philanthropy to fund only those ideas that challenge conventional wisdom and could never qualify for funding from increasingly conservative grant sources like the National Institutes of Health. This unique program dares our scientists to dig deeper, ask tougher questions, and invent novel approaches that defy the A sustained and solid attack is needed for opening up new types of status quo. Please join us in research. Support from the Program for Breakthrough Biomedical Research gives interdisciplinary work a critically important jump start, celebrating the scientists and allowing new directions for collaborative groups not generally funded by federal research funds. I am profoundly grateful to the Sandler family, supporters who have made and to UCSF’s entire community of philanthropists, who make this PBBR’s success possible. visionary program possible. Elizabeth Blackburn, PhD UCSF professor of biochemistry and biophysics Nobel Prize in Physiology or Medicine, 2009 EVENT PROGRAM OPENING REMARKS VIDEO TRIBUTE IN MEMORY OF Keith Yamamoto, PhD MARION O. SANDLER Director, Program for Breakthrough Biomedical Research PBBR FOUNDING PHILANTHROPIC
    [Show full text]