Perspective: White Space Networking with Wi-Fi Like Connectivity
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Building Blocks for Tomorrow's Mobile App Store
Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Abstract (0984) Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Copyright c 2012 by Justin G. Manweiler All rights reserved Abstract In our homes and in the enterprise, in our leisure and in our professions, mobile computing is no longer merely “exciting;” it is becoming an essential, ubiquitous tool of the modern world. New and innovative mobile applications continue to inform, entertain, and surprise users. But, to make the daily use of mobile technologies more gratifying and worthwhile, we must move forward with new levels of sophistication. The Mobile App Stores of the future must be built on stronger foundations. This dissertation considers a broad view of the challenges and intuitions behind a diverse selection of such new primitives. Some of these primitives will mitigate exist- ing and fundamental challenges of mobile computing, especially relating to wireless communication. Others will take an application-driven approach, being designed to serve a novel purpose, and be adapted to the unique and varied challenges from their disparate domains. -
Annual Report
ANNUAL REPORT 2019FISCAL YEAR ACM, the Association for Computing Machinery, is an international scientific and educational organization dedicated to advancing the arts, sciences, and applications of information technology. Letter from the President It’s been quite an eventful year and challenges posed by evolving technology. for ACM. While this annual Education has always been at the foundation of exercise allows us a moment ACM, as reflected in two recent curriculum efforts. First, “ACM’s mission to celebrate some of the many the ACM Task Force on Data Science issued “Comput- hinges on successes and achievements ing Competencies for Undergraduate Data Science Cur- creating a the Association has realized ricula.” The guidelines lay out the computing-specific over the past year, it is also an competencies that should be included when other community that opportunity to focus on new academic departments offer programs in data science encompasses and innovative ways to ensure at the undergraduate level. Second, building on the all who work in ACM remains a vibrant global success of our recent guidelines for 4-year cybersecu- the computing resource for the computing community. rity curricula, the ACM Committee for Computing Edu- ACM’s mission hinges on creating a community cation in Community Colleges created a related cur- and technology that encompasses all who work in the computing and riculum targeted at two-year programs, “Cybersecurity arena” technology arena. This year, ACM established a new Di- Curricular Guidance for Associate-Degree Programs.” versity and Inclusion Council to identify ways to create The following pages offer a sampling of the many environments that are welcoming to new perspectives ACM events and accomplishments that occurred over and will attract an even broader membership from the past fiscal year, none of which would have been around the world. -
Guidelines on the Use of Television White Spaces, 2019
DRAFT GUIDELINES ON THE USE OF TELEVISION WHITE SPACES, 2019 ARRANGEMENT OF GUIDELINES 1. Objectives. 2. Permissible Frequencies of Operation. 3. Authorization Framework for TVWS Operations 4. TVWS Devices - Conducted Power and Conducted Spectral Power Density Limits. 5. TVWS Devices - Antenna Requirements and Height Limits. 6. TVWS Devices - Radiated Power and In-Block EIRP Spectral Density Limits. 7. TVWS Devices - Out-of-Block EIRP Spectral Density Limits. 8. Interference Avoidance Mechanisms. 9. TV Whitespace Database. 10. TV Whitespace Database Administrator. 11. Temporary procedure to authorize operation of operators prior to certification of the TVWS database 12. TVWS Devices Information Display Requirements. 13. Limits on TVWS Operations near International Borders. 14. Definitions. 1 GUIDELINES ON THE USE OF TELEVISION WHITE SPACES In exercise of the powers conferred upon it by sections 70 and 123 (1) of the Nigerian Communications Act, 2003 (in these Guidelines referred to as “the Act”), and of all other powers enabling it in that behalf, the NIGERIAN COMMUNICATIONS COMMISSION (herein referred to as the “Commission”) hereby make the following Guidelines (A) These guidelines provide a framework to enable license-exempt transmitters to operate in the UHF band, which are allocated on a primary basis to the broadcast television service, on frequencies and at locations where the spectrum is either not assigned to licensed services or not in use at particular times, while protecting primary users from receiving harmful interference. (B) These license-exempt radio transmitters will allow for the provision of affordable broadband and Internet access in unserved and underserved areas within Nigeria, and support the development of Internet of Things applications, including agriculture. -
TV White Space for Internet Access in the Developing World Tawachi Nyasulu1, Dani Anderson1, David H
TV White Space for Internet Access in the Developing World Tawachi Nyasulu1, Dani Anderson1, David H. Crawford1, Robert W. Stewart1, Malcolm Brew2 1 Centre for White Space Communications, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow. 2 Mawingu Networks, Kenya. [email protected] Abstract In 2013, the University of Strathclyde began working with Microsoft’s 4Afrika programme to create a data communications network in Kenya, providing connectivity and Internet access to a number of rural locations, including schools and health clinics in remote villages. This project has led to the development of Mawingu Networks, a fully licensed internet service provider using “White Space” radio frequencies to enable low cost internet access via renewable powered base stations. Since going live in 2016, the network now has more than 27,000 unique users across a wide geographical area. Despite the fact that universal Internet access is part of the UN’s sustainable development goals, and has been shown to spur social and economic development, a large percentage of people in developing countries do not yet have access. This is often due to a lack of infrastructure, large distances and dispersed populations. This poster presents an overview of TV White Space technologies, with emphasis on our 4Afrika collaboration with Microsoft and Mawingu Networks. In addition, an insight into some recent developments in other African countries (Malawi, Zambia, and Ghana) is presented. What is TV White Space? TVWS Network Architecture Evolution Wireless communication is transmitted using radio spectrum. ‘White Spaces’ are TVWS standards and regulations have transformed the TVWS network architecture. -
Tv White Spaces: Managing Spaces Or Better Managing Inefficiencies
TV WHITE SPACES: MANAGING SPACES OR BETTER MANAGING INEFFICIENCIES Cristian Gomez Radiocommunication Bureau International Telecommunication∗ Union 7 [email protected] is paper reviews relevant regulatory aspects concerning the oper- . e text of this article is based ational implementation of Television White Space (TVWS) devices in on the ITU discussion paper of the some parts of the spectrum allocated to TV broadcasting. e term TV same title, presented at the Global Symposium for Regulators , White Spaces usually refers to unoccupied portions of spectrum in the Warsaw, Poland. e full text of VHF/UHF terrestrial television frequency bands in some geographical the discussion paper is available at: areas. Trials and tests are currently underway in several countries and http://www.itu.int/en/ITU-D/ some commercial applications are emerging, looking at improving the Conferences/GSR/Documents/ utilization of the highly valued UHF spectrum resource through sharing GSR_paper_WhiteSpaces_ Gomez.pdf its use with the primary terrestrial television service. Wireless broad- band applications are the main focus of trials, nonetheless, the usefulness of this highly sought-aer spectrum is also being considered for other applications, such as machine-to-machine communications (MM). e low-power nature of all these alternative wireless applications is being proposed as appropriate for operation under a license-exempt . License-exempt framework regulatory framework, in compliance with technical and operational refers to devices operating on a specications. non-interference/non-protection basis in compliance with technical As the title of this paper suggests, there are dierent approaches and specication and/or band rules considerations currently being reviewed for TV white spaces. -
Optimizing City-Wide White-Fi Networks in TV White Spaces
1 Optimizing City-Wide White-Fi Networks in TV White Spaces Sneihil Gopal∗, Sanjit K. Kaul∗ and Sumit Royy ∗Wireless Systems Lab, IIIT-Delhi, India,yUniversity of Washington, Seattle, WA fsneihilg, [email protected], [email protected] F Abstract—White-Fi refers to WiFi deployed in the TV white spaces. Unlike its ISM band counterparts, White-Fi must obey requirements (28) (27) TVTX1 that protect TV reception. As a result, optimization of citywide White- TVRX2 Fi networks faces the challenges of heterogeneous channel availability (28) TVRX1 and link quality, over location. The former is because, at any location, (27) White-Fi Network TV channels in use by TV networks are not available for use by White-Fi. TX2 The latter is because the link quality achievable at a White-Fi receiver is determined by not only its link gain to its transmitter but also by its link gains to TV transmitters and its transmitter’s link gains to TV receivers. In this work, we model the medium access control (MAC) throughput of a White-Fi network. We propose heuristic algorithms to optimize the throughput, given the described heterogeneity. The algorithms assign (27) TVRX power, access probability, and channels to nodes in the network, under 1 the constraint that reception at TV receivers is not compromised. We (27) TVTX evaluate the efficacy of our approach over example city-wide White-Fi 1 networks deployed over Denver and Columbus (respectively, low and high channel availability) in the USA, and compare with assignments cognizant of heterogeneity to a lesser degree, for example, akin to FCC Fig. -
Victor Bahl Microsoft Corporation
Victor Bahl Microsoft Corporation SIGCOMM MobiArch 2007, August 2007 Source: Victoria Poncini, MS IT ~7, 000 Access Points ~65,000 XP & Vista Clients December 2006 ~40,000 connections/day ~35,000 handheld devices 100% 80% 39,6% 37,3% 42,2% 45,8% 47,1% 60% 40% 39,8% 39,7% 34,2% 44,2% 35,3% 20% 18,1% 20,1% 16,2% 17,6% 22,9% 0% Worldwide Americas w/o PS Puget Sound EMEA APJ Very SfSatisfied SSfSomewhat Satisfied SfSomewhat Dissatisfied or Very Dissati fied 2 Victor Bahl Microsoft’s IT Dept. logs several hundred complaints / month 70% calls are about client connectivity issues (e. g. ping-ponging between APs) 30% (and growing) are about performance problems due to interference End-users complain about Lack of RF coverage, performance & reliability Connectivity & authentication problems Network administrators worry about Providing adequate coverage, performance Security and unauthorized access Corporations spend lots of $$ on WLAN infrastructure WLAN hardware business to reach $2.6 billion in 2007. (Forester 2006) Heavy VC funding in this area (e.g. AirTight $36M in the last 16 months) 3 Victor Bahl 4 Victor Bahl FY05 Cost Element View Functional View Breakdown People 72% Applications 60% Data & Voice 16% App Development (29%) App Support (31%) Hardware 5% Facilities 5% Infrastructure 40% Software* 2% Network (14%) * 5% If MS software were included Data Center (7%) Employee Services (5%) Voice (5%) 30% Helpdesk (5%) New Increases Security (3%) Capability value 45% New 70% Capability Sustaining & Running Decreases Existing maintenance 55% Capability delivery Existing Capability 5 Victor Bahl Timeline HotNets’05 , MobiSys’ 06, NSDI ‘07 ACM CCR ’ 06 MobiCom’ 04 MobiSys’ 06 6 Victor Bahl Heterogeneous world Multiple technologies: 802. -
Conclusions from the Cambridge TV White Spaces Trial Contents
Cambridge White Spaces Consortium Recommendations for Implementing the Use of White Spaces: Conclusions from the Cambridge TV White Spaces Trial Contents Executive Summary: Key Findings and Recommendations 2 What are TV White Spaces? 6 Geolocation Databases: the Key to Securing Flexible, 8 Dynamic and Cost-effective Spectrum Access Economic and Policy Benefits from Use of White Spaces 9 The EU Digital Agenda 10 About the Cambridge Trial 11 Trial Test and Measurement Programme 14 2 Executive Summary: Key Findings and Recommendations There is a growing view that the traditional method of allocating spectrum can create scarcity. Emerging techniques potentially allow a more flexible use of spectrum than the traditional approach where spectrum is allocated across a region for a particular use, but not necessarily used intensively throughout that region. Traditional spectrum allocations pre-date the recent growth in demand for wireless broadband connectivity and a more flexible approach could help address this demand. The fixed nature of radio spectrum as a physical asset, coupled with the increasing demand for it, suggests that it is now appropriate to consider smart technology to facilitate sharing of the radio spectrum between different users and applications. A primary purpose of the Trial was to assist Ofcom, the UK regulator for media and telecommunications, in developing the In June 2011, 11 leading companies and regulatory framework which will facilitate Similar trials are also under way in Germany, organisations1 in the telecommunications, the use of TV white spaces and help to Finland, the USA and Singapore: thus, media and technology sectors worldwide achieve certain policy objectives, i.e., governments and regulatory authorities came together in a consortium to test improving spectrum efficiency and providing both internationally and throughout the the technical feasibility of using television universal broadband access. -
White Spaces in UHF Band: Catalonia Case Study and Impact of the Digital Dividend Albert Domingo, Boris Bellalta, Miquel Oliver
White Spaces in UHF Band: Catalonia Case Study and Impact of the Digital Dividend Albert Domingo, Boris Bellalta, Miquel Oliver To cite this version: Albert Domingo, Boris Bellalta, Miquel Oliver. White Spaces in UHF Band: Catalonia Case Study and Impact of the Digital Dividend. 18th European Conference on Information and Communications Technologies (EUNICE), Aug 2012, Budapest, Hungary. pp.33-40, 10.1007/978-3-642-32808-4_4. hal-01543168 HAL Id: hal-01543168 https://hal.inria.fr/hal-01543168 Submitted on 20 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License White Spaces in UHF band: Catalonia case study and impact of the Digital Dividend Albert Domingo, Boris Bellalta, and Miquel Oliver Universitat Pompeu Fabra de Barcelona C/ Tànger 122-140, 08018 Barcelona, Spain {albert.domingo,boris.bellalta,miquel.oliver}@upf.edu Abstract. White Spaces in the UHF bands are very interesting because of their potential use in rural communications, but their feasibility needs to be proven. This paper analyses the TV spectrum occupation in the region of Catalonia, Spain, because it will be one of the first EU regions where changes in the UHF band are going to be implemented. -
(Cloudlets/Edges) for Mobile Computing
emergence of micro datacenter (cloudlets/edges) for mobile computing Victor Bahl Wednesday, May 13, 2015 what if our computers could see? Microsoft’s’s HoloLens who? where? what? Video credits: Matthai Philipose Microsoft Research seeing is for real MSR’s Glimpse project vision is demanding recognition using deep neural networks face1 [1] scene [2] object2[3] memory (floats) 103M 76M 138M compute 1.00 GFLOPs 2.54 GFLOPs 30.9 GFLOPs accuracy 97% 51% 94% (top 5) 1: 4000 people; 2: 1000 objects from ImageNet, top 5: one of your top 5 matches human-level accuracy, heavy resource demands … offloading computation is highly desirable [1] Y. Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In CVPR 2014. (Facebook) [2] B. Zhou et al. Learning deep features for scene recognition using places database. In NIPS, 2014. [MIT, Princeton, ..] [3] K. Simonyan & A. Zisserman. Very deep convolutional networks for large-scale image recognition. 2014 [Google, Oxford] under review recognition: server versus mobile road sign recognition1 stage Mobile server Spedup (Samsung Galaxy Nexus) (i7, 3.6GHz, 4-core) (server:mobile) detection 2353 +/- 242.4 ms 110 +/- 32.1 ms ~15-16X feature extraction 1327.7 +/- 102.4 ms 69 +/- 15.2 ms ~18X recognition2 162.1 +/- 73.2 ms 11 +/- 1.6 ms ~14X Energy used 11.32 Joules 0.54 Joules ~21X 1convolution neural networks 2classifying 1000 objects with 4096 features using a linear SVM how long does it take to reach the cloud? 3g networks 4g-lte networks T-Mobile 450ms AT&T 350ms MobiSys 2010 -
Building Aggressively Duty-Cycled Platforms to Achieve Energy Efficiency
UNIVERSITY OF CALIFORNIA, SAN DIEGO Building Aggressively Duty-Cycled Platforms to Achieve Energy Efficiency A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science (Computer Engineering) by Yuvraj Agarwal Committee in charge: Rajesh Gupta, Chair Paramvir Bahl William Hodgkiss Stefan Savage Alex Snoeren Geoff Voelker 2009 Copyright Yuvraj Agarwal, 2009 All rights reserved. The dissertation of Yuvraj Agarwal is approved, and it is acceptable in quality and form for publication on mi- crofilm and electronically: Chair University of California, San Diego 2009 iii DEDICATION To Dadi, Shyam Babaji, Papa and Ma. iv TABLE OF CONTENTS Signature Page .................................. iii Dedication ..................................... iv Table of Contents ................................. v List of Figures .................................. ix List of Tables ................................... xi Acknowledgements ................................ xii Vita and Publications .............................. xv Abstract of the Dissertation ........................... xvi Chapter 1 Introduction ............................ 1 1.1 Reducing the Energy Consumption of Computing Devices 3 1.2 Using Collaboration to Aggressively Duty-Cycle Platforms 5 1.3 Contributions ........................ 7 1.4 Organization ......................... 8 Chapter 2 Background and Related Work .................. 9 2.1 Mobile Platforms ...................... 9 2.2 Power and Energy ...................... 12 2.2.1 Measuring Power and Energy Consumption .... 13 2.3 Related Work ........................ 14 2.3.1 Power Management in Mobile Devices ....... 14 2.3.2 Power Management in Laptops and Desktop PCs 17 Chapter 3 Radio Collaboration - Cellular and LAN Data Radios ..... 20 3.1 Overview of a VoIP Deployment .............. 23 3.2 Alternatives to VoIP over Wi-Fi Radios .......... 24 3.2.1 Cellular Data vs. Wi-Fi .............. 25 3.2.2 Smartphone Power Measurements ......... 28 3.3 Cell2Notify Architecture ................. -
Television White Spaces – Global Developments and Regulatory Issues in India
TELEVISION WHITE SPACES – GLOBAL DEVELOPMENTS AND REGULATORY ISSUES IN INDIA Submitted as part of the course Infrastructure Development and Financing of the Post Graduate Program in Management at the Indian Institute of Management, Ahmedabad Submitted to PROFESSOR REKHA JAIN By Arpit Maheshwari Ashwin Gopalakrishnan Harini A Nupur Mangla Pallavi Bhagavatula Richa Goyat Group 10 – IDF B IDFB Course Project Submission by G10 – Arpit | Ashwin | Harini | Nupur |Pallavi | Richa Page 1 Contents Executive Summary ................................................................................................................................. 4 List of Figures and Exhibits ...................................................................................................................... 6 1. Technology ...................................................................................................................................... 8 1.1 How does TVWS work? ................................................................................................................. 8 1.2 Advantages of TVWS ..................................................................................................................... 9 Long Range ...................................................................................................................................... 9 Better Speeds .................................................................................................................................. 9 In-Building Penetration ..................................................................................................................