Mobile Edge Computing Empowers Internet of Things
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Building Blocks for Tomorrow's Mobile App Store
Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Abstract (0984) Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Copyright c 2012 by Justin G. Manweiler All rights reserved Abstract In our homes and in the enterprise, in our leisure and in our professions, mobile computing is no longer merely “exciting;” it is becoming an essential, ubiquitous tool of the modern world. New and innovative mobile applications continue to inform, entertain, and surprise users. But, to make the daily use of mobile technologies more gratifying and worthwhile, we must move forward with new levels of sophistication. The Mobile App Stores of the future must be built on stronger foundations. This dissertation considers a broad view of the challenges and intuitions behind a diverse selection of such new primitives. Some of these primitives will mitigate exist- ing and fundamental challenges of mobile computing, especially relating to wireless communication. Others will take an application-driven approach, being designed to serve a novel purpose, and be adapted to the unique and varied challenges from their disparate domains. -
Mobile Edge Computing a Key Technology Towards 5G
ETSI White Paper No. 11 Mobile Edge Computing A key technology towards 5G First edition – September 2015 ISBN No. 979-10-92620-08-5 Authors: Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher and Valerie Young ETSI (European Telecommunications Standards Institute) 06921 Sophia Antipolis CEDEX, France Tel +33 4 92 94 42 00 [email protected] www.etsi.org About the authors Yun Chao Hu Contributor, Huawei, Vice Chair ETSI MEC ISG, Chair MEC IEG Working Group Milan Patel Contributor, Huawei Dario Sabella Contributor, Telecom Italia; Vice-Chair MEC IEG Working Group Nurit Sprecher Contributor, Nokia; Chair ETSI MEC ISG Valerie Young Contributor, Intel Mobile Edge Computing - a key technology towards 5G 2 Contents About the authors 2 Contents 3 Introduction 4 Market Drivers 5 Business Value 6 Mobile Edge Computing Service Scenarios 7 General 7 Augmented Reality 8 Intelligent Video Acceleration 9 Connected Cars 9 Internet of Things Gateway 11 Deployment Scenarios 11 ETSI Industry Specification Group on Mobile Edge Computing 12 Proofs of Concept 13 Conclusions 14 References 15 Mobile Edge Computing - a key technology towards 5G 3 Introduction Mobile Edge Computing (MEC) is a new technology which is currently being standardized in an ETSI Industry Specification Group (ISG) of the same name. Mobile Edge Computing provides an IT service environment and cloud-computing capabilities at the edge of the mobile network, within the Radio Access Network (RAN) and in close proximity to mobile subscribers. The aim is to reduce latency, ensure highly efficient network operation and service delivery, and offer an improved user experience. Mobile Edge Computing is a natural development in the evolution of mobile base stations and the convergence of IT and telecommunications networking. -
Annual Report
ANNUAL REPORT 2019FISCAL YEAR ACM, the Association for Computing Machinery, is an international scientific and educational organization dedicated to advancing the arts, sciences, and applications of information technology. Letter from the President It’s been quite an eventful year and challenges posed by evolving technology. for ACM. While this annual Education has always been at the foundation of exercise allows us a moment ACM, as reflected in two recent curriculum efforts. First, “ACM’s mission to celebrate some of the many the ACM Task Force on Data Science issued “Comput- hinges on successes and achievements ing Competencies for Undergraduate Data Science Cur- creating a the Association has realized ricula.” The guidelines lay out the computing-specific over the past year, it is also an competencies that should be included when other community that opportunity to focus on new academic departments offer programs in data science encompasses and innovative ways to ensure at the undergraduate level. Second, building on the all who work in ACM remains a vibrant global success of our recent guidelines for 4-year cybersecu- the computing resource for the computing community. rity curricula, the ACM Committee for Computing Edu- ACM’s mission hinges on creating a community cation in Community Colleges created a related cur- and technology that encompasses all who work in the computing and riculum targeted at two-year programs, “Cybersecurity arena” technology arena. This year, ACM established a new Di- Curricular Guidance for Associate-Degree Programs.” versity and Inclusion Council to identify ways to create The following pages offer a sampling of the many environments that are welcoming to new perspectives ACM events and accomplishments that occurred over and will attract an even broader membership from the past fiscal year, none of which would have been around the world. -
Mobile Edge Computing: Architecture, Use-Cases, Applications Craig Pritchard, Yousef Beheshti, Mohammad Sepahi
Mobile Edge Computing: Architecture, Use-cases, Applications Craig Pritchard, Yousef Beheshti, Mohammad Sepahi To cite this version: Craig Pritchard, Yousef Beheshti, Mohammad Sepahi. Mobile Edge Computing: Architecture, Use- cases, Applications. 2020. hal-02612631 HAL Id: hal-02612631 https://hal.archives-ouvertes.fr/hal-02612631 Preprint submitted on 19 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mobile Edge Computing: Architecture, Use-cases, Applications Craig Pritchard, Yousef Beheshti, Mohammad Sepahi Abstract| By enormous growth in IoT and smart devices and the ad- vent of many new applications, Internet traffic volume has been grow- ing exponentially. Analyzing such flooding traffic requires enormous compute and bandwidth and raises privacy concerns. Edge platforms can become the tool to ease the burden by bringing resources to the proximity of data. Therefore, new architectures, which bring network functions and contents to the network edge, are proposed, i.e., mobile edge computing and caching. In this survey, we make an exhaustive review on the literature research efforts on mobile edge networks. We give an overview of mobile edge networks, including definition, archi- tecture, and application and use-cases . We then survey the issues related to computing, caching, and communication techniques at the network edge with the focus on applications and use cases of mobile edge networks. -
5G and Edge Computing
Market Driven Strategic Advisory EMERGING AND DISRUPTIVE TECHNOLOGY ANALYSIS 5G and Edge Computing Impact on Business Models, Service Providers, Datacenters, Applications, Business Users and Consumers https://mindcommerce.com/ Copyright 2019 ©Mind Commerce +1 206-395-9205 Market Driven Strategic Advisory EMERGING AND DISRUPTIVE TECHNOLOGY ANALYSIS Highlights and Findings • 5G Influence on Bandwidth and Data Economics: 5G will “reinvent” connectivity as there will be a very credible alternative to cable and fiber for business customers. 5G will bring about fundamental structural economic changes, such as significantly lower broadband pricing as a whole, and also much greater flexibility for enterprise, industrial, and government market segments in terms of how they connect public to private networks. • 5G Needs Edge Computing: LTE is improved with edge computing, but 5G absolutely requires it. In fact, without mobile edge computing, 5G would need to rely upon back-haul to centralized cloud resource for storage and computing, diminishing much of the otherwise positive impact of latency reduction enabled by 5G. • Mobile Edge Computing a Must for Private Wireless Networks: Enterprise and industrial segments will continue to deploy private networks utilizing LTE and WiFi. Many of these networks will evolve to 5G and include edge computing to maximize overall throughput and minimize latency, which will be crucial for certain critical communications solutions such as industrial process automation. • Combined 5G and Edge Solutions: A variety of enhanced services and new apps will be enabled, many of which will be directly or indirectly involved with smart cities, intelligent buildings, and smart homes and workplaces. Key 5G and MEC supported applications for business will be IoT connectivity, SMB/corporate mobility, and fixed wireless. -
Edge Computing for 5G Networks
5G PPP Technology Board Edge Computing for 5G Networks 5GPPP Technology Board Working Group 5G-IA’s Trials Working Group Edge Computing for 5G Networks Version 1.0 Date: 29-01-2021 Version: 1.0 DOI 10.5281/zenodo.3698117 URL https://doi.org/10.5281/zenodo.3698117 Dissemination level: Public Page 1 / 96 5G PPP Technology Board Edge Computing for 5G Networks Table of Contents Executive Summary ........................................................................................................ 4 1. Introduction - Why Edge Computing is key for 5G and beyond............................ 6 1.1 What is Edge Computing ............................................................................... 6 1.2 Why is Edge Computing critical for 5G ....................................................... 7 1.3 Where is the Edge of the Network ................................................................ 9 1.4 How does the Edge look like? ...................................................................... 12 1.5 Introduction to the 5G Edge Cloud Ecosystem.......................................... 13 2. Key Technologies for 5G on Edge Computing ..................................................... 15 2.1 Resources Virtualization framework .......................................................... 15 2.1.1 Virtual Machines and Containerization ................................................................................... 15 2.1.2 Lightweight virtualization ...................................................................................................... -
The Role of Virtualization in the Small Cell Enabled Mobile Edge Computing Ecosystem
The Role of Virtualization in the Small Cell Enabled Mobile Edge Computing Ecosystem Leonardo Goratti1, C.E. Costa1(&), Jordi Perez-Romero2, P.S. Khodashenas3, Alan Whitehead4, and Ioannis Chochliouros5 1 CREATE-NET, Via alla Cascata 56/D, Trento, Italy [email protected] 2 Universitat Politecnica de Catalunya (UPC), Barcelona, Spain 3 i2CAT, Barcelona, Spain 4 IP.Access, Cambourne, UK 5 Hellenic Telecommunications Organization (OTE), Marousi, Greece Abstract. Virtualisation is playing a fundamental role in the evolution of telecommunication services and infrastructures, bringing to rethink some of the traditional design paradigms of the mobile network and enabling those func- tionalities necessary for supporting new complex ecosystems where multiple actors can participate in a dynamic and secure environment. In Small Cell enabled Mobile Edge Computing deployments, the impact of virtualization technologies is significant in two main aspects: the design and deployment of the telecommuni- cation infrastructure, and the delivery of edge services. Besides, the adoption of virtualization technologies has implications also in the implementation of Self Organizing Network (SON) services and in the enforcement of Service Level Agreement (SLA) policies, both critical in the automation of the delivery of multi-tenant oriented services in such complex infrastructure. From the work performed by the H2020 SESAME project, the beneficial use of virtualization techniques emerges in adding network intelligence and services in the network edge. SESAME relays on virtualization for providing Small Cell as a Service (SCaaS) and per operator Edge Computing services, consolidating the emerging multi-tenancy driven design paradigms in communication infrastructures. Keywords: NFV Small Cell Virtualization 5G Á Á Á 1 Introduction Virtualization technologies decouple software from physical infrastructure, and create virtual resources dedicated to distinct services. -
Mobile Edge Computing Versus Fog Computing in Internet of Vehicles
Netware 2018 The Tenth International Conference on Advances In Future Internet AFIN 2018 Mobile Edge Computing versus Fog Computing in Internet of Vehicles Eugen Borcoci, Marius Vochin, Serban Obreja University POLITEHNICA of Bucharest [email protected] [email protected] [email protected] NETWARE 2018, September 16-20, Venice 1 Objectives • To identify general aspects related to • usage of the Edge computing technologies in the Internet of Vehicle (IoV) environment • Specific cases of technologies (which one to use in IoV?) • Multi-access (Mobile) Edge Computing • Fog Computing 222 NETWARE 2018, September 16-20, Venice Contents 1. Introduction 2. Edge computing architectures- examples 3. Relevant Internet of Vehicles architectures 4. MEC and Fog solutions integrated in IoV 5. MEC versus Fog in IoV 6. Conclusions 333 NETWARE 2018, September 16-20, Venice 1. Introduction . Vehicular networks evolve in Internet of Vehicles (IoV) - aiming to solve the current and novel challenging needs of transportation systems . Edge computing (EC) . move cloud computing capabilities close to the data sources/sinks . EC: distributed architectures, fast response, context awareness, minimization of the data transfer to the centralized data centers . EC- natural support for IoV . Multi-access (Mobile) Edge Computing (MEC), Fog Computing (FC), cloudlets, etc. – candidates to support IoV . These architectures and technologies have overlapping characteristics but also differences in approach . Today – open issues: . not yet a full convergence between EC technologies . which solution could be the best trade-off to be adopted in IoV context and for which use cases ? . This paper: . is not a complete survey . attempts a preliminary evaluation of some of the currently proposed MEC/Fog solutions for IoV 444 NETWARE 2018, September 16-20, Venice 1. -
View on 5G Architecture
5G PPP Architecture Working Group View on 5G Architecture Version 3.0, June 2019 Date: 2019-06-19 Version: 3.0 Dissemination level: Public Consultation Abstract The 5G Architecture Working Group as part of the 5G PPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5G PPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5G PPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, the Version 2.0 of the white paper was released in January 2018 and presented the latest findings and analyses of 5G PPP Phase I projects along with the concept evaluations. The work has continued with the 5G PPP Phase II and Phase III projects with special focus on understanding the requirements from vertical industries involved in the projects and then driving the required enhancements of the 5G Architecture able to meet their requirements. The results of the Working Group are now captured in this Version 3.0, which presents the consolidated European view on the architecture design. Dissemination level: Public Consultation Table of Contents 1 Introduction........................................................................................................................ -
Victor Bahl Microsoft Corporation
Victor Bahl Microsoft Corporation SIGCOMM MobiArch 2007, August 2007 Source: Victoria Poncini, MS IT ~7, 000 Access Points ~65,000 XP & Vista Clients December 2006 ~40,000 connections/day ~35,000 handheld devices 100% 80% 39,6% 37,3% 42,2% 45,8% 47,1% 60% 40% 39,8% 39,7% 34,2% 44,2% 35,3% 20% 18,1% 20,1% 16,2% 17,6% 22,9% 0% Worldwide Americas w/o PS Puget Sound EMEA APJ Very SfSatisfied SSfSomewhat Satisfied SfSomewhat Dissatisfied or Very Dissati fied 2 Victor Bahl Microsoft’s IT Dept. logs several hundred complaints / month 70% calls are about client connectivity issues (e. g. ping-ponging between APs) 30% (and growing) are about performance problems due to interference End-users complain about Lack of RF coverage, performance & reliability Connectivity & authentication problems Network administrators worry about Providing adequate coverage, performance Security and unauthorized access Corporations spend lots of $$ on WLAN infrastructure WLAN hardware business to reach $2.6 billion in 2007. (Forester 2006) Heavy VC funding in this area (e.g. AirTight $36M in the last 16 months) 3 Victor Bahl 4 Victor Bahl FY05 Cost Element View Functional View Breakdown People 72% Applications 60% Data & Voice 16% App Development (29%) App Support (31%) Hardware 5% Facilities 5% Infrastructure 40% Software* 2% Network (14%) * 5% If MS software were included Data Center (7%) Employee Services (5%) Voice (5%) 30% Helpdesk (5%) New Increases Security (3%) Capability value 45% New 70% Capability Sustaining & Running Decreases Existing maintenance 55% Capability delivery Existing Capability 5 Victor Bahl Timeline HotNets’05 , MobiSys’ 06, NSDI ‘07 ACM CCR ’ 06 MobiCom’ 04 MobiSys’ 06 6 Victor Bahl Heterogeneous world Multiple technologies: 802. -
(Cloudlets/Edges) for Mobile Computing
emergence of micro datacenter (cloudlets/edges) for mobile computing Victor Bahl Wednesday, May 13, 2015 what if our computers could see? Microsoft’s’s HoloLens who? where? what? Video credits: Matthai Philipose Microsoft Research seeing is for real MSR’s Glimpse project vision is demanding recognition using deep neural networks face1 [1] scene [2] object2[3] memory (floats) 103M 76M 138M compute 1.00 GFLOPs 2.54 GFLOPs 30.9 GFLOPs accuracy 97% 51% 94% (top 5) 1: 4000 people; 2: 1000 objects from ImageNet, top 5: one of your top 5 matches human-level accuracy, heavy resource demands … offloading computation is highly desirable [1] Y. Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In CVPR 2014. (Facebook) [2] B. Zhou et al. Learning deep features for scene recognition using places database. In NIPS, 2014. [MIT, Princeton, ..] [3] K. Simonyan & A. Zisserman. Very deep convolutional networks for large-scale image recognition. 2014 [Google, Oxford] under review recognition: server versus mobile road sign recognition1 stage Mobile server Spedup (Samsung Galaxy Nexus) (i7, 3.6GHz, 4-core) (server:mobile) detection 2353 +/- 242.4 ms 110 +/- 32.1 ms ~15-16X feature extraction 1327.7 +/- 102.4 ms 69 +/- 15.2 ms ~18X recognition2 162.1 +/- 73.2 ms 11 +/- 1.6 ms ~14X Energy used 11.32 Joules 0.54 Joules ~21X 1convolution neural networks 2classifying 1000 objects with 4096 features using a linear SVM how long does it take to reach the cloud? 3g networks 4g-lte networks T-Mobile 450ms AT&T 350ms MobiSys 2010 -
Building Aggressively Duty-Cycled Platforms to Achieve Energy Efficiency
UNIVERSITY OF CALIFORNIA, SAN DIEGO Building Aggressively Duty-Cycled Platforms to Achieve Energy Efficiency A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science (Computer Engineering) by Yuvraj Agarwal Committee in charge: Rajesh Gupta, Chair Paramvir Bahl William Hodgkiss Stefan Savage Alex Snoeren Geoff Voelker 2009 Copyright Yuvraj Agarwal, 2009 All rights reserved. The dissertation of Yuvraj Agarwal is approved, and it is acceptable in quality and form for publication on mi- crofilm and electronically: Chair University of California, San Diego 2009 iii DEDICATION To Dadi, Shyam Babaji, Papa and Ma. iv TABLE OF CONTENTS Signature Page .................................. iii Dedication ..................................... iv Table of Contents ................................. v List of Figures .................................. ix List of Tables ................................... xi Acknowledgements ................................ xii Vita and Publications .............................. xv Abstract of the Dissertation ........................... xvi Chapter 1 Introduction ............................ 1 1.1 Reducing the Energy Consumption of Computing Devices 3 1.2 Using Collaboration to Aggressively Duty-Cycle Platforms 5 1.3 Contributions ........................ 7 1.4 Organization ......................... 8 Chapter 2 Background and Related Work .................. 9 2.1 Mobile Platforms ...................... 9 2.2 Power and Energy ...................... 12 2.2.1 Measuring Power and Energy Consumption .... 13 2.3 Related Work ........................ 14 2.3.1 Power Management in Mobile Devices ....... 14 2.3.2 Power Management in Laptops and Desktop PCs 17 Chapter 3 Radio Collaboration - Cellular and LAN Data Radios ..... 20 3.1 Overview of a VoIP Deployment .............. 23 3.2 Alternatives to VoIP over Wi-Fi Radios .......... 24 3.2.1 Cellular Data vs. Wi-Fi .............. 25 3.2.2 Smartphone Power Measurements ......... 28 3.3 Cell2Notify Architecture .................