Mobile Edge Computing Empowers Internet of Things

Total Page:16

File Type:pdf, Size:1020Kb

Mobile Edge Computing Empowers Internet of Things IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x 1 INVITED PAPER Mobile Edge Computing Empowers Internet of Things Nirwan ANSARIya) and Xiang SUNyb), SUMMARY In this paper, we propose a Mobile Edge Internet of Things lored for IoT devices is critical to empowering the current (MEIoT) architecture by leveraging the fiber-wireless access technology, IoT system. In addition, only providing interconnections to the cloudlet concept, and the software defined networking framework. The share raw data among IoT devices is not enough to gain the MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. insight behind the big IoT data; the insight is more valuable Specifically, the IoT devices (belonging to the same user) are associated to for the society as a whole. Thus, it is beneficial to provision a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy the IoT system with a comprehensive cognitive capability VM stores and analyzes the IoT data (generated by its IoT devices) in real- such that high-level knowledge can be extracted from the time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access big IoT raw data streams by applying various types of data control problem in the IoT system. In addition, we propose two dynamic mining and machine learning methods [3]. The data center proxy VM migration methods to minimize the end-to-end delay between infrastructure has been demonstrated to provision resources proxy VMs and their IoT devices and to minimize the total on-grid energy flexibly and efficiently [4]; meanwhile, various parallel com- consumption of the cloudlets, respectively. Performance of the proposed puting architectures and distributed storage frameworks have methods is validated via extensive simulations. key words: Internet of Things, mobile edge computing, cloudlet, semantics, been designed based on a data center (e.g., MapReduce [5] social network, green energy. and Spark [6]). Thus, it is desirable to transmit the big IoT data from the IoT devices to remote data centers via the In- 1. Introduction ternet for further data analysis. Yet, this would place a heavy burden on the network to conduct data aggregation from IoT Internet of Things (IoTs) is enabling interconnections among devices to a centralized data center, and thus exponentially a tremendous number of things such that different things can increase the network delay for transmitting big IoT data to share their observations of the physical world. According remote data centers, especially during the peak time. Note to a new Gartner forecast, 26 billion things (excluding PCs, that delay is a key performance metric in provisioning the tablets, and smartphones) will be installed in 2020 [1]. Cisco Quality of Service (QoS) for many IoT applications. For predicted that 50 billion devices will be connected to the In- instance, smart grid applications have stringent requirement ternet by 2020 [2]. These connected things will generate on latency up to 20 ms; processing automation applications a humongous volume of data, which digitally represent the (i.e., monitoring and diagnosing of industrial elements and states of the physical world. However, owing to the resource processes) imposes latency requirements ranging from 50 constrained nature, many IoT devices cannot always guar- ms to 100 ms [7]. antee the interconnections, i.e., some IoT devices cannot be The Mobile Edge Computing (MEC) concept [8] is es- reachable owing to their periodical sleep schemes and inter- sentially bringing the computing and storage capability from mittent wireless connections. Thus, it is important to design remote data centers to the mobile edge in order to reduce an efficient mechanism to facilitate resource constrained IoT the network delay between end devices and computing re- devices in sharing their data over the network. Also, the re- sources. Specifically, various computing resources, attached source constrained IoT devices cannot feasibly conduct com- to edge routers, wireless access points (WAPs), and smart plicated data access management, thus sharing IoT data over gateways, are available for nearby mobile devices; thus, these the network poses serious security challenges, i.e., unautho- devices can offload their workloads to computing resources rized users/devices may easily access and misuse the shared at the edge, thus potentially reducing the energy consumption IoT data, which may contain personal information. There- of the devices and accelerating the computing processes [9]. fore, designing an efficient access control mechanism tai- Empowering IoT with MEC can essentially improve the QoS for IoT applications. Basically, IoT applications, which try Manuscript received May 1, 2017. to obtain the corresponding data from different types of IoT Manuscript revised June 20, 2017. devices and generate high-level knowledge by analyzing the yThe authors are with Advanced Networking Lab., Helen and acquired data based on data analytic models, would be de- John C. Hartmann Department of Electrical & Computer Engi- ployed at the mobile edge, and thus the data streams gen- neering, New Jersey Institute of Technology, Newark, NJ 07102, erated by the IoT devices would be uploaded to the IoT ap- USA. a) E-mail: [email protected] plications without traversing the mobile core network. This b) E-mail: [email protected] (Corresponding author) can significantly alleviate the traffic load in the core network DOI: 10.1587/trans.E0.??.1 and potentially speed up the IoT applications in processing Copyright © 200x The Institute of Electronics, Information and Communication Engineers IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x 2 big IoT data streams. In this paper, we will design a novel Mobile Edge 2.2.1 Wired backhaul solutions IoT (MEIoT) architecture by leveraging the Fiber-Wireless (FiWi) access technology, the mobile network, the cloudlet Wired backhaul provides the advantages of high reliabil- concept, and the Software Defined Networking (SDN) ity, high data rate, and high availability. A WAP (such as framework to efficiently share and analyze the big IoT data MBS-1 in Fig. 1) can communicate with the mobile core at the mobile edge. The rest of the paper is organized as network based on a wired connection (e.g., xDSL), which follows. In Sec. II, we describe the proposed MEIoT ar- traverses an access switch. The access switch is connected chitecture. In Sec. III, we illustrate the four challenges of to a cloudlet and conducts L2/L3 switching among the WAP, the current IoT system and propose four potential solutions the cloudlet, and the mobile core network. A cloudlet [11], tailored for the MEIoT architecture. In Sec. IV, we evaluate which comprises a number of interconnected Physical Ma- the performance of the proposed solutions via simulations. chines (PMs), provides computing and storage resources to We briefly delineate the future work in Sec. V, and present IoT devices with low latency. the conclusion in Sec. VI. Passive optical networks (PONs) can potentially provi- sion cloud computing [12], and thus a WAP can also utilize 2. MEIoT architecture the optical backhaul to achieve extra low communications de- lay. For example, MBS-2 in Fig. 1 is connected to an Optical In order to facilitate IoT data sharing and analytics, we pro- Network Unit (ONU), which is further connected to an Op- pose the MEIoT architecture, as shown in Fig. 1. The MEIoT tical Line Terminal (OLT) via an optical splitter/combiner. architecture comprises five parts, i.e., multi-interface wire- The function of an ONU is to aggregate the traffic from its less access network, heterogeneous backhauling, distributed connected WAPs and communicate with its connected OLT cloudlets, hierarchical structure of a cloudlet, and the SDN based on the assigned wavelength channels. The function based mobile core network. We will next detail these five of an OLT is to provide L2/L3 switching between mobile parts. core network and its connected ONUs. Note that there are two different types of ONUs in the MEIoT architecture, tra- ditional ONU and ONU-Cloudlet (ONU-C). Different from 2.1 Multi-interface wireless access network traditional ONUs, an ONU-C, which is normally connected to a local cloudlet, can not only relay the traffic between Various WAPs, such as WiFi access points, static Small Cells its connected OLT and WAPs but also provide the switch- (SC) (e.g., pico cell, femto cell, etc.), dynamic SCs (e.g., ing function to enable the local communications between its drone mounted SCs), and Macro BSs (MBSs), have already WAPs and its connected cloudlet [13]. Thus, the commu- been deployed in the mobile network and provide high radio nications between the local WAPs and the cloudlet can be coverage and network capacity. Thus, distributed WAPshave offloaded from the OLT and the mobile core network. This the potential to connect all IoT devices whether they are mov- can significantly reduce the traffic load of the mobile core ing or static. Yet, different IoT devices have different com- network and the OLT. munications requirements; that is, some energy-sensitive IoT devices (e.g., smart meters) require very low transmission 2.2.2 Wireless backhaul solutions date rate and some energy-insensitive devices (e.g., surveil- lance devices and mobile phones) need high-speed transmis- Wireless backhual technologies present the advantages of sion to meet their embedded application requirements. The flexible deployment and low cost. Currently, many SCs (es- heterogeneous data transmission requirements among IoT pecially for mobile SCs, such as drone mounted SCs [14]) devices effectuate different devices to adopt different wire- apply the wireless backhaul solutions to facilitate the com- less technologies (e.g., D2D communications, NarrowBand munications between MBSs and SCs. The wireless backhaul IoT communications, LTE communications, etc.) to share solutions can be divided into two categories: in-band and their sensed data.
Recommended publications
  • Building Blocks for Tomorrow's Mobile App Store
    Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Abstract (0984) Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Copyright c 2012 by Justin G. Manweiler All rights reserved Abstract In our homes and in the enterprise, in our leisure and in our professions, mobile computing is no longer merely “exciting;” it is becoming an essential, ubiquitous tool of the modern world. New and innovative mobile applications continue to inform, entertain, and surprise users. But, to make the daily use of mobile technologies more gratifying and worthwhile, we must move forward with new levels of sophistication. The Mobile App Stores of the future must be built on stronger foundations. This dissertation considers a broad view of the challenges and intuitions behind a diverse selection of such new primitives. Some of these primitives will mitigate exist- ing and fundamental challenges of mobile computing, especially relating to wireless communication. Others will take an application-driven approach, being designed to serve a novel purpose, and be adapted to the unique and varied challenges from their disparate domains.
    [Show full text]
  • Mobile Edge Computing a Key Technology Towards 5G
    ETSI White Paper No. 11 Mobile Edge Computing A key technology towards 5G First edition – September 2015 ISBN No. 979-10-92620-08-5 Authors: Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher and Valerie Young ETSI (European Telecommunications Standards Institute) 06921 Sophia Antipolis CEDEX, France Tel +33 4 92 94 42 00 [email protected] www.etsi.org About the authors Yun Chao Hu Contributor, Huawei, Vice Chair ETSI MEC ISG, Chair MEC IEG Working Group Milan Patel Contributor, Huawei Dario Sabella Contributor, Telecom Italia; Vice-Chair MEC IEG Working Group Nurit Sprecher Contributor, Nokia; Chair ETSI MEC ISG Valerie Young Contributor, Intel Mobile Edge Computing - a key technology towards 5G 2 Contents About the authors 2 Contents 3 Introduction 4 Market Drivers 5 Business Value 6 Mobile Edge Computing Service Scenarios 7 General 7 Augmented Reality 8 Intelligent Video Acceleration 9 Connected Cars 9 Internet of Things Gateway 11 Deployment Scenarios 11 ETSI Industry Specification Group on Mobile Edge Computing 12 Proofs of Concept 13 Conclusions 14 References 15 Mobile Edge Computing - a key technology towards 5G 3 Introduction Mobile Edge Computing (MEC) is a new technology which is currently being standardized in an ETSI Industry Specification Group (ISG) of the same name. Mobile Edge Computing provides an IT service environment and cloud-computing capabilities at the edge of the mobile network, within the Radio Access Network (RAN) and in close proximity to mobile subscribers. The aim is to reduce latency, ensure highly efficient network operation and service delivery, and offer an improved user experience. Mobile Edge Computing is a natural development in the evolution of mobile base stations and the convergence of IT and telecommunications networking.
    [Show full text]
  • Annual Report
    ANNUAL REPORT 2019FISCAL YEAR ACM, the Association for Computing Machinery, is an international scientific and educational organization dedicated to advancing the arts, sciences, and applications of information technology. Letter from the President It’s been quite an eventful year and challenges posed by evolving technology. for ACM. While this annual Education has always been at the foundation of exercise allows us a moment ACM, as reflected in two recent curriculum efforts. First, “ACM’s mission to celebrate some of the many the ACM Task Force on Data Science issued “Comput- hinges on successes and achievements ing Competencies for Undergraduate Data Science Cur- creating a the Association has realized ricula.” The guidelines lay out the computing-specific over the past year, it is also an competencies that should be included when other community that opportunity to focus on new academic departments offer programs in data science encompasses and innovative ways to ensure at the undergraduate level. Second, building on the all who work in ACM remains a vibrant global success of our recent guidelines for 4-year cybersecu- the computing resource for the computing community. rity curricula, the ACM Committee for Computing Edu- ACM’s mission hinges on creating a community cation in Community Colleges created a related cur- and technology that encompasses all who work in the computing and riculum targeted at two-year programs, “Cybersecurity arena” technology arena. This year, ACM established a new Di- Curricular Guidance for Associate-Degree Programs.” versity and Inclusion Council to identify ways to create The following pages offer a sampling of the many environments that are welcoming to new perspectives ACM events and accomplishments that occurred over and will attract an even broader membership from the past fiscal year, none of which would have been around the world.
    [Show full text]
  • Mobile Edge Computing: Architecture, Use-Cases, Applications Craig Pritchard, Yousef Beheshti, Mohammad Sepahi
    Mobile Edge Computing: Architecture, Use-cases, Applications Craig Pritchard, Yousef Beheshti, Mohammad Sepahi To cite this version: Craig Pritchard, Yousef Beheshti, Mohammad Sepahi. Mobile Edge Computing: Architecture, Use- cases, Applications. 2020. hal-02612631 HAL Id: hal-02612631 https://hal.archives-ouvertes.fr/hal-02612631 Preprint submitted on 19 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mobile Edge Computing: Architecture, Use-cases, Applications Craig Pritchard, Yousef Beheshti, Mohammad Sepahi Abstract| By enormous growth in IoT and smart devices and the ad- vent of many new applications, Internet traffic volume has been grow- ing exponentially. Analyzing such flooding traffic requires enormous compute and bandwidth and raises privacy concerns. Edge platforms can become the tool to ease the burden by bringing resources to the proximity of data. Therefore, new architectures, which bring network functions and contents to the network edge, are proposed, i.e., mobile edge computing and caching. In this survey, we make an exhaustive review on the literature research efforts on mobile edge networks. We give an overview of mobile edge networks, including definition, archi- tecture, and application and use-cases . We then survey the issues related to computing, caching, and communication techniques at the network edge with the focus on applications and use cases of mobile edge networks.
    [Show full text]
  • 5G and Edge Computing
    Market Driven Strategic Advisory EMERGING AND DISRUPTIVE TECHNOLOGY ANALYSIS 5G and Edge Computing Impact on Business Models, Service Providers, Datacenters, Applications, Business Users and Consumers https://mindcommerce.com/ Copyright 2019 ©Mind Commerce +1 206-395-9205 Market Driven Strategic Advisory EMERGING AND DISRUPTIVE TECHNOLOGY ANALYSIS Highlights and Findings • 5G Influence on Bandwidth and Data Economics: 5G will “reinvent” connectivity as there will be a very credible alternative to cable and fiber for business customers. 5G will bring about fundamental structural economic changes, such as significantly lower broadband pricing as a whole, and also much greater flexibility for enterprise, industrial, and government market segments in terms of how they connect public to private networks. • 5G Needs Edge Computing: LTE is improved with edge computing, but 5G absolutely requires it. In fact, without mobile edge computing, 5G would need to rely upon back-haul to centralized cloud resource for storage and computing, diminishing much of the otherwise positive impact of latency reduction enabled by 5G. • Mobile Edge Computing a Must for Private Wireless Networks: Enterprise and industrial segments will continue to deploy private networks utilizing LTE and WiFi. Many of these networks will evolve to 5G and include edge computing to maximize overall throughput and minimize latency, which will be crucial for certain critical communications solutions such as industrial process automation. • Combined 5G and Edge Solutions: A variety of enhanced services and new apps will be enabled, many of which will be directly or indirectly involved with smart cities, intelligent buildings, and smart homes and workplaces. Key 5G and MEC supported applications for business will be IoT connectivity, SMB/corporate mobility, and fixed wireless.
    [Show full text]
  • Edge Computing for 5G Networks
    5G PPP Technology Board Edge Computing for 5G Networks 5GPPP Technology Board Working Group 5G-IA’s Trials Working Group Edge Computing for 5G Networks Version 1.0 Date: 29-01-2021 Version: 1.0 DOI 10.5281/zenodo.3698117 URL https://doi.org/10.5281/zenodo.3698117 Dissemination level: Public Page 1 / 96 5G PPP Technology Board Edge Computing for 5G Networks Table of Contents Executive Summary ........................................................................................................ 4 1. Introduction - Why Edge Computing is key for 5G and beyond............................ 6 1.1 What is Edge Computing ............................................................................... 6 1.2 Why is Edge Computing critical for 5G ....................................................... 7 1.3 Where is the Edge of the Network ................................................................ 9 1.4 How does the Edge look like? ...................................................................... 12 1.5 Introduction to the 5G Edge Cloud Ecosystem.......................................... 13 2. Key Technologies for 5G on Edge Computing ..................................................... 15 2.1 Resources Virtualization framework .......................................................... 15 2.1.1 Virtual Machines and Containerization ................................................................................... 15 2.1.2 Lightweight virtualization ......................................................................................................
    [Show full text]
  • The Role of Virtualization in the Small Cell Enabled Mobile Edge Computing Ecosystem
    The Role of Virtualization in the Small Cell Enabled Mobile Edge Computing Ecosystem Leonardo Goratti1, C.E. Costa1(&), Jordi Perez-Romero2, P.S. Khodashenas3, Alan Whitehead4, and Ioannis Chochliouros5 1 CREATE-NET, Via alla Cascata 56/D, Trento, Italy [email protected] 2 Universitat Politecnica de Catalunya (UPC), Barcelona, Spain 3 i2CAT, Barcelona, Spain 4 IP.Access, Cambourne, UK 5 Hellenic Telecommunications Organization (OTE), Marousi, Greece Abstract. Virtualisation is playing a fundamental role in the evolution of telecommunication services and infrastructures, bringing to rethink some of the traditional design paradigms of the mobile network and enabling those func- tionalities necessary for supporting new complex ecosystems where multiple actors can participate in a dynamic and secure environment. In Small Cell enabled Mobile Edge Computing deployments, the impact of virtualization technologies is significant in two main aspects: the design and deployment of the telecommuni- cation infrastructure, and the delivery of edge services. Besides, the adoption of virtualization technologies has implications also in the implementation of Self Organizing Network (SON) services and in the enforcement of Service Level Agreement (SLA) policies, both critical in the automation of the delivery of multi-tenant oriented services in such complex infrastructure. From the work performed by the H2020 SESAME project, the beneficial use of virtualization techniques emerges in adding network intelligence and services in the network edge. SESAME relays on virtualization for providing Small Cell as a Service (SCaaS) and per operator Edge Computing services, consolidating the emerging multi-tenancy driven design paradigms in communication infrastructures. Keywords: NFV Small Cell Virtualization 5G Á Á Á 1 Introduction Virtualization technologies decouple software from physical infrastructure, and create virtual resources dedicated to distinct services.
    [Show full text]
  • Mobile Edge Computing Versus Fog Computing in Internet of Vehicles
    Netware 2018 The Tenth International Conference on Advances In Future Internet AFIN 2018 Mobile Edge Computing versus Fog Computing in Internet of Vehicles Eugen Borcoci, Marius Vochin, Serban Obreja University POLITEHNICA of Bucharest [email protected] [email protected] [email protected] NETWARE 2018, September 16-20, Venice 1 Objectives • To identify general aspects related to • usage of the Edge computing technologies in the Internet of Vehicle (IoV) environment • Specific cases of technologies (which one to use in IoV?) • Multi-access (Mobile) Edge Computing • Fog Computing 222 NETWARE 2018, September 16-20, Venice Contents 1. Introduction 2. Edge computing architectures- examples 3. Relevant Internet of Vehicles architectures 4. MEC and Fog solutions integrated in IoV 5. MEC versus Fog in IoV 6. Conclusions 333 NETWARE 2018, September 16-20, Venice 1. Introduction . Vehicular networks evolve in Internet of Vehicles (IoV) - aiming to solve the current and novel challenging needs of transportation systems . Edge computing (EC) . move cloud computing capabilities close to the data sources/sinks . EC: distributed architectures, fast response, context awareness, minimization of the data transfer to the centralized data centers . EC- natural support for IoV . Multi-access (Mobile) Edge Computing (MEC), Fog Computing (FC), cloudlets, etc. – candidates to support IoV . These architectures and technologies have overlapping characteristics but also differences in approach . Today – open issues: . not yet a full convergence between EC technologies . which solution could be the best trade-off to be adopted in IoV context and for which use cases ? . This paper: . is not a complete survey . attempts a preliminary evaluation of some of the currently proposed MEC/Fog solutions for IoV 444 NETWARE 2018, September 16-20, Venice 1.
    [Show full text]
  • View on 5G Architecture
    5G PPP Architecture Working Group View on 5G Architecture Version 3.0, June 2019 Date: 2019-06-19 Version: 3.0 Dissemination level: Public Consultation Abstract The 5G Architecture Working Group as part of the 5G PPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5G PPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5G PPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, the Version 2.0 of the white paper was released in January 2018 and presented the latest findings and analyses of 5G PPP Phase I projects along with the concept evaluations. The work has continued with the 5G PPP Phase II and Phase III projects with special focus on understanding the requirements from vertical industries involved in the projects and then driving the required enhancements of the 5G Architecture able to meet their requirements. The results of the Working Group are now captured in this Version 3.0, which presents the consolidated European view on the architecture design. Dissemination level: Public Consultation Table of Contents 1 Introduction........................................................................................................................
    [Show full text]
  • Victor Bahl Microsoft Corporation
    Victor Bahl Microsoft Corporation SIGCOMM MobiArch 2007, August 2007 Source: Victoria Poncini, MS IT ~7, 000 Access Points ~65,000 XP & Vista Clients December 2006 ~40,000 connections/day ~35,000 handheld devices 100% 80% 39,6% 37,3% 42,2% 45,8% 47,1% 60% 40% 39,8% 39,7% 34,2% 44,2% 35,3% 20% 18,1% 20,1% 16,2% 17,6% 22,9% 0% Worldwide Americas w/o PS Puget Sound EMEA APJ Very SfSatisfied SSfSomewhat Satisfied SfSomewhat Dissatisfied or Very Dissati fied 2 Victor Bahl Microsoft’s IT Dept. logs several hundred complaints / month 70% calls are about client connectivity issues (e. g. ping-ponging between APs) 30% (and growing) are about performance problems due to interference End-users complain about Lack of RF coverage, performance & reliability Connectivity & authentication problems Network administrators worry about Providing adequate coverage, performance Security and unauthorized access Corporations spend lots of $$ on WLAN infrastructure WLAN hardware business to reach $2.6 billion in 2007. (Forester 2006) Heavy VC funding in this area (e.g. AirTight $36M in the last 16 months) 3 Victor Bahl 4 Victor Bahl FY05 Cost Element View Functional View Breakdown People 72% Applications 60% Data & Voice 16% App Development (29%) App Support (31%) Hardware 5% Facilities 5% Infrastructure 40% Software* 2% Network (14%) * 5% If MS software were included Data Center (7%) Employee Services (5%) Voice (5%) 30% Helpdesk (5%) New Increases Security (3%) Capability value 45% New 70% Capability Sustaining & Running Decreases Existing maintenance 55% Capability delivery Existing Capability 5 Victor Bahl Timeline HotNets’05 , MobiSys’ 06, NSDI ‘07 ACM CCR ’ 06 MobiCom’ 04 MobiSys’ 06 6 Victor Bahl Heterogeneous world Multiple technologies: 802.
    [Show full text]
  • (Cloudlets/Edges) for Mobile Computing
    emergence of micro datacenter (cloudlets/edges) for mobile computing Victor Bahl Wednesday, May 13, 2015 what if our computers could see? Microsoft’s’s HoloLens who? where? what? Video credits: Matthai Philipose Microsoft Research seeing is for real MSR’s Glimpse project vision is demanding recognition using deep neural networks face1 [1] scene [2] object2[3] memory (floats) 103M 76M 138M compute 1.00 GFLOPs 2.54 GFLOPs 30.9 GFLOPs accuracy 97% 51% 94% (top 5) 1: 4000 people; 2: 1000 objects from ImageNet, top 5: one of your top 5 matches human-level accuracy, heavy resource demands … offloading computation is highly desirable [1] Y. Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In CVPR 2014. (Facebook) [2] B. Zhou et al. Learning deep features for scene recognition using places database. In NIPS, 2014. [MIT, Princeton, ..] [3] K. Simonyan & A. Zisserman. Very deep convolutional networks for large-scale image recognition. 2014 [Google, Oxford] under review recognition: server versus mobile road sign recognition1 stage Mobile server Spedup (Samsung Galaxy Nexus) (i7, 3.6GHz, 4-core) (server:mobile) detection 2353 +/- 242.4 ms 110 +/- 32.1 ms ~15-16X feature extraction 1327.7 +/- 102.4 ms 69 +/- 15.2 ms ~18X recognition2 162.1 +/- 73.2 ms 11 +/- 1.6 ms ~14X Energy used 11.32 Joules 0.54 Joules ~21X 1convolution neural networks 2classifying 1000 objects with 4096 features using a linear SVM how long does it take to reach the cloud? 3g networks 4g-lte networks T-Mobile 450ms AT&T 350ms MobiSys 2010
    [Show full text]
  • Building Aggressively Duty-Cycled Platforms to Achieve Energy Efficiency
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Building Aggressively Duty-Cycled Platforms to Achieve Energy Efficiency A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science (Computer Engineering) by Yuvraj Agarwal Committee in charge: Rajesh Gupta, Chair Paramvir Bahl William Hodgkiss Stefan Savage Alex Snoeren Geoff Voelker 2009 Copyright Yuvraj Agarwal, 2009 All rights reserved. The dissertation of Yuvraj Agarwal is approved, and it is acceptable in quality and form for publication on mi- crofilm and electronically: Chair University of California, San Diego 2009 iii DEDICATION To Dadi, Shyam Babaji, Papa and Ma. iv TABLE OF CONTENTS Signature Page .................................. iii Dedication ..................................... iv Table of Contents ................................. v List of Figures .................................. ix List of Tables ................................... xi Acknowledgements ................................ xii Vita and Publications .............................. xv Abstract of the Dissertation ........................... xvi Chapter 1 Introduction ............................ 1 1.1 Reducing the Energy Consumption of Computing Devices 3 1.2 Using Collaboration to Aggressively Duty-Cycle Platforms 5 1.3 Contributions ........................ 7 1.4 Organization ......................... 8 Chapter 2 Background and Related Work .................. 9 2.1 Mobile Platforms ...................... 9 2.2 Power and Energy ...................... 12 2.2.1 Measuring Power and Energy Consumption .... 13 2.3 Related Work ........................ 14 2.3.1 Power Management in Mobile Devices ....... 14 2.3.2 Power Management in Laptops and Desktop PCs 17 Chapter 3 Radio Collaboration - Cellular and LAN Data Radios ..... 20 3.1 Overview of a VoIP Deployment .............. 23 3.2 Alternatives to VoIP over Wi-Fi Radios .......... 24 3.2.1 Cellular Data vs. Wi-Fi .............. 25 3.2.2 Smartphone Power Measurements ......... 28 3.3 Cell2Notify Architecture .................
    [Show full text]