View on 5G Architecture

Total Page:16

File Type:pdf, Size:1020Kb

View on 5G Architecture 5G PPP Architecture Working Group View on 5G Architecture Version 3.0, June 2019 Date: 2019-06-19 Version: 3.0 Dissemination level: Public Consultation Abstract The 5G Architecture Working Group as part of the 5G PPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5G PPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5G PPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, the Version 2.0 of the white paper was released in January 2018 and presented the latest findings and analyses of 5G PPP Phase I projects along with the concept evaluations. The work has continued with the 5G PPP Phase II and Phase III projects with special focus on understanding the requirements from vertical industries involved in the projects and then driving the required enhancements of the 5G Architecture able to meet their requirements. The results of the Working Group are now captured in this Version 3.0, which presents the consolidated European view on the architecture design. Dissemination level: Public Consultation Table of Contents 1 Introduction......................................................................................................................... 18 2 Overall architecture ............................................................................................................ 19 2.1 Stakeholder roles in the 5G ecosystem ........................................................................ 19 2.2 5G Enhanced Overall System Architecture ................................................................. 20 2.3 E2E Service Operations – Lifecycle Management ...................................................... 22 2.4 Domain Management & Orchestration ........................................................................ 23 2.4.1 Multi-domain management ..................................................................................... 23 2.4.2 Application-aware orchestration ............................................................................. 24 2.4.3 Service-specific extensions of ETSI NFV MANO ................................................. 25 2.5 Programmable Networks ............................................................................................. 26 2.5.1 Data plane programmability ................................................................................... 26 2.5.2 Transport network programmability ....................................................................... 28 2.5.3 Network function programmability in RAN ........................................................... 28 2.6 Vertical-specific architecture extensions ..................................................................... 29 2.6.1 Extensions for energy utilities ................................................................................ 29 2.6.2 Extensions for vehicular communications .............................................................. 30 2.6.3 Extensions for enhanced content delivery .............................................................. 32 2.6.4 Extensions for media production and delivery ....................................................... 32 2.7 References .................................................................................................................... 33 3 Radio & Edge Architecture ............................................................................................... 35 3.1 Overall RAN Architecture ........................................................................................... 35 3.1.1 Centralized-Distributed-Radio Units split and Control-User Planes separation ..... 36 3.2 Protocol Extensions for Vertical Support .................................................................... 37 3.2.1 RAN Part of Network Slicing ................................................................................. 37 3.2.1.1 Fundamental Slicing Support in RAN ............................................................... 37 3.2.1.2 Wi-Fi virtualization and slicing ......................................................................... 38 3.2.2 RAN Analytics ....................................................................................................... 40 3.2.3 Virtualized Small Cell (Cloud-enabled small cell) at the Light Data Centre ......... 41 3.2.4 Multi-access Edge Computing & Energy Efficient Radio Access Networks ......... 43 3.2.5 Multi-link Cooperation ........................................................................................... 45 3.2.6 Local end-to-end Path ............................................................................................. 47 3.2.7 Multicast and Broadcast in RAN ............................................................................ 48 3.3 RAN Architecture Implementation .............................................................................. 51 3.3.1 RAN Deployment Options ..................................................................................... 51 3.3.2 Visible Light Communication-based gNB ............................................................. 53 3.3.3 Lower Layer Split and Implementation .................................................................. 56 3.3.3.1 Baseband processing in active antenna distributed unit .................................... 56 3.3.3.2 Optical Beamforming ........................................................................................ 58 3.4 Edge Architecture ........................................................................................................ 60 3.4.1 XMEC: extension of edge computing functionalities ............................................. 60 3.5 References .................................................................................................................... 61 4 Core & Transport Architecture ........................................................................................ 64 4.1 Introduction .................................................................................................................. 64 4.2 Core Network Architecture .......................................................................................... 64 4.2.1 Multicast and Broadcast ......................................................................................... 65 4.2.2 Analytics Framework ............................................................................................. 67 4.2.2.1 Data Analytics Characterization ........................................................................ 68 4.2.2.2 Integrated Analytics Architecture ...................................................................... 69 4.3 Transport network Infrastructure ................................................................................. 71 4.3.1 Wireline technologies ............................................................................................. 71 4.3.1.1 Programmable Elastic frame-based Optical Transport ...................................... 71 4.3.1.2 Ethernet Transport ............................................................................................. 73 Dissemination level: Public Consultation 4.3.1.3 Programmable Metro Network - Disaggregated Edge Node ............................. 75 4.3.1.4 Space Division Multiplexing ............................................................................. 77 4.3.2 Wireless .................................................................................................................. 79 4.3.2.1 Millimeter wave (mmWave) ............................................................................. 79 4.3.2.2 Multi-tenant small cells with IAB ..................................................................... 80 4.3.2.3 Satellite Backhaul .............................................................................................. 82 4.3.3 Fiber-Wireless (FiWi) PtMP ................................................................................... 84 4.4 Examples of data plane programmability .................................................................... 87 4.4.1 Programmable Data Plane ...................................................................................... 87 4.4.2 Stateful Packet Processing in Hardware ................................................................. 88 4.4.3 Segment routing ...................................................................................................... 90 4.5 References .................................................................................................................... 90 5 Management & Orchestration Architecture .................................................................... 93 5.1 Introduction .................................................................................................................. 93 5.2 Starting point: Existing High-level MANO architectures............................................ 93 5.2.1 ETSI summary .......................................................................................................
Recommended publications
  • Gs Mec 011 V1.1.1 (2017-07)
    ETSI GS MEC 011 V1.1.1 (2017-07) GROUP SPECIFICATION Mobile Edge Computing (MEC); Mobile Edge Platform Application Enablement Disclaimer The present document has been produced and approved by the Mobile Edge Computing (MEC) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership. 2 ETSI GS MEC 011 V1.1.1 (2017-07) Reference DGS/MEC-0011Plat.App.Enablemen Keywords API, MEC ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Hipeac Conference 2021 Virtual Event
    62 JANUARY 2021 HiPEAC conference 2021 Virtual event HiPEAC Vision roadmap 2021: taking a whole systems approach Tulika Mitra on taking edge computing to the next stage Evangelos Eleftheriou on the possibilities of in-memory computing Brad McCredie on exascale and beyond contents 16 18 19 IBM’s Evangelos Eleftheriou on AMD’s Brad McCredie on HPC Tulika Mitra on the way forward in-memory computing and exascale for edge computing 3 Welcome 32 Technology transfer Koen De Bosschere Signaloid: A new approach to computation that interacts with the physical world 4 Policy corner Vasileios Tsoutsouras Two very different twins Sandro D’Elia 34 Technology transfer Nostrum Biodiscovery pyDock: specialised software 6 News enabling drug design and discovery 16 HiPEAC voices Ezequiel Mas Del Molino ‘It’s not that often that you get involved in developing 36 SME snapshot and nurturing a new computing paradigm’ Nosh Technologies Evangelos Eleftheriou Somdip Dey 18 HiPEAC voices 37 SME snapshot ‘Our biggest challenges in the world today are limited by Maspatechnologies: supporting regulatory compliance in what is computationally possible’ safety-critical industries Brad McCredie Jaume Abella and Francisco J. Cazorla 19 HiPEAC voices 38 Peac performance Pushing the frontiers of edge computing Accemic Technologies: CEDARtools – look inside your Tulika Mitra processor (without affecting it) 20 The future Alexander Weiss and Thomas Preusser HiPEAC Vision 39 Peac performance The HiPEAC Vision editorial board PreVIous: a useful tool for decision making in the
    [Show full text]
  • Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks
    ICST Transactions on Mobile Communications and Applications Research Article Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks Jun Li ∗, Mylene` Toulgoat, Yifeng Zhou, and Louise Lamont Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, ON. K2H 8S2 Canada Abstract With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC) sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packet- to-channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ) based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay.
    [Show full text]
  • Functional Javascript
    www.it-ebooks.info www.it-ebooks.info Functional JavaScript Michael Fogus www.it-ebooks.info Functional JavaScript by Michael Fogus Copyright © 2013 Michael Fogus. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/ institutional sales department: 800-998-9938 or [email protected]. Editor: Mary Treseler Indexer: Judith McConville Production Editor: Melanie Yarbrough Cover Designer: Karen Montgomery Copyeditor: Jasmine Kwityn Interior Designer: David Futato Proofreader: Jilly Gagnon Illustrator: Robert Romano May 2013: First Edition Revision History for the First Edition: 2013-05-24: First release See http://oreilly.com/catalog/errata.csp?isbn=9781449360726 for release details. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Functional JavaScript, the image of an eider duck, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐ mark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
    [Show full text]
  • Experimenting with Srv6: a Tunneling Protocol Supporting Network Slicing in 5G and Beyond
    This is a postprint version of the following published document: Gramaglia, M., et al. Experimenting with SRv6: a tunneling protocol supporting network slicing in 5G and beyond. In, 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 14-16 September 2020 (Virtual Conference). IEEE, 2020, 6 Pp. DOI: https://doi.org/10.1109/CAMAD50429.2020.9209260 © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Experimenting with SRv6: a Tunneling Protocol supporting Network Slicing in 5G and beyond Marco Gramaglia∗, Vincenzo Sciancalepore†, Francisco J. Fernandez-Maestro‡, Ramon Perez∗§, Pablo Serrano∗, Albert Banchs∗¶ ∗Universidad Carlos III de Madrid, Spain †NEC Laboratories Europe, Germany ‡Ericsson Spain §Telcaria Ideas, Spain ¶IMDEA Networks Institute, Spain Abstract—With network slicing, operators can acquire and Additionally, specific core network functions and procedures manage virtual instances of a mobile network, tailored to a have been introduced to correctly manage network slice life- given service, in this way maximizing flexibility while increasing cycle management operations, such as Network Slice Selection the overall resource utilization. However, the currently used tunnelling protocol, i.e., GTP, might not be the most appropriate Function (NSSF), Network Slice Selection Assistance Infor- choice for the envisioned scenarios, given its unawareness of mation (NSSAI), and so on.
    [Show full text]
  • Evolution of Access Network Sharing and Its Role in 5G Networks
    applied sciences Review Evolution of Access Network Sharing and Its Role in 5G Networks Nima Afraz * , Frank Slyne , Harleen Gill and Marco Ruffini * CONNECT Centre, Trinity College, The University of Dublin, 2 Dublin, Ireland; [email protected] (F.S.); [email protected] (H.G.) * Correspondence: [email protected] (N.A.); marco.ruffi[email protected] (M.R.) Received: 3 October 2019; Accepted: 18 October 2019; Published: 28 October 2019 Abstract: This paper details the evolution of access network sharing models from legacy DSL to the most recent fibre-based technology and the main challenges faced from technical and business perspectives. We first give an overview of existing access sharing models, that span physical local loop unbundling and virtual unbundled local access. We then describe different types of optical access technologies and highlight how they support network sharing. Next, we examine how the concept of SDN and network virtualization has been pivotal in enabling the idea of “true multi-tenancy”, through the use of programmability, flexible architecture and resource isolation. We give examples of recent developments of cloud central office and OLT virtualization. Finally, we provide an insight into the role that novel business models, such as blockchain and smart contract technology, could play in 5G networks. We discuss how these might evolve, to provide flexibility and dynamic operations that are needed in the data and control planes. Keywords: access networks; network sharing; 5G networks; multi tenancy; optical access; sharing economics 1. Introduction By its nature, a telecommunications network is a shared resource that interconnects multiple nodes. Network sharing is part of a fundamental principle of statistical multiplexing of link capacity.
    [Show full text]
  • Chapter 1. Origins of Mac OS X
    1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years.
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • High Speed Data Link
    High Speed Data Link Vladimir Stojanovic liheng zhu Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2017-72 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-72.html May 12, 2017 Copyright © 2017, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. University of California, Berkeley College of Engineering MASTER OF ENGINEERING - SPRING 2017 Electrical Engineering and Computer Science Physical Electronics and Integrated Circuits Project High Speed Data Link Liheng Zhu This Masters Project Paper fulfills the Master of Engineering degree requirement. Approved by: 1. Capstone Project Advisor: Signature: __________________________ Date ____________ Print Name/Department: Vladimir Stojanovic, EECS Department 2. Faculty Committee Member #2: Signature: __________________________ Date ____________ Print Name/Department: Elad Alon, EECS Department Capstone Report Project High Speed Data Link Liheng Zhu A report submitted in partial fulfillment of the University of California, Berkeley requirements of the degree of Master of Engineering in Electrical Engineering and Computer Science March 2017 1 Introduction For our project, High-Speed Data Link, we are trying to implement a serial communication link that can operate at ~25Gb/s through a noisy channel. We decided to build a parameterized library to allow individual user to set up his/her own parameters according to the project specifications and requirements.
    [Show full text]
  • Mobile Edge Computing a Key Technology Towards 5G
    ETSI White Paper No. 11 Mobile Edge Computing A key technology towards 5G First edition – September 2015 ISBN No. 979-10-92620-08-5 Authors: Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher and Valerie Young ETSI (European Telecommunications Standards Institute) 06921 Sophia Antipolis CEDEX, France Tel +33 4 92 94 42 00 [email protected] www.etsi.org About the authors Yun Chao Hu Contributor, Huawei, Vice Chair ETSI MEC ISG, Chair MEC IEG Working Group Milan Patel Contributor, Huawei Dario Sabella Contributor, Telecom Italia; Vice-Chair MEC IEG Working Group Nurit Sprecher Contributor, Nokia; Chair ETSI MEC ISG Valerie Young Contributor, Intel Mobile Edge Computing - a key technology towards 5G 2 Contents About the authors 2 Contents 3 Introduction 4 Market Drivers 5 Business Value 6 Mobile Edge Computing Service Scenarios 7 General 7 Augmented Reality 8 Intelligent Video Acceleration 9 Connected Cars 9 Internet of Things Gateway 11 Deployment Scenarios 11 ETSI Industry Specification Group on Mobile Edge Computing 12 Proofs of Concept 13 Conclusions 14 References 15 Mobile Edge Computing - a key technology towards 5G 3 Introduction Mobile Edge Computing (MEC) is a new technology which is currently being standardized in an ETSI Industry Specification Group (ISG) of the same name. Mobile Edge Computing provides an IT service environment and cloud-computing capabilities at the edge of the mobile network, within the Radio Access Network (RAN) and in close proximity to mobile subscribers. The aim is to reduce latency, ensure highly efficient network operation and service delivery, and offer an improved user experience. Mobile Edge Computing is a natural development in the evolution of mobile base stations and the convergence of IT and telecommunications networking.
    [Show full text]
  • NSP Network Services Platform Release 18.6 Glossary
    NSP Network Services Platform Release 18.6 Glossary 3HE-14073-AAAB-TQZZA Issue 1 June 2018 NSP Legal notice Nokia is a registered trademark of Nokia Corporation. Other products and company names mentioned herein may be trademarks or tradenames of their respective owners. The information presented is subject to change without notice. No responsibility is assumed for inaccuracies contained herein. © 2018 Nokia. Release 18.6 June 2018 2 3HE-14073-AAAB-TQZZA Issue 1 About this document NSP Glossary 1 About this document 1.1 Purpose The NSP Glossary defines terms, acronyms, and initialisms used in the NSP documentation. Glossary entries that are marked with an asterisk (*) are reproduced with permission from LTE – The UMTS Long Term Evolution: A Pocket Dictionary of Acronyms, © 2009 Stefania Sesia, Issam Toufik, and Matthew Baker, available at http://www.wiley.com/go/sesia_theumts. 1.2 Document support Customer documentation and product support URLs: • Customer Documentation Welcome Page • Technical support • Documentation feedback Release 18.6 June 2018 Issue 1 3HE-14073-AAAB-TQZZA 3 About this document NSP Release 18.6 June 2018 4 3HE-14073-AAAB-TQZZA Issue 1 Glossary NSP Glossary Numerics 10/100/1000Base-FX A networking standard that supports data transfer rates of up to 1000 Mb/s over two optical fibers. 10/100/1000Base-TX An Ethernet technology that supports data transfer rates of up to 1000 Mb/s using twisted-pair copper wire. 10/100Base-TX An Ethernet standard that supports data transfer rates of up to 100 Mb/s using two pairs of data-grade, twisted-pair copper wire.
    [Show full text]
  • SYNDICATION Partner with Future OUR PURPOSE
    SYNDICATION Partner With Future OUR PURPOSE We change people’s lives through “sharing our knowledge and expertise with others, making it easy and fun for them to do what they want ” CONTENTS ● The Future Advantage ● Syndication ● Our Portfolio ● Company History THE FUTURE ADVANTAGE Syndication Our award-winning specialist content can be used to further enrich the experience of your audience. Whilst at the same time saving money on editorial costs. We have 4 million+ images and 670,000 articles available for reuse. And with the support of our dedicated in-house licensing team, this content can be seamlessly adapted into a range of formats such as newspapers, magazines, websites and apps. The Core Benefits: ● Internationally transferable content for a global audience ● Saving costs on editorial budget so improving profit margin ● Immediate, automated and hassle-free access to content via our dedicated content delivery system – FELIX – or custom XML feeds ● Friendly, dynamic and forward-thinking licensing team available to discuss editorial requirements #1 ● Rich and diverse range of material to choose from ● Access to exclusive content written by in-house expert editorial teams Monthly Bookazines Global monthly Social Media magazines users Fans 78 2000+ 148m 52m Source: Google Search 2018 SYNDICATION ACCESS the entire Future portfolio of market leading brands within one agreement. Our in context licence gives you the ability to publish any number of features, reviews or interviews to boost the coverage and quality of your publications. News Features Interviews License the latest news from all our Our brands speak to the moovers and area’s of interest from a single shakers within every subject we write column to a Double Page spread.
    [Show full text]