Aspects of Spatiotemporal Integration in Bat Sonar
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cognitive Abilities in Human Echolocation
Umeå University Department of Psychology Master Thesis VT2010 Cognitive Abilities in Human Echolocation Oskar Andersson Supervisor: Bo Schenkman Steven Nordin Abstract The human ability to echolocate differs between individuals. Blind perform significantly better then sighted. There is very limited research on psychological factors underlying this ability. This study is based on earlier research by Schenkman and Nilsson (2010). The research questions in the present study were whether blind individuals perform better then sighted on general cognitive tasks, if people who perform well on echolocation tasks, also perform well on general cognitive tasks, and is there a correlation between performance on echolocation tasks and general cognitive tasks? Participants were 8 blind (5 female and 3 men) and 4 sighted (3 female and 1 male). Range of age was 36 – 65 years. Cognitive test used were Digit Span, California Verbal Learning Test and an auditiv reaction time test. The blind performed significantly better than the sighted on learning over trials. There was significant difference in focused attention, working memory and learning over trials between individuals who performed well on echolocation tasks and the rest of the sample. There was a positive correlation between learning over trials and individuals ability to echolocate. The conclusion of this report is that blind individuals perform better on learning over trials and that people who perform well on echolocation tasks are superior in the cognitive abilities focused attention, working memory and learning over trials. Cognitive Abilities in Human Echolocation Oskar Andersson Echolocation is often associated with mammals like bats, dolphins and whales. These animals all hold the ability to echolocate with great precision, and echolocation is used for orientation and hunting. -
Haptic Navigation Aids for the Visually Impaired
DOCTORAL T H E SIS Department of Computer Science, Electrical and Space Engineering Division of EISLAB Daniel Innala Ahlmark Haptic Navigation Aids for the Visually Impaired Aids for the Ahlmark Haptic Navigation Daniel Innala ISSN 1402-1544 Haptic Navigation Aids for the ISBN 978-91-7583-605-8 (print) ISBN 978-91-7583-606-5 (pdf) Visually Impaired Luleå University of Technology 2016 Daniel Innala Ahlmark Industrial Electronics Haptic Navigation Aids for the Visually Impaired Daniel Innala Ahlmark Dept. of Computer Science, Electrical and Space Engineering Lule˚aUniversity of Technology Lule˚a,Sweden Supervisors: Kalevi Hyypp¨a,Jan van Deventer, Ulrik R¨oijezon European Union Structural Funds Printed by Luleå University of Technology, Graphic Production 2016 ISSN 1402-1544 ISBN 978-91-7583-605-8 (print) ISBN 978-91-7583-606-5 (pdf) Luleå 2016 www.ltu.se To my mother iii iv Abstract Assistive technologies have improved the situation in society for visually impaired individ- uals. The rapid development the last decades have made both work and education much more accessible. Despite this, moving about independently is still a major challenge, one that at worst can lead to isolation and a decreased quality of life. To aid in the above task, devices exist to help avoid obstacles (notably the white cane), and navigation aids such as accessible GPS devices. The white cane is the quintessential aid and is much appreciated, but solutions trying to convey distance and direction to obstacles further away have not made a big impact among the visually impaired. One fundamental challenge is how to present such information non-visually. -
Visuospatial Assistive Device Art: Expanding Human Echolocation Ability
Visuospatial Assistive Device Art: Expanding Human Echolocation Ability March 2018 Aisen Carolina Chacin 1 Visuospatial Assistive Device Art: Expanding Human Echolocation Ability School of Integrative and Global Majors Ph.D. Program in Empowerment Informatics University of Tsukuba March2018 Aisen Carolina Chacin 2 Abstract: This study investigates human echolocation through sensory substitution devices for the augmentation of visuospatial skills, thus replacing vision through acoustic and haptic interfaces. These concepts are tested through two case studies; Echolocation Headphones and IrukaTact. The Echolocation Headphones are a pair of goggles that disable the participant's vision. They emit a focused sound beam which activates the space with directional acoustic reflection. The directional properties of this parametric sound provide the participant a focal echo. This directionality is similar to the focal point of vision, giving the participant the ability to selectively gain an audible imprint of their environment. This case study analyzes the effectiveness of this wearable sensory extension for aiding auditory spatial location in three experiments; optimal sound type and distance for object location, perceptual resolution by just noticeable difference, and goal-directed spatial navigation for open pathway detection. The second case study is the IrukaTact haptic module, a wearable device for underwater tactile stimulation of the fingertips with a jet-stream of varying pressure. This haptic module utilizes an impeller pump which suctions surrounding water and propels it onto the volar pads of the finger, providing a hybrid feel of vibration and pressure stimulation. IrukaTact has an echo-haptic utility when it is paired with a sonar sensor and linearly transposing its distance data into tactile pressure feedback. -
M.A. Maciver's Dissertation
The computational neuroethology of weakly electric fish body modeling, motion analysis, and sensory signal estimation R s R s C R s i C s 1 Z = + X prey + + s 1/ Rp 1/ Xp 1/ Zs −ρ ρ E ⋅r 1 p / w δφ(r) = fish a3 3 + ρ ρ r 1 2 p / w − t − t = 1/ v + + − 1/ v + vt vt−1e g(1 mt )(1 e ) nt − t = 1/ w wt wt−1e = − st H(vt wt ) = + ∆ ⋅ wt wt w st Malcolm Angus MacIver THE COMPUTATIONAL NEUROETHOLOGY OF WEAKLY ELECTRIC FISH: BODY MODELING, MOTION ANALYSIS, AND SENSORY SIGNAL ESTIMATION BY MALCOLM ANGUS MACIVER B.Sc., University of Toronto, 1991 M.A., University of Toronto, 1992 THESIS Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neuroscience in the Graduate College of the University of Illinois at Urbana-Champaign, 2001 Urbana, Illinois c Copyright by Malcolm Angus MacIver, 2001 ABSTRACT Animals actively influence the content and quality of sensory information they acquire through the positioning of peripheral sensory surfaces. Investigation of how the body and brain work together for sensory acquisition is hindered by 1) the limited number of techniques for tracking sensory surfaces, few of which provide data on the position of the entire body surface, and by 2) our inability to measure the thousands of sensory afferents stimulated during behav- ior. I present research on sensory acquisition in weakly electric fish of the genus Apteronotus, where I overcame the first barrier by developing a markerless tracking system and have de- ployed a computational approach toward overcoming the second barrier. -
Parahippocampal Cortex Is Involved in Material Processing Via Echoes in Blind Echolocation Experts ⇑ Jennifer L
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Vision Research 109 (2015) 139–148 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Parahippocampal cortex is involved in material processing via echoes in blind echolocation experts ⇑ Jennifer L. Milne a, Stephen R. Arnott b, Daniel Kish c, Melvyn A. Goodale a, , Lore Thaler d a The Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada b The Rotman Research Institute, Baycrest, Toronto, Ontario, Canada c World Access for the Blind, Encino, CA, United States d Department of Psychology, Durham University, Durham, United Kingdom article info abstract Article history: Some blind humans use sound to navigate by emitting mouth-clicks and listening to the echoes that Received 1 May 2014 reflect from silent objects and surfaces in their surroundings. These echoes contain information about Received in revised form 1 July 2014 the size, shape, location, and material properties of objects. Here we present results from an fMRI exper- Available online 30 July 2014 iment that investigated the neural activity underlying the processing of materials through echolocation. Three blind echolocation experts (as well as three blind and three sighted non-echolocating control par- Keywords: ticipants) took part in the experiment. First, we made binaural sound recordings in the ears of each echo- Texture locator while he produced clicks in the presence of one of three different materials (fleece, synthetic Vision foliage, or whiteboard), or while he made clicks in an empty room. During fMRI scanning these recordings Audition Multisensory were played back to participants. -
Durham Research Online
Durham Research Online Deposited in DRO: 25 August 2016 Version of attached le: Accepted Version Peer-review status of attached le: Not peer-reviewed Citation for published item: Thaler, Lore (2015) 'Using sound to get around - discoveries in human echolocation.', Observer., 28 (10). Further information on publisher's website: http://www.psychologicalscience.org/index.php/publications/observer/2015/december-15/using-sound-to-get- around.html Publisher's copyright statement: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Author Bio: Lore Thaler is a lecturer at Durham University, United Kingdom. Her research focuses on human echolocation and vision. She can be contacted at [email protected]. Using Sound to Get Around Discoveries in Human Echolocation By Lore Thaler The sight of a blind person snapping her fingers, making clicking sounds with her tongue, or stomping her feet might draw stares on a street or in a subway station, but it’s the type of behaviour that is opening up a vibrant area of research in psychology. -
Seeing with Sound: Investigating the Behavioural Applications and Neural Correlates of Human Echolocation
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-26-2014 12:00 AM Seeing with sound: Investigating the behavioural applications and neural correlates of human echolocation Jennifer L. Milne The University of Western Ontario Supervisor Dr. Melvyn A. Goodale The University of Western Ontario Graduate Program in Neuroscience A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Jennifer L. Milne 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Behavior and Behavior Mechanisms Commons, Cognition and Perception Commons, and the Psychological Phenomena and Processes Commons Recommended Citation Milne, Jennifer L., "Seeing with sound: Investigating the behavioural applications and neural correlates of human echolocation" (2014). Electronic Thesis and Dissertation Repository. 2122. https://ir.lib.uwo.ca/etd/2122 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. SEEING WITH SOUND: INVESTIGATING THE BEHAVIOURAL APPLICATIONS AND NEURAL CORRELATES OF HUMAN ECHOLOCATION (Thesis format: Integrated Article) by Jennifer L. Milne Graduate Program in Neuroscience A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Jennifer L. Milne, 2014 Abstract Some blind humans use the reflected echoes from self-produced signals to perceive their silent surroundings. Although the use of echolocation is well documented in animals such as bats and dolphins, comparatively little is known about human echolocation. -
From Visual to Aural Space: a Change of Paradigm?*
FROM VISUAL TO AURAL SPACE: A CHANGE OF PARADIGM?* FREDERICO ALBERTO B. MACÊDO Resumo: neste artigo discuto como a influência de Visualism levou à concepção equivocada segundo a qual o espaço é principalmente um domínio visual. Diferentes abordagens para a percepção mostram evidências de que todos os sentidos estão envolvidos na percepção do espaço. Pesquisas recentes sobre percepção auditiva e localização humana também mostram evidências de que o sistema au- ditivo tem a capacidade de detectar e processar as infor- mações espaciais em um nível insuspeito por pesquisadores que consideravam a audição como uma sensação com pou- cas informações sobre as relações espaciaia. Na conclusão, sugerem que a mudança de visual para o espaço auditivo pode representar mais do que simplesmente uma mudança de variáveis, mas um sintoma de uma mudança cultural mais profunda, uma consideração mais equilibrada dos sentidos como um todo, refletida na antiga idéia de sensus communis. Palavras-chave: Percepção auditiva do espaço. Percep- ção. Percepção espacial. n order to describe space as an aural domain, the first , Goiânia, v. 38, n. 01/03, p. 151-172, jan./mar. 2011. 38, n. 01/03, p. 151-172, jan./mar. , Goiânia, v. step is to deconstruct, or overcome, the idea that space is primarily a visual domain. The emphasis on the visual estudos I sense exerted a powerful influence on the development of western philosophy. This influence also permeated the stud- 151 ies of perception. As happened with the study of all senses other than the visual, so the auditory system has often been described in its relation with vision, and in many cases research on auditory perception has been conceived of as an attempt to transpose to the aural domain the principles and mechanisms of visual per- ception. -
The Evolution of Echolocation for Predation
Symp. zool. Soc. Land. (1993) No. 65: 39-63 The evolution of echolocation for predation J. R. SPEAKMAN DepartmentofZoowgy University of Aberdeen Aberdeen AB9 2TN, UK Synopsis Active detection of food items by echolocation has some obvious advantages over passive detection, since it affords independence from ambient light and sound levels. For predatory animals, however, echolocation would also appear to have a significant disadvanrage-i-the echolocation calls might alert prey to the predator's presence. Surprisingly, therefore, all but two of the different groups of vertebrates that have evolved echolocation are predatory. Despite the diversity of predatory taxa in which echolocation has evolved it is still a relatively uncommon form of perception. It has been suggested that a major constraint on the evolution of echolocation is its high energy cost, due to rapid attenuation of sound in air. The cost of producing echolocation calls has been measured in insectivorous bats, whilst hanging at rest. These measures confirm that echolocation is extremely costly. However, bats normally echolocate in flight which also has a high cost. How bats cope with the high cost of echolocation, when it is combined with flight, is therefore of extreme interest. Measures of the energy cost of flight of small echolocating bats ggest that the cost is no greater than that for non-echolocating birds and bats. The son for this apparent economy is that the same muscles which flap the wings also tilate the lungs, and produce the pulse of breath which generates the echolocation For a bat in flight, therefore, the additional cost of echolocating is very low, sr for a bat on the ground, and presumably other terrestrial vertebrates, the cost ry high. -
Evidence for Mutual Allocation of Social Attention Through Interactive Signaling in a Mormyrid Weakly Electric Fish
Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish Martin Worma,1, Tim Landgrafb, Julia Prumea, Hai Nguyenb, Frank Kirschbaumc, and Gerhard von der Emdea aInstitut für Zoologie, Neuroethologie/Sensorische Ökologie, Universität Bonn, 53115 Bonn, Germany; bInstitut für Informatik, Fachbereich Informatik und Mathematik, Freie Universität Berlin, 14195 Berlin, Germany; and cBiologie und Ökologie der Fische, Lebenswissenschaftliche Fakultät, Humboldt-Universität-zu Berlin, 10115 Berlin, Germany Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved May 16, 2018 (received for review January 26, 2018) Mormyrid weakly electric fish produce electric organ discharges responses from a conspecific. We solved both problems by using (EODs) for active electrolocation and electrocommunication. These a freely moving robotic fish capable of emitting either predefined pulses are emitted with variable interdischarge intervals (IDIs) or dynamic sequences of playback EODs in an interactive be- resulting in temporal discharge patterns and interactive signaling havioral experiment with single individuals of the weakly electric episodes with nearby conspecifics. However, unequivocal assign- fish Mormyrus rume proboscirostris. ment of interactive signaling to a specific behavioral context has Robotic fish have been successfully employed to investigate the proven to be challenging. Using an ethorobotical approach, we features determining attraction between individual fish (14–16), as confronted single individuals of weakly electric Mormyrus rume well as collective decision making and internal dynamics in groups – proboscirostris with a mobile fish robot capable of interacting of fish in shoals (17 22). Similar experiments have demonstrated both physically, on arbitrary trajectories, as well as electrically, that mormyrids are attracted to a mobile fish replica playing back by generating echo responses through playback of species- electric signals (23, 24). -
Human Echolocation by Santani Teng a Dissertation Submitted in Partial
Human Echolocation By Santani Teng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Psychology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Whitney, Chair Professor Frederic Theunissen Professor Michael Silver Fall 2013 Abstract Human Echolocation by Santani Teng Doctor of Philosophy in Psychology University of California, Berkeley Professor David Whitney, Chair The use of active natural echolocation as a mobility aid for blind humans has received increased scientific and popular attention in recent years (Engber, 2006; Kreiser, 2006; NPR, 2011), in part due to a focus on several blind individuals who have developed remarkable expertise. However, perhaps surprisingly, the history of empirical human echolocation research is not much younger than the era of echolocation research (cf. Griffin, 1958). Nevertheless, compared to its bat and cetacean counterparts (Thomas et al., 2004), the field today remains in a state of comparative infancy. Until quite recently, nearly the entire body of human echolocation research has been behavioral in nature, with little insight into perceptual and neural mechanisms. Thus, the goal of this manuscript is to broadly integrate research findings in human echolocation across time, levels of analysis, and methodology. We will define human echolocation as it has been operationalized in research and practice, review behavioral goals served by echolocation, and identify putative auditory cues and neural mechanisms underpinning human echolocation. We examine some individual differences in echolocation performance, particularly involving blind compared to sighted persons. We present two studies in detail, addressing the spatial acuity of echolocation skills in sighted volunteers and blind experts. -
Echo-House: Exploring a Virtual Environment by Using Echolocation
Echo-house: Exploring a virtual environment by using echolocation Author Andrade, R, Baker, S, Waycott, J, Vetere, F Published 2018 Conference Title OzCHI '18: Proceedings of the 30th Australian Conference on Computer-Human Interaction Version Accepted Manuscript (AM) DOI https://doi.org/10.1145/3292147.3292163 Copyright Statement © ACM, 2018. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in OzCHI '18: Proceedings of the 30th Australian Conference on Computer-Human Interaction, ISBN: 978-1-4503-6188-0, https://doi.org/10.1145/3292147.3292163 Downloaded from http://hdl.handle.net/10072/402097 Griffith Research Online https://research-repository.griffith.edu.au Echo-House: Exploring a Virtual Environment by Using Echolocation Ronny Andrade Steven Baker Jenny Waycott The University ofMelbourne The University ofMelbourne The University ofMelbourne Australia Australia Australia [email protected] [email protected] [email protected] Frank Vetere The University ofMelbourne Australia [email protected] ABSTRACT • Human-centered computing~Auditory feedback • Human-centered computing~Accessibility systems and The graphics-intensive nature of most virtual tools environments (VEs) prevents many people with visual impairment from being able to successfully explore them. KEYWORDS A percentage of the population of people with visual impairment are known to use echolocation —sound waves Visual impairment, echolocation, virtual environments, and their reflections— to better explore their exploration; games; accessibility. surroundings. In this paper, we describe the development of an echolocation-enabled VE (Echo-House) and evaluate ACM Reference format: the feasibility of using echolocation as a novel technique Ronny Andrade, Steven Baker, Jenny Waycott and Frank Vetere.