A Device for Human Ultrasonic Echolocation Jascha Sohl-Dickstein, Santani Teng, Benjamin M

Total Page:16

File Type:pdf, Size:1020Kb

A Device for Human Ultrasonic Echolocation Jascha Sohl-Dickstein, Santani Teng, Benjamin M 1 A device for human ultrasonic echolocation Jascha Sohl-Dickstein, Santani Teng, Benjamin M. Gaub, Chris C. Rodgers, Crystal Li, Michael R. DeWeese and Nicol S. Harper Abstract—Representing and interacting with the external much higher sound frequencies for their echolocation, and world constitutes a major challenge for persons who are blind or have specialized capabilities to detect time delays in sounds. visually impaired. Nonvisual sensory modalities such as audition The most sophisticated echolocation abilities are found in and somatosensation assume primary importance. Some non- human species, such as bats and dolphins, sense by active echolo- microchiropteran bats (microbats) and odontocetes (dolphins cation, in which emitted acoustic pulses and their reflections are and toothed whales). For example, microbats catch insects on used to sample the environment. Active echolocation is also used the wing in total darkness, and dolphins hunt fish in opaque by some blind humans, who use signals such as tongue clicks water. Arguably simpler echolocation is also found in oilbirds, or cane taps as mobility aids. The ultrasonic pulses employed swiftlets, Rousettas megabats, some shrews and tenrecs, and by echolocating animals have several advantages over those used by humans, including higher spatial resolution and fewer even rats [1]. Microbats use sound frequencies ranging from diffraction artifacts. However, they are unavailable to unaided 25-150 kHz in echolocation, and use several different kinds of humans. Here we present a device that combines principles of echolocation calls [2]. One call, the broadband call or chirp, a ultrasonic echolocation and spatial hearing to present human brief tone (< 5 ms) sweeping downward over a wide frequency users with environmental cues that are i) not otherwise available range, is used for localization at close range. A longer duration to the human auditory system and ii) richer in object and spatial information than the more heavily processed sonar cues call, the narrowband call, which with a narrower frequency of other assistive devices. The device consists of a wearable range is used for detection and classification of objects typ- headset with an ultrasonic emitter and stereo microphones ically at longer range. In contrast to microbats, odontocetes affixed with artificial pinnae. The echoes of ultrasonic pulses use clicks; shorter in duration than bat calls and with sound are recorded and time-stretched to lower their frequencies into frequencies up to 200 kHz [3]. Odontocetes may use shorter the human auditory range before being played back to the user. We tested performance among naive and experienced sighted calls as sound travels ∼ 4 times faster in water, whereas bat volunteers using a set of localization experiments. Naive subjects calls may be longer to have sufficient energy for echolocation were able to make laterality and distance judgments, suggesting in air. Dolphins can even use echolocation to detect features that the echoes provide innately useful information without that are unavailable via vision: for example, dolphins can tell prior training. Naive subjects were unable to make elevation visually identical hollow objects apart based on differences in judgments. However, in localization testing one trained subject demonstrated an ability to judge elevation as well. This suggests thickness [4]. that the device can be used to effectively examine the environment Humans are not typically considered among the echolocat- and that the human auditory system can rapidly adapt to these ing species. Remarkably, however, some blind persons have artificial echolocation cues. We contend that this device has the demonstrated the use of active echolocation in their daily lives, potential to provide significant aid to blind people in interacting interpreting reflections from self-generated tongue clicks for with their environment. such tasks as obstacle detection [5], distance discrimination Index Terms—echolocation, ultrasonic, blind, assistive device [6], and object localization [7], [8]. The underpinnings of human echolocation in blind (and sighted) people remain poorly characterized, though some informative cues [9], neural I. INTRODUCTION correlates [10], and models [11] have been proposed. While In environments where vision is ineffective, some animals the practice of active echolocation via tongue clicks is not have evolved echolocation — perception using reflections of commonly taught, it is recognized as an orientation and self-made sounds. Remarkably, some blind humans are also mobility method [12], [13]. However, most evidence in the able to echolocate to an extent, frequently with vocal clicks. existing literature suggests that human echolocation ability, However, animals specialized for echolocation typically use even in blind, trained experts, does not approach the precision and versatility found in organisms with highly specialized Jascha Sohl-Dickstein is with Stanford University and Khan Academy. echolocation mechanisms. e-mail: [email protected]. An understanding of the cues underpinning human auditory Santani Teng is with Massachusetts Institute of Technology. spatial perception is crucial to the design of an artificial e-mail: [email protected] Benjamin M. Gaub is with University of California, Berkeley. echolocation device. Lateralization of sound sources depends e-mail: [email protected] heavily on binaural cues in the form of timing and intensity Chris C. Rodgers is with Columbia University. differences between sounds arriving at the two ears. For ver- e-mail: [email protected] Crystal Li is with University of California, Berkeley. tical and front/back localization, the major cues are direction- e-mail: [email protected] dependent spectral transformations of the incoming sound Michael R. DeWeese is with University of California, Berkeley. induced by the convoluted shape of the pinna, the visible outer e-mail: [email protected] Nicol S. Harper is with University of Oxford. portion of the ear [14]. Auditory distance perception is less e-mail: [email protected] well characterized than the other dimensions, though evidence 2 suggests that intensity and the ratio of direct-to-reverberant Device&layout& energy play major roles in distance judgments [15]. Notably, Le6&earpiece& the ability of humans to gauge distance using pulse-echo Le6& Ultrasonic& ar7ficial& delays has not been well characterized, though these serve microphone& Computer& pinna& Echo& as the primary distance cues for actively echolocating animals 1) Sends&chirp&train&to& speaker&& [16]. 2) Slows&sound&from& Ultrasonic& microphone&&25C Chirp& Object& speaker& Here we present a device, referred to as the Sonic Eye, that fold&a6er&each&click& uses a forehead-mounted speaker to emit ultrasonic “chirps” and&sends&to& corresponding& (FM sweeps) modeled after bat echolocation calls. The echoes earpiece& Right& Echo& Ultrasonic& ar7ficial& microphone& are recorded by bilaterally mounted ultrasonic microphones, pinna& each mounted inside an artificial pinna, also modeled after (a) Right&earpiece& bat pinnae to produce direction-dependent spectral cues. After each chirp, the recorded chirp and reflections are played back 1 to the user at m of normal speed, where m is an adjustable magnification factor. This magnifies all temporally based cues linearly by a factor of m and lowers frequencies into the human audible range. For empirical results reported here, m is 20 or 25 as indicated. That is, cues that are normally too high or too fast for the listener to use are brought into the usable range simply by replaying them more slowly. (b) (c) Although a number of electronic travel aids that utilize sonar have been developed (e.g., [17], [18], [19], [20]), very few Fig. 1. (a) Diagram of components and information flow. (b) Photograph provide information other than range-finding or a processed of the current hardware. (c) Photograph of one of the artificial pinnae used, modeled after a bat ear. localization cue, and none appears to be in common use. Studies of human hearing suggest that it is very adaptable to altered auditory cues, such as those provided by different binaural spacing or altered pinna shapes. Additionally, in blind subjects the visual cortex can be recruited to also represent auditory cues [10]. Our device is designed to utilize the intrinsic cue processing and learning capacity in the human auditory system [21], [22]. Rather than provide a heavily processed input to the user as other devices have, which ulti- mately will be relatively impoverished in terms of information about the world, we provide a minimally processed input that, while initially challenging to use, has the capacity to be much more informative about the world and integrate better with the innate human spatial hearing system. The relatively raw echoes contain not just distance information but vertical Fig. 2. Schematic of waveforms at several processing stages, from ultrasonic and horizontal location, as well as texture, geometric, and speaker output to stretched pulse-echo signal headphone output presented to material cues. Behavioral testing suggests that novice users user. Red traces correspond to the left ear signal, and blue traces to right ear can quickly judge the laterality and distance of objects, and signal. with experience can also judge elevation, and that the Sonic Eye thus demonstrates potential as an assistive mobility device. A preliminary version of this work was presented in poster tapered using a cosine
Recommended publications
  • Cognitive Abilities in Human Echolocation
    Umeå University Department of Psychology Master Thesis VT2010 Cognitive Abilities in Human Echolocation Oskar Andersson Supervisor: Bo Schenkman Steven Nordin Abstract The human ability to echolocate differs between individuals. Blind perform significantly better then sighted. There is very limited research on psychological factors underlying this ability. This study is based on earlier research by Schenkman and Nilsson (2010). The research questions in the present study were whether blind individuals perform better then sighted on general cognitive tasks, if people who perform well on echolocation tasks, also perform well on general cognitive tasks, and is there a correlation between performance on echolocation tasks and general cognitive tasks? Participants were 8 blind (5 female and 3 men) and 4 sighted (3 female and 1 male). Range of age was 36 – 65 years. Cognitive test used were Digit Span, California Verbal Learning Test and an auditiv reaction time test. The blind performed significantly better than the sighted on learning over trials. There was significant difference in focused attention, working memory and learning over trials between individuals who performed well on echolocation tasks and the rest of the sample. There was a positive correlation between learning over trials and individuals ability to echolocate. The conclusion of this report is that blind individuals perform better on learning over trials and that people who perform well on echolocation tasks are superior in the cognitive abilities focused attention, working memory and learning over trials. Cognitive Abilities in Human Echolocation Oskar Andersson Echolocation is often associated with mammals like bats, dolphins and whales. These animals all hold the ability to echolocate with great precision, and echolocation is used for orientation and hunting.
    [Show full text]
  • Haptic Navigation Aids for the Visually Impaired
    DOCTORAL T H E SIS Department of Computer Science, Electrical and Space Engineering Division of EISLAB Daniel Innala Ahlmark Haptic Navigation Aids for the Visually Impaired Aids for the Ahlmark Haptic Navigation Daniel Innala ISSN 1402-1544 Haptic Navigation Aids for the ISBN 978-91-7583-605-8 (print) ISBN 978-91-7583-606-5 (pdf) Visually Impaired Luleå University of Technology 2016 Daniel Innala Ahlmark Industrial Electronics Haptic Navigation Aids for the Visually Impaired Daniel Innala Ahlmark Dept. of Computer Science, Electrical and Space Engineering Lule˚aUniversity of Technology Lule˚a,Sweden Supervisors: Kalevi Hyypp¨a,Jan van Deventer, Ulrik R¨oijezon European Union Structural Funds Printed by Luleå University of Technology, Graphic Production 2016 ISSN 1402-1544 ISBN 978-91-7583-605-8 (print) ISBN 978-91-7583-606-5 (pdf) Luleå 2016 www.ltu.se To my mother iii iv Abstract Assistive technologies have improved the situation in society for visually impaired individ- uals. The rapid development the last decades have made both work and education much more accessible. Despite this, moving about independently is still a major challenge, one that at worst can lead to isolation and a decreased quality of life. To aid in the above task, devices exist to help avoid obstacles (notably the white cane), and navigation aids such as accessible GPS devices. The white cane is the quintessential aid and is much appreciated, but solutions trying to convey distance and direction to obstacles further away have not made a big impact among the visually impaired. One fundamental challenge is how to present such information non-visually.
    [Show full text]
  • Visuospatial Assistive Device Art: Expanding Human Echolocation Ability
    Visuospatial Assistive Device Art: Expanding Human Echolocation Ability March 2018 Aisen Carolina Chacin 1 Visuospatial Assistive Device Art: Expanding Human Echolocation Ability School of Integrative and Global Majors Ph.D. Program in Empowerment Informatics University of Tsukuba March2018 Aisen Carolina Chacin 2 Abstract: This study investigates human echolocation through sensory substitution devices for the augmentation of visuospatial skills, thus replacing vision through acoustic and haptic interfaces. These concepts are tested through two case studies; Echolocation Headphones and IrukaTact. The Echolocation Headphones are a pair of goggles that disable the participant's vision. They emit a focused sound beam which activates the space with directional acoustic reflection. The directional properties of this parametric sound provide the participant a focal echo. This directionality is similar to the focal point of vision, giving the participant the ability to selectively gain an audible imprint of their environment. This case study analyzes the effectiveness of this wearable sensory extension for aiding auditory spatial location in three experiments; optimal sound type and distance for object location, perceptual resolution by just noticeable difference, and goal-directed spatial navigation for open pathway detection. The second case study is the IrukaTact haptic module, a wearable device for underwater tactile stimulation of the fingertips with a jet-stream of varying pressure. This haptic module utilizes an impeller pump which suctions surrounding water and propels it onto the volar pads of the finger, providing a hybrid feel of vibration and pressure stimulation. IrukaTact has an echo-haptic utility when it is paired with a sonar sensor and linearly transposing its distance data into tactile pressure feedback.
    [Show full text]
  • Parahippocampal Cortex Is Involved in Material Processing Via Echoes in Blind Echolocation Experts ⇑ Jennifer L
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Vision Research 109 (2015) 139–148 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Parahippocampal cortex is involved in material processing via echoes in blind echolocation experts ⇑ Jennifer L. Milne a, Stephen R. Arnott b, Daniel Kish c, Melvyn A. Goodale a, , Lore Thaler d a The Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada b The Rotman Research Institute, Baycrest, Toronto, Ontario, Canada c World Access for the Blind, Encino, CA, United States d Department of Psychology, Durham University, Durham, United Kingdom article info abstract Article history: Some blind humans use sound to navigate by emitting mouth-clicks and listening to the echoes that Received 1 May 2014 reflect from silent objects and surfaces in their surroundings. These echoes contain information about Received in revised form 1 July 2014 the size, shape, location, and material properties of objects. Here we present results from an fMRI exper- Available online 30 July 2014 iment that investigated the neural activity underlying the processing of materials through echolocation. Three blind echolocation experts (as well as three blind and three sighted non-echolocating control par- Keywords: ticipants) took part in the experiment. First, we made binaural sound recordings in the ears of each echo- Texture locator while he produced clicks in the presence of one of three different materials (fleece, synthetic Vision foliage, or whiteboard), or while he made clicks in an empty room. During fMRI scanning these recordings Audition Multisensory were played back to participants.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 25 August 2016 Version of attached le: Accepted Version Peer-review status of attached le: Not peer-reviewed Citation for published item: Thaler, Lore (2015) 'Using sound to get around - discoveries in human echolocation.', Observer., 28 (10). Further information on publisher's website: http://www.psychologicalscience.org/index.php/publications/observer/2015/december-15/using-sound-to-get- around.html Publisher's copyright statement: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Author Bio: Lore Thaler is a lecturer at Durham University, United Kingdom. Her research focuses on human echolocation and vision. She can be contacted at [email protected]. Using Sound to Get Around Discoveries in Human Echolocation By Lore Thaler The sight of a blind person snapping her fingers, making clicking sounds with her tongue, or stomping her feet might draw stares on a street or in a subway station, but it’s the type of behaviour that is opening up a vibrant area of research in psychology.
    [Show full text]
  • Seeing with Sound: Investigating the Behavioural Applications and Neural Correlates of Human Echolocation
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-26-2014 12:00 AM Seeing with sound: Investigating the behavioural applications and neural correlates of human echolocation Jennifer L. Milne The University of Western Ontario Supervisor Dr. Melvyn A. Goodale The University of Western Ontario Graduate Program in Neuroscience A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Jennifer L. Milne 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Behavior and Behavior Mechanisms Commons, Cognition and Perception Commons, and the Psychological Phenomena and Processes Commons Recommended Citation Milne, Jennifer L., "Seeing with sound: Investigating the behavioural applications and neural correlates of human echolocation" (2014). Electronic Thesis and Dissertation Repository. 2122. https://ir.lib.uwo.ca/etd/2122 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. SEEING WITH SOUND: INVESTIGATING THE BEHAVIOURAL APPLICATIONS AND NEURAL CORRELATES OF HUMAN ECHOLOCATION (Thesis format: Integrated Article) by Jennifer L. Milne Graduate Program in Neuroscience A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Jennifer L. Milne, 2014 Abstract Some blind humans use the reflected echoes from self-produced signals to perceive their silent surroundings. Although the use of echolocation is well documented in animals such as bats and dolphins, comparatively little is known about human echolocation.
    [Show full text]
  • From Visual to Aural Space: a Change of Paradigm?*
    FROM VISUAL TO AURAL SPACE: A CHANGE OF PARADIGM?* FREDERICO ALBERTO B. MACÊDO Resumo: neste artigo discuto como a influência de Visualism levou à concepção equivocada segundo a qual o espaço é principalmente um domínio visual. Diferentes abordagens para a percepção mostram evidências de que todos os sentidos estão envolvidos na percepção do espaço. Pesquisas recentes sobre percepção auditiva e localização humana também mostram evidências de que o sistema au- ditivo tem a capacidade de detectar e processar as infor- mações espaciais em um nível insuspeito por pesquisadores que consideravam a audição como uma sensação com pou- cas informações sobre as relações espaciaia. Na conclusão, sugerem que a mudança de visual para o espaço auditivo pode representar mais do que simplesmente uma mudança de variáveis​​, mas um sintoma de uma mudança cultural mais profunda, uma consideração mais equilibrada dos sentidos como um todo, refletida na antiga idéia de sensus communis. Palavras-chave: Percepção auditiva do espaço. Percep- ção. Percepção espacial. n order to describe space as an aural domain, the first , Goiânia, v. 38, n. 01/03, p. 151-172, jan./mar. 2011. 38, n. 01/03, p. 151-172, jan./mar. , Goiânia, v. step is to deconstruct, or overcome, the idea that space is primarily a visual domain. The emphasis on the visual estudos I sense exerted a powerful influence on the development of western philosophy. This influence also permeated the stud- 151 ies of perception. As happened with the study of all senses other than the visual, so the auditory system has often been described in its relation with vision, and in many cases research on auditory perception has been conceived of as an attempt to transpose to the aural domain the principles and mechanisms of visual per- ception.
    [Show full text]
  • Human Echolocation by Santani Teng a Dissertation Submitted in Partial
    Human Echolocation By Santani Teng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Psychology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Whitney, Chair Professor Frederic Theunissen Professor Michael Silver Fall 2013 Abstract Human Echolocation by Santani Teng Doctor of Philosophy in Psychology University of California, Berkeley Professor David Whitney, Chair The use of active natural echolocation as a mobility aid for blind humans has received increased scientific and popular attention in recent years (Engber, 2006; Kreiser, 2006; NPR, 2011), in part due to a focus on several blind individuals who have developed remarkable expertise. However, perhaps surprisingly, the history of empirical human echolocation research is not much younger than the era of echolocation research (cf. Griffin, 1958). Nevertheless, compared to its bat and cetacean counterparts (Thomas et al., 2004), the field today remains in a state of comparative infancy. Until quite recently, nearly the entire body of human echolocation research has been behavioral in nature, with little insight into perceptual and neural mechanisms. Thus, the goal of this manuscript is to broadly integrate research findings in human echolocation across time, levels of analysis, and methodology. We will define human echolocation as it has been operationalized in research and practice, review behavioral goals served by echolocation, and identify putative auditory cues and neural mechanisms underpinning human echolocation. We examine some individual differences in echolocation performance, particularly involving blind compared to sighted persons. We present two studies in detail, addressing the spatial acuity of echolocation skills in sighted volunteers and blind experts.
    [Show full text]
  • Echo-House: Exploring a Virtual Environment by Using Echolocation
    Echo-house: Exploring a virtual environment by using echolocation Author Andrade, R, Baker, S, Waycott, J, Vetere, F Published 2018 Conference Title OzCHI '18: Proceedings of the 30th Australian Conference on Computer-Human Interaction Version Accepted Manuscript (AM) DOI https://doi.org/10.1145/3292147.3292163 Copyright Statement © ACM, 2018. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in OzCHI '18: Proceedings of the 30th Australian Conference on Computer-Human Interaction, ISBN: 978-1-4503-6188-0, https://doi.org/10.1145/3292147.3292163 Downloaded from http://hdl.handle.net/10072/402097 Griffith Research Online https://research-repository.griffith.edu.au Echo-House: Exploring a Virtual Environment by Using Echolocation Ronny Andrade Steven Baker Jenny Waycott The University ofMelbourne The University ofMelbourne The University ofMelbourne Australia Australia Australia [email protected] [email protected] [email protected] Frank Vetere The University ofMelbourne Australia [email protected] ABSTRACT • Human-centered computing~Auditory feedback • Human-centered computing~Accessibility systems and The graphics-intensive nature of most virtual tools environments (VEs) prevents many people with visual impairment from being able to successfully explore them. KEYWORDS A percentage of the population of people with visual impairment are known to use echolocation —sound waves Visual impairment, echolocation, virtual environments, and their reflections— to better explore their exploration; games; accessibility. surroundings. In this paper, we describe the development of an echolocation-enabled VE (Echo-House) and evaluate ACM Reference format: the feasibility of using echolocation as a novel technique Ronny Andrade, Steven Baker, Jenny Waycott and Frank Vetere.
    [Show full text]
  • What Is Human Echolocation? 4
    Table of contents (Laymen) Abstract 3 Chapter 1: What is human echolocation? 4 Chapter 2: The possibilities and impossibilities of echolocation 7 Chapter 3: Analysis of echo properties 11 Chapter 4: Known teaching methods for human echolocation 14 Chapter 5: Perception and processing sensory echolocation input in the brain 17 Chapter 6: Analogy with animal studies on echolocation 22 Cognitive animal studies 22 Genetic animal studies 25 Chapter 7: Conclusions and discussion: influence of recent research on teaching human echolocation 27 Acknowledgements 29 References 30 2 (Laymen) Abstract Echolocation is the ability to locate the objects and creatures around you by means of interpreting the reflected echoes, of sounds that bounce off of them. Human echolocation is a technique useable by any human, but most notably by the blind and visually impaired. The technique is similar to echolocation used by bats and dolphins, which use it to navigate in total darkness and under water. There are two different forms of echolocation: active and passive. Actively producing sounds in order to receive localization information from the reflected echoes, is known as active echolocation. Passive echolocation is the interpretation of reflected echoes from sounds produced by your surroundings. Most blind and visually impaired already use some of the aspects of passive echolocation unconsciously. Active echolocation however, needs to be taught, just like the use of a cane. A trained echolocator can use echolocation to navigate his surroundings far beyond the reach of his cane and identify objects and people as if sighted. The use of this technique requires sensitivity and rapid analysis of the properties of both self- generated sounds and its echoes, as well as the sounds and echoes produced by the surroundings.
    [Show full text]
  • A Summary of Research Investigating Echolocation Abilities of Blind And
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Anglia Ruskin Research Online Kolarik et al. Human echolocation 1 Andrew J. Kolarik (corresponding author) a, Silvia Cirstea b, Shahina Pardhan b, 2 Brian C. J. Moore a 3 4 A summary of research investigating echolocation 5 abilities of blind and sighted humans 6 7 RUNNING TITLE: Human echolocation 8 9 a Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 10 3EB, United Kingdom 11 Andrew J. Kolarik (corresponding author): e-mail: [email protected], Tel.: +44 (0) 1223 12 333584, Fax: +44 (0) 1223 333564 13 Brian C. J. Moore: [email protected] 14 15 b Vision and Eye Research Unit (VERU), Postgraduate Medical Institute, Anglia Ruskin 16 University, Eastings 204, East Road, Cambridge, CB1 1PT, United Kingdom 17 Silvia Cirstea: [email protected] 18 Shahina Pardhan: [email protected] 19 1 Kolarik et al. Human echolocation 20 Abbreviations 21 BOLD Blood oxygen-level dependent 22 D/R Direct-to-reverberant ratio 23 ILD Interaural level difference 24 JND Just-noticeable difference 25 KEMAR Knowles electronics manikin for acoustics research 26 MRI Magnetic resonance imaging 27 PET Positron emission tomography 28 SSD Sensory substitution device 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 2 Kolarik et al. Human echolocation 45 Abstract 46 There is currently considerable interest in the consequences of loss in one sensory modality 47 on the remaining senses. Much of this work has focused on the development of enhanced 48 auditory abilities among blind individuals, who are often able to use sound to navigate 49 through space.
    [Show full text]
  • Auditory-Based Rehabilitation in the Visually Deprived Brain of Optic
    Auditory-based rehabilitation in the visually deprived brain of optic neuropathy patients Carina Sabourin Abstract Due to the extent humans rely on vision, sight restoration approaches are the predominant treatment option con- sidered for optic neuropathy patients with vision loss. This trend is refected in the wealth of research on sight restoration procedures. Patients with irreversible vision loss are left with limited treatment options due to the lack of research on alternative therapeutics and the prevalence of misdiagnosis (Jay 2016; Weerasinghe & Lueck 2016). Compensatory plasticity holds that auditory input can colonize the available cortical space in the visually deprived brain. The resulting enhancements in auditory cognition can be capitalized on by auditory-based rehabilitative tools. Sensory substitution devices have allowed visually deprived individuals to hear ‘colours’ and ‘shapes’, per- ceive their surroundings (Collignon, Champoux, Voss, & Lepore, 2011; Striem-Amit, Guendelman, & Amedi, 2012) and even read ‘written’ letters (Striem-Amit, Cohen, Dehaene, & Amedi, 2012) using soundscapes. VD echolocators navigate through daily obstacles using tongue clicks (Arnott, Thaler, Milne, Kish, & Goodale, 2013; A. J. Kolarik, Cirstea, Pardhan, & Moore, 2014; A. J. Kolarik, Scarfe, Moore, & Pardhan, 2017; Papadopoulos, Edwards, Row- an, & Allen, 2011; Teng, Puri, & Whitney, 2012; Teng & Whitney, 2011; Thaler, Arnott, & Goodale, 2011). Many higher order visual regions retain their functional specialization and adapt to auditory input from soundscapes or tongue clicks (O. Collignon, Lassonde, Lepore, Bastien, & Veraart, 2006; A. J. Kolarik et al. 2014; Striem-Amit & Amedi, 2014; Striem-Amit, Cohen, et al. 2012; Thaler et al. 2011). Due to the interaction between critical periods and plasticity, the therapeutic value of rehabilitative tools can vary with age of onset.
    [Show full text]