Sensory Loss Enhances Multisensory Integration Performance Moa G
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Prefrontal and Posterior Parietal Contributions to the Perceptual Awareness of Touch M
www.nature.com/scientificreports OPEN Prefrontal and posterior parietal contributions to the perceptual awareness of touch M. Rullmann1,2,5, S. Preusser1,5 & B. Pleger1,3,4* Which brain regions contribute to the perceptual awareness of touch remains largely unclear. We collected structural magnetic resonance imaging scans and neurological examination reports of 70 patients with brain injuries or stroke in S1 extending into adjacent parietal, temporal or pre-/frontal regions. We applied voxel-based lesion-symptom mapping to identify brain areas that overlap with an impaired touch perception (i.e., hypoesthesia). As expected, patients with hypoesthesia (n = 43) presented lesions in all Brodmann areas in S1 on postcentral gyrus (BA 1, 2, 3a, 3b). At the anterior border to BA 3b, we additionally identifed motor area BA 4p in association with hypoesthesia, as well as further ventrally the ventral premotor cortex (BA 6, BA 44), assumed to be involved in whole-body perception. At the posterior border to S1, we found hypoesthesia associated efects in attention-related areas such as the inferior parietal lobe and intraparietal sulcus. Downstream to S1, we replicated previously reported lesion-hypoesthesia associations in the parietal operculum and insular cortex (i.e., ventral pathway of somatosensory processing). The present fndings extend this pathway from S1 to the insular cortex by prefrontal and posterior parietal areas involved in multisensory integration and attention processes. Te primary somatosensory cortex (S1) in monkeys can be divided into four Brodmann areas: (BA) 1, 2, 3a, and 3b. Each BA consists of a somatotopically organized map that subserves distinct somatosensory functions1–3. -
Patients and Experiences from the First Danish Flavour Clinic
DANISH MEDICAL JOURNAL Patients and experiences from the first Danish flavour clinic Alexander Fjaeldstad1, 2, 3, Jelena Stankovic2, Mine Onat2, Dovile Stankevice1 & Therese Ovesen1, 2 ABSTRACT duced sense of smell (hyposmia) [1, 2], making olfac INTRODUCTION: Chemosensory dysfunction is common. tory dysfunction a very common disorder. Apart from ORIGINAL ARTICLE Although patients complain of taste loss, the most common these quantitative olfactory disorders, olfactory dis 1) Flavour Clinic, Ear cause of a diminished taste experience is olfactory orders can have a qualitative nature where stimuli are Nose and Throat dysfunction. Department, Holstebro distorted (parosmia) or emerge without apparent stim Regional Hospital, METHODS: Since January 2017, patients with complaints ulation (phantosmia). Around 10% of patients with dis Denmark about smell and/or taste loss have been referred to the torted flavour perception have an actual taste disorder, 2) Flavour Institute, Flavour Clinic by ear, nose and throat (ENT) practitioners. Prior while only a few percent have isolated taste disorders. Department of Clinical to referral, CT, endoscopy of the nasal cavity and allergy Medicine, Aarhus These include loss of taste (ageusia), reduced sense of testing were required. Patients underwent full olfactory and University, Denmark taste (hypogeusia) or distorted sense of taste (parageu 3) Hedonia Research gustatory testing, complete ENT and neurological examination sia). Group, Department of and review of medicine and medical history. Patients also In all cases, the sensory loss can cause a wide range Psychiatry, University of completed different questionnaires such as the Mini Mental Oxford, United Kingdom of complications and consequences for patients. Status Examination, the Sino-Nasal Outcome Test and the Patients often complain of a reduced quality of life due Major Depression Inventory. -
Taste and Smell Disorders in Clinical Neurology
TASTE AND SMELL DISORDERS IN CLINICAL NEUROLOGY OUTLINE A. Anatomy and Physiology of the Taste and Smell System B. Quantifying Chemosensory Disturbances C. Common Neurological and Medical Disorders causing Primary Smell Impairment with Secondary Loss of Food Flavors a. Post Traumatic Anosmia b. Medications (prescribed & over the counter) c. Alcohol Abuse d. Neurodegenerative Disorders e. Multiple Sclerosis f. Migraine g. Chronic Medical Disorders (liver and kidney disease, thyroid deficiency, Diabetes). D. Common Neurological and Medical Disorders Causing a Primary Taste disorder with usually Normal Olfactory Function. a. Medications (prescribed and over the counter), b. Toxins (smoking and Radiation Treatments) c. Chronic medical Disorders ( Liver and Kidney Disease, Hypothyroidism, GERD, Diabetes,) d. Neurological Disorders( Bell’s Palsy, Stroke, MS,) e. Intubation during an emergency or for general anesthesia. E. Abnormal Smells and Tastes (Dysosmia and Dysgeusia): Diagnosis and Treatment F. Morbidity of Smell and Taste Impairment. G. Treatment of Smell and Taste Impairment (Education, Counseling ,Changes in Food Preparation) H. Role of Smell Testing in the Diagnosis of Neurodegenerative Disorders 1 BACKGROUND Disorders of taste and smell play a very important role in many neurological conditions such as; head trauma, facial and trigeminal nerve impairment, and many neurodegenerative disorders such as Alzheimer’s, Parkinson Disorders, Lewy Body Disease and Frontal Temporal Dementia. Impaired smell and taste impairs quality of life such as loss of food enjoyment, weight loss or weight gain, decreased appetite and safety concerns such as inability to smell smoke, gas, spoiled food and one’s body odor. Dysosmia and Dysgeusia are very unpleasant disorders that often accompany smell and taste impairments. -
The Relationship Among Pain, Sensory Loss, and Small Nerve Fibers in Diabetes
Pathophysiology/Complications ORIGINAL ARTICLE The Relationship Among Pain, Sensory Loss, and Small Nerve Fibers in Diabetes 1,2 LEA SORENSEN, RN, BHSC ing our own, have shown this not to be 1 LYNDA MOLYNEAUX, RN the case (9–11). However, in view of the 1,2 DENNIS K. YUE, MD, PHD, FRACP pivotal role played by small nerve fibers in the transmission of pain sensation, fur- ther studies are obviously of importance. OBJECTIVE — Many individuals with diabetes experience neuropathic pain, often without Direct examination of intraepidermal objective signs of large-fiber neuropathy. We examined intraepidermal nerve fibers (IENFs) to nerve fibers (IENF) using skin biopsy evaluate the role of small nerve fibers in the genesis of neuropathic pain. technique is a proven procedure to iden- tify small-fiber abnormalities. Several RESEARCH DESIGN AND METHODS — Twenty-five diabetic subjects with neuro- studies using this technique have shown pathic pain and 13 without were studied. The pain was present for at least 6 months for which the density of IENF to be reduced in id- no other cause could be found. Punch skin biopsies were obtained from the distal leg. IENFs were stained using antibody to protein gene product 9.5 and counted with confocal microscopy. iopathic and nondiabetic neuropathies Neuropathy was graded by vibration perception and cold detection thresholds and the Michigan (12–14). This technique has also shown Neuropathy Screening Instrument. that people with diabetes have reduced IENF and altered nerve morphology RESULTS — In the total cohort, IENF density was significantly lower in those with pain (14,15). However, to our knowledge, no compared with those without (3 [1–6] vs. -
Understanding Perceptions of Variation in Sensory Experience
What do people know about the senses? Understanding perceptions of variation in sensory experience Christine Cuskley*1 and Charalampos Saitis2 1Linguistics and Centre for Behaviour and Evolution, Newcastle University, Newcastle Upon Tyne, UK 2Centre for Digital Music, Queen Mary University London, London, UK *Corresponding author: [email protected] Abstract: Academic disciplines spanning cognitive science, art, and music have made strides in understanding how humans sense and experience the world. We now have a better scientific understanding of how human sensation and perception function both in the brain and in interaction than ever before. However, there is little research on how this high level scientific understanding is translated into knowledge for the public more widely. We present descriptive results from a simple survey and compare how public understanding and perception of sensory experience lines up with scientific understanding. Results show that even in a sample with fairly high educational attainment, many respondents were unaware of fairly common forms of sensory variation. In line with the well- documented under representation of sign languages within linguistics, respondents tended to under- estimate the number of sign languages in the world. We outline how our results represent gaps in public understanding of sensory variation, and argue that filling these gaps can form an important early intervention, acting as a basic foundation for improving acceptance, inclusivity, and accessibility for cognitively diverse populations. Introduction Our senses form our window into the world. Understanding human sensory experience, and how it supports uniquely human endeavours like music and language, is key to a better understanding of what it means to be human. -
Accessibility Guide for Sensory Loss
A simple touch leads to endless possibilities Accessibility Guidelines for Sensory Loss 2020 3rd Edition Table of Contents Introduction .............................................................................................................................. 1 DeafBlind Ontario Services .................................................................................................. 2 About the Accessibility Guidelines for Sensory Loss ....................................................... 3 Acknowledgements .............................................................................................................. 3 Copyright ............................................................................................................................. 3 Accessibility Guidelines ....................................................................................................... 3 Quick Design Tips ................................................................................................................ 4 DIY Orientation and Accessibility Enhancements ................................................................ 4 Deafblindness ....................................................................................................................... 5 What is Deafblindness? ....................................................................................................... 5 Deafblindness and Communication ..................................................................................... 5 Types of Deafblindness ...................................................................................................... -
Olfactory Dysfunction in Neurodegenerative Diseases
Eur J Gen Med 2004; 1(3): 1-11 REVIEW ARTICLE OLFACTORY DYSFUNCTION IN NEURODEGENERATIVE DISEASES M. Hakan Özdener, Nancy E. Rawson Monell Chemical Senses Center, University City Science Center Interest in olfactory dysfunction has increased tremendously in the past decade, in part due to observations that chemosensory impairment is an early symptom of many neurodegenerative diseases. Several features of the olfactory system make it particularly relevant to understanding neurodegeneration/regeneration. First, while being vulnerable to environmental and infectious exposure, the olfactory system has the unique property of ongoing replacement of the olfactory sensory neurons under physiological conditions and following injury. Second, the receptor neurons residing in the periphery are developmentally related to the central nervous system, yet are accessible relatively noninvasively via biopsy from living subjects. Third, olfactory performance can easily be tested in a variety of ways that provide insight into the function of brain areas involved in detection, identification and memory. In addition to providing insights into the etiology or diagnosis of disease, a better understanding of olfactory neurobiology is needed to develop ways to treat olfactory dysfunction, which affects both quality of life and personal safety. At least 3,000,000 Americans suffer from chemosensory disorders and that is likely to grow as the aging segment of the population increases. Olfactory impairment represents a danger to the individuals resulting from inability to detect hazards as natural gas and spoiled food and threatens quality of life through the loss of enjoyment of foods and fragrances. The neurological systems responsible for olfactory function represent perhaps the most diverse, complex and adaptable components of the nervous system. -
Using Multisensory Integration to Understand the Human Auditory Cortex
Chapter 8 Using Multisensory Integration to Understand the Human Auditory Cortex Michael S. Beauchamp Abstract Accurate and meaningful parcellation of the human cortex is an essential endeavor to facilitate the collective understanding of brain functions across sensory and cognitive domains. Unlike in the visual cortex, the details of anatomical and functional mapping associated with the earliest stages of auditory processing in the cortex are still a topic of active debate. Interestingly, aspects of multisensory pro- cessing may provide a unique window to meaningfully subdivide the auditory sen- sory areas by exploring different functional properties other than the traditional tonotopic approach. In this chapter, a tour of the auditory cortical areas is first pro- vided, starting from its core area, Heschl’s gyrus, then moving onto surrounding areas. Evidence from different sources, including postmortem studies of the human auditory cortex, resting-state functional connectivity derived from the Human Connectome Project, and electrocorticographic studies, is presented to better under- stand how different subdivisions of the human auditory cortex and its surrounding areas are involved in auditory and multisensory processing. The chapter concludes with the remaining challenges to account for individual variability in functional anatomy, particularly pertaining to multisensory processing. Keywords Auditory cortex · Cross-modal · Electrocorticography · Functional anatomy · Functional connectivity · Heschl’s gyrus · Human Connectome Project · Sensory integration · Superior temporal sulcus · Temporal cortex 8.1 Introduction The human cerebrum is divided into sensory cortices specialized for the processing of a specific sensory modality, with the visual cortex located in the occipital lobe and the auditory cortex centered on Heschl’s gyrus on the plane of the superior M. -
Paraneoplastic Neurological and Muscular Syndromes
Paraneoplastic neurological and muscular syndromes Short compendium Version 4.5, April 2016 By Finn E. Somnier, M.D., D.Sc. (Med.), copyright ® Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark 30/01/2016, Copyright, Finn E. Somnier, MD., D.S. (Med.) Table of contents PARANEOPLASTIC NEUROLOGICAL SYNDROMES .................................................... 4 DEFINITION, SPECIAL FEATURES, IMMUNE MECHANISMS ................................................................ 4 SHORT INTRODUCTION TO THE IMMUNE SYSTEM .................................................. 7 DIAGNOSTIC STRATEGY ..................................................................................................... 12 THERAPEUTIC CONSIDERATIONS .................................................................................. 18 SYNDROMES OF THE CENTRAL NERVOUS SYSTEM ................................................ 22 MORVAN’S FIBRILLARY CHOREA ................................................................................................ 22 PARANEOPLASTIC CEREBELLAR DEGENERATION (PCD) ...................................................... 24 Anti-Hu syndrome .................................................................................................................. 25 Anti-Yo syndrome ................................................................................................................... 26 Anti-CV2 / CRMP5 syndrome ............................................................................................ -
Visual Experience Is Necessary for the Development of Multisensory Integration
9580 • The Journal of Neuroscience, October 27, 2004 • 24(43):9580–9584 Brief Communication Visual Experience Is Necessary for the Development of Multisensory Integration Mark T. Wallace, Thomas J. Perrault Jr, W. David Hairston, and Barry E. Stein Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 Multisensoryneuronsandtheirabilitytointegratemultisensorycuesdevelopgraduallyinthemidbrain[i.e.,superiorcolliculus(SC)].To examine the possibility that early sensory experiences might play a critical role in these maturational processes, animals were raised in the absence of visual cues. As adults, the SC of these animals were found to contain many multisensory neurons, the large majority of which were visually responsive. Although these neurons responded robustly to each of their cross-modal inputs when presented indi- vidually, they were incapable of synthesizing this information. These observations suggest that visual experiences are critical for the SC to develop the ability to integrate multisensory information and lead to the prediction that, in the absence of such experience, animals will be compromised in their sensitivity to cross-modal events. Key words: cross-modal; dark rearing; multimodal; plasticity; subcortical; superior colliculus Introduction et al., 2000). What is not evident from these studies is whether Neurons in the superior colliculus (SC) have the remarkable ca- these experiences, so critical for the normal development of indi- pacity to integrate information from the different senses, a pro- vidual sensory systems, as well as for the normal cross-modal cess that substantially enhances the salience of the initiating event topography seen in multisensory structures (King et al., 1988; (Meredith and Stein 1983, 1985, 1986; King and Palmer, 1985; Knudsen and Brainard, 1991; Benedetti and Ferro, 1995), play Wallace et al., 1996, 1998; Frens and Van Opstal 1998; Bell et al., any role in the development of the ability of the brain to synthe- 2001; Perrault et al., 2003). -
Performing a Task Jointly Enhances the Sound-Induced Flash Illusion
Performing a task jointly enhances the sound-induced flash illusion Basil Wahn1, Tim Rohe2, Anika Gearhart3, Alan Kingstone1, and Scott Sinnett3 Abstract Our different senses are stimulated continuously. Through multisensory integration, different sensory inputs may or may not be combined into a unitary percept. Simultaneous with this stimulation, people are frequently engaged in social interactions, but how multisensory integration and social processing combine is largely unknown. The present study investigated if, and how, the multisensory sound-induced flash illusion is affected by a social manipulation. In the sound-induced flash illusion, a participant typically receives one visual flash and two auditory beeps and she/he is required to indicate the number of flashes that were perceived. Often, the auditory beeps alter the perception of the flashes such that a participant tends to perceive two flashes instead of one flash. We tested whether performing a flash counting task with a partner (confederate), who was required to indicate the number of presented beeps, would modulate this illusion. We found that the sound-induced flash illusion was perceived significantly more often when the flash counting task was performed with the confederate compared to performing it alone. Yet, we no longer find this effect if visual access between the two individuals is prevented. These findings, combined with previous results, suggest that performing a multisensory task jointly – in this case an audiovisual task – lowers the extent to which an individual attends to visual information – which in turn affects the multisensory integration process. Keywords multisensory processing, social cognition, joint action, sound-induced flash illusion, double flash illusion Introduction In addition, a large body of research in the field of joint action has shown that individual task performance is affected Humans constantly receive input from multiple sensory by performing visual perceptual tasks jointly (Bockler¨ et al. -
Pain Processing in Multisensory Environments
Review article e-Neuroforum 2010 · 1:23–28 Marion Höfle1 · M. Hauck2 · A.K. Engel1 · D. Senkowski1 DOI 10.1007/s13295-010-0004-z 1 Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 2 Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg © Springer-Verlag 2010 Pain processing in multisensory environments Introduction It is well known that different environ- influences between visual and pain stim- mental and cognitive factors can modu- uli. These studies support the notion that Imagine yourself cutting peppers. While late activity in the so-called pain matrix, visual inputs can strongly affect the pro- you watch the pepper getting smaller, i.e., the network of brain regions involved cessing of painful stimuli. Finally, we give your mind might wander and the knife in pain processing [28]. Moreover, there is an outlook for future research on pain pro- accidentally carves the skin of your finger elaborate knowledge of the neurophysio- cessing in multisensory environments. and you feel a sharp pain. Painful events in logical mechanisms underlying pain pro- real-world situations do not occur in iso- cessing, as well as of the principle mecha- Dimensions of pain perception lation but often comprise input from ad- nisms of multisensory integration of non- ditional sensory modalities, i.e., the visual painful information (. Box 1). Surpris- The application of different pain models percept of the knife penetrating the finger. ingly, however, only few studies have sys- (. Box 2) revealed that pain is a complex The successful integration and recall of tematically addressed how stimuli from experience that can be described along painful stimuli in combination with high- other sensory modalities affect nocicep- two major dimensions, which themselves ly informative input of other sensory mo- tive processing.