Multi-cancer molecular signatures and their interrelationships Wei-Yi Cheng1, Tai-Hsien Ou Yang1, Hui Shen2, Peter W. Laird2, Dimitris Anastassiou1 and the Cancer Genome Atlas Research Network 1Columbia Initiative in Systems Biology and Department of Electrical Engineering, Columbia University, New York, NY, USA 2USC Epigenome Center, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Corresponding Author Dimitris Anastassiou, Columbia Initiative in Systems Biology and Department of Electrical Engineering, Columbia University, 1312S.W.Mudd Building, – Mail Code 4712, 500 West 120th Street, USA. Phone:+1212854-3113; E-mail:
[email protected] This is version 2. A previous version of the same article appears at http://arxiv.org/pdf/1306.2584v1.pdf dated June 11, 2013. Please note: The pan-cancer molecular signatures disclosed in this article are the results of applying our data mining algorithm to the rich TCGA “pancan12” data sets from twelve different cancer types. These signatures have been identified as patterns, without any indication about their arXiv:1306.2584v2 [q-bio.QM] 11 Jul 2013 role or potential usefulness. We believe that each of them represents an important biomolecular event in cancer. We invite the cancer research community to contact us and help us interpret each of these pan-cancer signatures, and to investigate them for potential applications in diagnostic, prognostic and therapeutic products applicable to multiple cancer types. There will be additional versions of this article and we expect that the final version will contain many co-authors. 1 Although cancer is known to be characterized by several unifying biological hallmarks, systems biology has had limited success in identifying molecular signatures present in in all types of cancer.