The Role of Collaboration in Everglades Restoration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Everglades: Wetlands Not Wastelands Marjory Stoneman Douglas Overcoming the Barriers of Public Unawareness and the Profit Motive in South Florida
The Everglades: Wetlands not Wastelands Marjory Stoneman Douglas Overcoming the Barriers of Public Unawareness and the Profit Motive in South Florida Manav Bansal Senior Division Historical Paper Paper Length: 2,496 Bansal 1 "Marjory was the first voice to really wake a lot of us up to what we were doing to our quality of life. She was not just a pioneer of the environmental movement, she was a prophet, calling out to us to save the environment for our children and our grandchildren."1 - Florida Governor Lawton Chiles, 1991-1998 Introduction Marjory Stoneman Douglas was a vanguard in her ideas and approach to preserve the Florida Everglades. She not only convinced society that Florida’s wetlands were not wastelands, but also educated politicians that its value transcended profit. From the late 1800s, attempts were underway to drain large parts of the Everglades for economic gain.2 However, from the mid to late 20th century, Marjory Stoneman Douglas fought endlessly to bring widespread attention to the deteriorating Everglades and increase public awareness regarding its importance. To achieve this goal, Douglas broke societal, political, and economic barriers, all of which stemmed from the lack of familiarity with environmental conservation, apathy, and the near-sighted desire for immediate profit without consideration for the long-term impacts on Florida’s ecosystem. Using her voice as a catalyst for change, she fought to protect the Everglades from urban development and draining, two actions which would greatly impact the surrounding environment, wildlife, and ultimately help mitigate the effects of climate change. By educating the public and politicians, she served as a model for a new wave of environmental activism and she paved the way for the modern environmental movement. -
Wilderness on the Edge: a History of Everglades National Park
Wilderness on the Edge: A History of Everglades National Park Robert W Blythe Chicago, Illinois 2017 Prepared under the National Park Service/Organization of American Historians cooperative agreement Table of Contents List of Figures iii Preface xi Acknowledgements xiii Abbreviations and Acronyms Used in Footnotes xv Chapter 1: The Everglades to the 1920s 1 Chapter 2: Early Conservation Efforts in the Everglades 40 Chapter 3: The Movement for a National Park in the Everglades 62 Chapter 4: The Long and Winding Road to Park Establishment 92 Chapter 5: First a Wildlife Refuge, Then a National Park 131 Chapter 6: Land Acquisition 150 Chapter 7: Developing the Park 176 Chapter 8: The Water Needs of a Wetland Park: From Establishment (1947) to Congress’s Water Guarantee (1970) 213 Chapter 9: Water Issues, 1970 to 1992: The Rise of Environmentalism and the Path to the Restudy of the C&SF Project 237 Chapter 10: Wilderness Values and Wilderness Designations 270 Chapter 11: Park Science 288 Chapter 12: Wildlife, Native Plants, and Endangered Species 309 Chapter 13: Marine Fisheries, Fisheries Management, and Florida Bay 353 Chapter 14: Control of Invasive Species and Native Pests 373 Chapter 15: Wildland Fire 398 Chapter 16: Hurricanes and Storms 416 Chapter 17: Archeological and Historic Resources 430 Chapter 18: Museum Collection and Library 449 Chapter 19: Relationships with Cultural Communities 466 Chapter 20: Interpretive and Educational Programs 492 Chapter 21: Resource and Visitor Protection 526 Chapter 22: Relationships with the Military -
Audubon Florida * Everglades Foundation * National Parks Conservation Association * Tropical Audubon Society
Audubon Florida * Everglades Foundation * National Parks Conservation Association * Tropical Audubon Society Joe Collins, Chairman South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida 33406 March 14, 2013 Dear Governing Board: The undersigned organizations welcome the South Florida Water Management District’s (SFWMD) recent focus on improving the health of Biscayne Bay. The ecological and economic importance of Biscayne National Park and Biscayne Bay cannot be overstated. The National Park Service recently released a study that shows Biscayne National Park brings over $34 million in visitor spending to the communities around the park. 1 Small business owners, such as dive boat operators, restaurant owners, hoteliers, and fishermen, among others, depend on Biscayne National Park and Biscayne Bay for their livelihoods. Today you are asked to consider Agenda Item #38, which requests publication of Notice of Proposed Rule for a water reservation to protect water in Nearshore Central Biscayne Bay for the Biscayne Bay Coastal Wetlands restoration project. The development of an adequate water reservation is important for restoration to satisfy cost-share requirements under federal mandate from the Comprehensive Everglades Restoration Plan for Phase 1 of the Biscayne Bay Coastal Wetlands project. We have appreciated the opportunity to participate in the rulemaking process and discuss the rule with staff, although several issues remain unresolved. We recommend that the SFWMD moves forward with the water reservation, provided that language is revised in the proposed rule to: 1. Ensure groundwater withdrawals do not adversely affect existing canal flows. Currently the rule states that “withdrawals of groundwater” do not withdraw reserved water. -
Chapter 17: Archeological and Historic Resources
Chapter 17: Archeological and Historic Resources Everglades National Park was created primarily because of its unique flora and fauna. In the 1920s and 1930s there was some limited understanding that the park might contain significant prehistoric archeological resources, but the area had not been comprehensively surveyed. After establishment, the park’s first superintendent and the NPS regional archeologist were surprised at the number and potential importance of archeological sites. NPS investigations of the park’s archeological resources began in 1949. They continued off and on until a more comprehensive three-year survey was conducted by the NPS Southeast Archeological Center (SEAC) in the early 1980s. The park had few structures from the historic period in 1947, and none was considered of any historical significance. Although the NPS recognized the importance of the work of the Florida Federation of Women’s Clubs in establishing and maintaining Royal Palm State Park, it saw no reason to preserve any physical reminders of that work. Archeological Investigations in Everglades National Park The archeological riches of the Ten Thousand Islands area were hinted at by Ber- nard Romans, a British engineer who surveyed the Florida coast in the 1770s. Romans noted: [W]e meet with innumerable small islands and several fresh streams: the land in general is drowned mangrove swamp. On the banks of these streams we meet with some hills of rich soil, and on every one of those the evident marks of their having formerly been cultivated by the savages.812 Little additional information on sites of aboriginal occupation was available until the late nineteenth century when South Florida became more accessible and better known to outsiders. -
Vegetation Trends in Indicator Regions of Everglades National Park Jennifer H
Florida International University FIU Digital Commons GIS Center GIS Center 5-4-2015 Vegetation Trends in Indicator Regions of Everglades National Park Jennifer H. Richards Department of Biological Sciences, Florida International University, [email protected] Daniel Gann GIS-RS Center, Florida International University, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/gis Recommended Citation Richards, Jennifer H. and Gann, Daniel, "Vegetation Trends in Indicator Regions of Everglades National Park" (2015). GIS Center. 29. https://digitalcommons.fiu.edu/gis/29 This work is brought to you for free and open access by the GIS Center at FIU Digital Commons. It has been accepted for inclusion in GIS Center by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. 1 Final Report for VEGETATION TRENDS IN INDICATOR REGIONS OF EVERGLADES NATIONAL PARK Task Agreement No. P12AC50201 Cooperative Agreement No. H5000-06-0104 Host University No. H5000-10-5040 Date of Report: Feb. 12, 2015 Principle Investigator: Jennifer H. Richards Dept. of Biological Sciences Florida International University Miami, FL 33199 305-348-3102 (phone), 305-348-1986 (FAX) [email protected] (e-mail) Co-Principle Investigator: Daniel Gann FIU GIS/RS Center Florida International University Miami, FL 33199 305-348-1971 (phone), 305-348-6445 (FAX) [email protected] (e-mail) Park Representative: Jimi Sadle, Botanist Everglades National Park 40001 SR 9336 Homestead, FL 33030 305-242-7806 (phone), 305-242-7836 (Fax) FIU Administrative Contact: Susie Escorcia Division of Sponsored Research 11200 SW 8th St. – MARC 430 Miami, FL 33199 305-348-2494 (phone), 305-348-6087 (FAX) 2 Table of Contents Overview ............................................................................................................................ -
The Seminole Tribe of Florida: Keeping the Everglades Wet
The Seminole Tribe of Florida: Keeping the Everglades Wet by Jake Colton Golden Deep yellow eyes peer out from underneath the water as an airboat cruises the surface. Mangroves extend their roots further down into the peat, reaching depths and adding strength. The sawgrass sways in the wind as a park ranger and researcher navigate through endless water alleys. A storm approaches with looming thunderclouds overhead; today’s work might be ending, but an enduring struggle seems to never leave. The Everglades remains a mysterious, but fascinating place. Comprising most of Southern Florida, the Everglades are a unique ecosystem. Throughout the history of the United States, the “Glades,” as some may call them, have been a hindrance and refuge depending on the perspective. White settlement encroached upon the land early on, seeing little value in preserving the muddy swamps. The Native American tribes and peoples that are living there are civilized and hold onto livelihoods based upon the Glades. However, it would be the Seminole Tribe of Florida who would become the leader in protecting the sacred land. An ecosystem connected to the seas and fertile soil inland is called a home by many. While great tasks have been completed through water management to secure this area, new threats are arising. Keeping the Everglades wet may be the only lifeline for South Florida. Protection of the sacred Everglades is the cornerstone not only for the tribe, but also for future health of Florida. Climate change is a primary shaker in this system. Through the threat of sea level rise and saltwater intrusion, the Everglades are at risk of further depletion and possible disappearance. -
Chapter 1: the Everglades to the 1920S Introduction
Chapter 1: The Everglades to the 1920s Introduction The Everglades is a vast wetland, 40 to 50 miles wide and 100 miles long. Prior to the twentieth century, the Everglades occupied most of the Florida peninsula south of Lake Okeechobee.1 Originally about 4,000 square miles in extent, the Everglades included extensive sawgrass marshes dotted with tree islands, wet prairies, sloughs, ponds, rivers, and creeks. Since the 1880s, the Everglades has been drained by canals, compartmentalized behind levees, and partially transformed by agricultural and urban development. Although water depths and flows have been dramatically altered and its spatial extent reduced, the Everglades today remains the only subtropical ecosystem in the United States and one of the most extensive wetland systems in the world. Everglades National Park embraces about one-fourth of the original Everglades plus some ecologically distinct adjacent areas. These adjacent areas include slightly elevated uplands, coastal mangrove forests, and bays, notably Florida Bay. Everglades National Park has been recognized as a World Heritage Site, an International Biosphere Re- serve, and a Wetland of International Importance. In this work, the term Everglades or Everglades Basin will be reserved for the wetland ecosystem (past and present) run- ning between the slightly higher ground to the east and west. The term South Florida will be used for the broader area running from the Kississimee River Valley to the toe of the peninsula.2 Early in the twentieth century, a magazine article noted of the Everglades that “the region is not exactly land, and it is not exactly water.”3 The presence of water covering the land to varying depths through all or a major portion of the year is the defining feature of the Everglades. -
Fisheries Research 213 (2019) 219–225
Fisheries Research 213 (2019) 219–225 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Contrasting river migrations of Common Snook between two Florida rivers using acoustic telemetry T ⁎ R.E Bouceka, , A.A. Trotterb, D.A. Blewettc, J.L. Ritchb, R. Santosd, P.W. Stevensb, J.A. Massied, J. Rehaged a Bonefish and Tarpon Trust, Florida Keys Initiative Marathon Florida, 33050, United States b Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, 100 8th Ave. Southeast, St Petersburg, FL, 33701, United States c Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Charlotte Harbor Field Laboratory, 585 Prineville Street, Port Charlotte, FL, 33954, United States d Earth and Environmental Sciences, Florida International University, 11200 SW 8th street, AHC5 389, Miami, Florida, 33199, United States ARTICLE INFO ABSTRACT Handled by George A. Rose The widespread use of electronic tags allows us to ask new questions regarding how and why animal movements Keywords: vary across ecosystems. Common Snook (Centropomus undecimalis) is a tropical estuarine sportfish that have been Spawning migration well studied throughout the state of Florida, including multiple acoustic telemetry studies. Here, we ask; do the Common snook spawning behaviors of Common Snook vary across two Florida coastal rivers that differ considerably along a Everglades national park gradient of anthropogenic change? We tracked Common Snook migrations toward and away from spawning sites Caloosahatchee river using acoustic telemetry in the Shark River (U.S.), and compared those migrations with results from a previously Acoustic telemetry, published Common Snook tracking study in the Caloosahatchee River. -
Mud Lake Canal Other Name/Site Nu
NATIONAL HISTORIC LANDMARK NOMINATION NPS Form 10-900 USDI/NPS NRHP Registration Form (Rev. 8-86) OMB No. 1024-0018 MUD LAKE CANAL Page 1 United States Department of the Interior, National Park Service_________________________________________National Register of Historic Places Registration Form 1. NAME OF PROPERTY Historic Name: Mud Lake Canal Other Name/Site Number: Bear Lake Canal/Bear Lake Archeological District/EVER-192/8MO32 2. LOCATION Street & Number: Everglades National Park Not for publication: N/A City/Town: Flamingo Vicinity: X State: Florida County: Monroe Code: 087 Zip Code: 33034 3. CLASSIFICATION Ownership of Property Category of Property Private: _ Building(s): Public-Local: _ District: Public-State: _ Site: X Public-Federal: X Structure: Object: Number of Resources within Property Contributing Noncontributing _ buildings 1 _ sites 3 structures _ objects 1 3 Total Number of Contributing Resources Previously Listed in the National Register: J, Name of Related Multiple Property Listing: Archaeological Resources of Everglades National Park MPS NPS Form 10-900 USDI/NPS NRHP Registration Form (Rev. 8-86) OMB No. 1024-0018 MUD LAKE CANAL Page 2 United States Department of the Interior, National Park Service_________________________________________National Register of Historic Places Registration Form 4. STATE/FEDERAL AGENCY CERTIFICATION As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that this __ nomination __ request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property __ meets __ does not meet the National Register Criteria. -
Marl Prairie Vegetation Response to 20 Century Hydrologic Change
Marl Prairie Vegetation Response to 20th Century Hydrologic Change Christopher E. Bernhardt and Debra A. Willard U.S. Geological Survey, Eastern Earth Surface Processes Team, 926A National Center, Reston, VA 20192 U.S. Geological Survey Open-File Report 2006-1355 1 Abstract We conducted geochronologic and pollen analyses from sediment cores collected in solution holes within marl prairies of Big Cypress National Preserve to reconstruct vegetation patterns of the last few centuries and evaluate the stability and longevity of marl prairies within the greater Everglades ecosystem. Based on radiocarbon dating and pollen biostratigraphy, these cores contain sediments deposited during the last ~300 years and provide evidence for plant community composition before and after 20th century water management practices altered flow patterns throughout the Everglades. Pollen evidence indicates that pre-20th century vegetation at the sites consisted of sawgrass marshes in a peat-accumulating environment; these assemblages indicate moderate hydroperiods and water depths, comparable to those in modern sawgrass marshes of Everglades National Park. During the 20th century, vegetation changed to grass- dominated marl prairies, and calcitic sediments were deposited, indicating shortening of hydroperiods and occurrence of extended dry periods at the site. These data suggest that the presence of marl prairies at these sites is a 20th century phenomenon, resulting from hydrologic changes associated with water management practices. Introduction During the 20th century, the hydrology of the greater Everglades ecosystem was altered to accommodate agricultural and urban needs, significantly altering the distribution and composition of plant and animal communities throughout the wetland (Davis and others, 1994; Light and Dineen, 1994; Lodge, 2005). -
Everglades Ecosystem Assessment: Water Management and Quality, Eutrophication, Mercury Contamination, Soils and Habitat
United States Region 4 Science & Ecosystem EPA 904-R-07-001 Environmental Protection Support Division and Water August 2007 Agency Management Division EPA Everglades Ecosystem Assessment: Water Management and Quality, Eutrophication, Mercury Contamination, Soils and Habitat Monitoring for Adaptive Management: A R-EMAP Status Report The Everglades Ecosystem Assessment Program is being conducted by the United States Environmental Protection Agency Region 4 Science and Ecosystem Support Division, with the Region 4 Water Management Division cooperating. Many entities have contributed to this Program, including the National Park Service, United States Army Corps of Engineers, Florida Department of Environmental Protection, United States Fish and Wildlife Service, Florida International University, University of Georgia, Battelle Marine Sciences Laboratory, FTN Associates Incorporated, United States Geological Survey, South Florida Water Management District, and Florida Fish and Wildlife Conservation Commission. The Miccosukee Tribe of Indians of Florida and the Seminole Tribe of Indians allowed sampling to take place on their federal reservations within the Everglades. EPA 904-R-07-001 August 2007 EVERGLADES ECOSYSTEM ASSESSMENT Water Management and Quality, Eutrophication, Mercury Contamination, Soils and Habitat Monitoring for Adaptive Management A R-EMAP Status Report U.S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division Athens, Georgia This document is available on the Internet for browsing or download at: <http://www.epa.gov/region4/sesd/sesdpub_completed.html> Everglades R-EMAP is a program of the United States Environmental Protection Agency’s Region 4 Laboratory [the Science and Ecosystem Support Division (SESD) in Athens, Georgia], with the Region 4 Water Management Division (WMD) cooperating. Everglades R-EMAP is managed by Peter Kalla of SESD. -
Water Supply
S O U T H F L O R I D A W A T E R M A N A G E M E N T D I S T R I C T Sensitivity of the Comprehensive Everglades Restoration Plan to Individual Project Components HHYDROLOGIC Greater Everglades Ecosystem SSYSTEMS Restoration Science Conference MMODELING By: Everett R. Santee, Raul Novoa, Ken C. Tarboton, Jenifer A. Barnes, Lehar M. Brion, Luis G. Cadavid, Calvin J. Neidrauer, and Alaa Ali S O U T H F L O R I D A W A T E R M A N A G E M E N T D I S T R I C T Comprehensive Everglades Taylor Creek/ Nubbin Slough Storage and Treatment Area Restoration North of Lake Indian River Lagoon Okeechobee Storage Water Preserve Areas: Storage in C-23, 24,25,44 Plan North and South Fork Basins Revised Lake Okeechobee St. Lucie Estuary Water Supply Components Caloosahatchee Reservoir Regulation Schedule with ASR and Caloosahatchee Lake Okeechobee ASR Backpumping with STA L-8 Modifications and Storage Caloosahatchee Estuary Water Supply WCA-1 Internal Everglades Agricultural Canal Structures Area (EAA) Storage Water Preserve Areas: Modify G-404 Above Ground Storage, ASR Storage/STA/ASR and S-140 Pumps Big Cypress / L-28I Seepage Management Modifications Canals/Structure modifications Lower East Coast Water Partial Decompartmentalization Conservation and Broward of Water Conservation Area 3 County Secondary Canals and Everglades National Park Operational Water Preserve Areas: North and Central Everglades Rain Lake Belt Storage Driven Operations Decompartmentalization West and South Miami-Dade Reuse L-31 N Levee Seepage Estuary water supply Management