Constituent Quark Number Scaling from Strange Hadron Spectra in Pp

Total Page:16

File Type:pdf, Size:1020Kb

Constituent Quark Number Scaling from Strange Hadron Spectra in Pp Chinese Physics C Vol. 44, No. 1 (2020) 014101 Constituent quark number scalingp from strange hadron spectra in pp collisions at s = 13 TeV* 1 2 1;1) 2;2) Jian-Wei Zhang(张建伟) Hai-Hong Li(李海宏) Feng-Lan Shao(邵凤兰) Jun Song(宋军) 1School of Physics and Engineering, Qufu Normal University, Shandong 273165, China 2Department of Physics, Jining University, Shandong 273155, China p − Abstract: We show that the pT spectra of Ω and ϕ at midrapidity in the inelastic events in pp collisions at s = 13 TeV exhibit a constituent quark number scaling property, which is a clear signal of quark combination mechanism at hadronization. We use a quark combination model with equal velocity combination approximation to systematically p study the production of identified hadrons in pp collisions at s= 13 TeV. The midrapidity pT spectra for protons, Λ, Ξ−, Ω−, ϕ and K∗ in the inelastic events are simultaneously fitted by the model. The multiplicity dependence of the yields of these hadrons are also well understood. The strong pT dependence of the p/ϕ ratio is well explained by the model, which further suggests that the production of two hadrons with similar masses is determined by their quark content at hadronization. The p spectra of strange hadrons at midrapidity in different multiplicity classes in pp colli- p T sions at s = 13 TeV are predicted for further tests of the model. The midrapidity p spectra of soft (p < 2 GeV/c) p T T strange quarks and up/down quarks at hadronization in pp collisions at s = 13 TeV are extracted. Keywords: strange hadron production, quark combination, hadronization, quark-gluon plasma DOI: 10.1088/1674-1137/44/1/014101 1 Introduction ness [4-6]. Theoretical studies of these new phenomena mainly focus on how the features of a small partonic sys- tem are related to these observations by considering dif- Most hadrons produced in high energy collisions have ferent mechanisms, such as the color re-connection, string a relatively low (transverse) momentum perpendicular to the beam axis. The production of soft hadrons is mainly overlap and/or color rope [7-10], or by considering the driven by the soft QCD processes, and in particular the creation of mini-QGP or the phase transition [11-16]. non-perturbative hadronization. Experimental and theor- In our latest works [17-21], by studying the available etical studies of soft hadron production are important for data for the hadronic pT spectra and yields, we proposed understanding the properties of the soft parton system a new understanding of the novel features of hadron pro- created in collisions, and for testing and/or developing duction in small quark/parton systems created in pp phenomenological models. Heavy-ion physics at the SPS, and/or p-Pb collisions at the LHC energies, i.e. a change RHIC and LHC energies shows that quark-gluon plasma of the hadronization mechanism from the traditional frag- (QGP) is created in the early stage of collisions. In pp mentation to quark (re-)combination. In the quark (re-) and/or pp¯ collisions, it is usually assumed that QGP is combination mechanism (QCM), some typical features of not created, at least not up to the RHIC energies. the identified hadron production appear, such as the en- However, recent measurements at the LHC energies show hanced baryon-to-meson ratio and quark number scaling a series of new hadron production phenomena in pp colli- of hadron elliptical flow at intermediate pT . These fea- sions, such as the ridge and collectivity behavior [1-3], tures were observed in the relativistic heavy-ion colli- increased baryon-to-meson ratio, and increased strange- sions [22-24], and recently also in pp and p-Pb collisions Received 3 June 2019, Revised 1 October 2019, Published online 19 November 2019 * Supported by National Natural Science Foundation of China (11575100), and by Shandong Province Natural Science Foundation(ZR2019YQ06, ZR2019MA053), and by A Project of Shandong Province Higher Educational Science and Technology Program (J18KA228) 1) E-mail: [email protected], Corresponding author 2) E-mail: [email protected], Corresponding author Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must main- tain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Pub- lishing Ltd 014101-1 Chinese Physics C Vol. 44, No. 1 (2020) 014101 at the LHC energies in the high multiplicity classes [3, 4, Ω− and ϕ in QCM 6, 25]. In particular, a quark number scaling property of 1=2 = κ 1=3 = κ1=2 ; fϕ (2pT ) ϕ,Ω fΩ (3pT ) ϕ fs (pT ) (3) the hadron transverse momentum spectra was observed inp = : κ = κ1=2/κ1=3 p-Pb collisions at sNN 5 02 TeV [17]. where ϕ,Ω ϕ Ω is independent of momentum. In or- Recently, the ALICE collaboration reported pT spec- der to check this scaling property, we apply the follow- − tra of the identified hadronsp in different multiplicity ing operation on the dN=(dpT dy) data for Ω and ϕ at = − classes in pp collisions at s 7 TeV [26], and prelimin-p midrapidity [26]: (i) we divide the pT bin for Ω (ϕ) by 3 ary data for the inelastic events in pp collisions at s = 13 (2), (ii) take the 1=3 (1=2) power of the measured − 1=3 TeV [27]. For the first time, a clear signal of the quark dN=(dpT dy) for Ω (ϕ), and (iii) multiply (dNΩ=(dpT dy)) number scaling property in the hadronic pT spectra in pp by a constant factor κϕ,Ω , so that the data points for small collisions is seen. Considering the production of baryons pT (pT . 0.5 GeV/c) are in coincidence with the scaled Ω− (sss) and mesons ϕ(ss¯), the momentum distribution data for ϕ as much as possible. We show in Fig. 1 the ≡ = − ϕ functions f (pT ) dN dpT in QCM with the equal velo- scaled data for Ω pand in different multiplicity classes city combination approximation read as in pp collisions at s = 7 TeV. The relative statistical un- [ ( )] 3 pT certainties of the scaled data are only a few percent, and fΩ (p ) = κΩ f ; (1) T s 3 are shown as rectangles with filled colors in the figure. ( ) ( ) [ ( )] We see that in the high multiplicity classes, e.g. Fig.1(a) 2 pT pT pT and (b), the scaled data for Ω− are consistent with those fϕ (pT ) = κϕ fs fs¯ = κϕ fs : (2) 2 2 2 for ϕ, and therefore the quark number scaling property Here, κϕ and κΩ are coefficients independent of mo- holds. This verifies our argument in the recent work [21], mentum. fs;s¯ (pT ) is the s (s¯) quark distribution at hadron- and is a clear signal of quark combination hadronization ization, and we assume fs (pT ) = fs¯ (pT ) in the center in pp collisions at the LHC energies. In the low multipli- rapidity region at the LHC energies. With the above two city classes, Fig. 1(c) and (d), the scaled data for Ω− are formulas, we get a correlation between the production of somewhat flatter than for ϕ at pT & 1 GeV/c, and the Fig. 1. (color online) The scaling property in the dN=dp dy data for Ω− and ϕ at midrapidity in different multiplicity classes in pp col- p T − lisions at s = 7 TeV. The coefficient κϕ,Ω in the four multiplicity classes is taken as (1.76, 1.82, 1.83, 1.93). The data for Ω and ϕ are taken from Ref. [26]. 014101-2 Chinese Physics C Vol. 44, No. 1 (2020) 014101 quark number scaling property seems to be broken to a tios or correlations of the hadronic yields and pT spectra. certain extent. We note that this is probably due to the We compare our results with the available experimental threshold effects of strange quark production [21]. data to test the quark combination hadronization in pp − In Fig. 2, we show the scaled data forp Ω and ϕ in pp collisions at the LHC energies. Predictions are made for collisions at s = 7 and 13 TeV [26-29] as a guide for en- future tests. ergy dependence. We see that the quark number scalingp The paper is organized as follows: Sec. 2 briefly in- property in the inelastic events in pp collisions at s = 7 troduces the model of quark (re)combination mechanism TeV is broken to a certain extent, but it holds well in thep with the equal velocity combination approximation. Sec. inelastic events in pp collisions at s = 13 TeV. This is 3 and Sec. 4 present our results and relevant discussions an indication of the quark combination hadronization at for the inelastic events and different multiplicity classes. higher collision energies. A summary and discussion is given in Sec. 5. On the other hand, we performed a run of event gen- erators Pythia8 [30, 31] and Herwig6.5 as a naive test of 2 Quark combination model with the equal the string andp cluster fragmentation mechanisms in pp velocity combination approximation collisions at s = 13 TeV. Fig. 3 shows the results for the scaled pT spectra of Ω and ϕ at mid-rapidity given by the two event generators. Here, we adopted the Pythia ver- Quark (re-)combination/coalescence mechanism was proposed in the 1970s [32] and has many applications in sion 8240 and Herwig version 6521.
Recommended publications
  • Full-Heavy Tetraquarks in Constituent Quark Models
    Eur. Phys. J. C (2020) 80:1083 https://doi.org/10.1140/epjc/s10052-020-08650-z Regular Article - Theoretical Physics Full-heavy tetraquarks in constituent quark models Xin Jina, Yaoyao Xueb, Hongxia Huangc, Jialun Pingd Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, People’s Republic of China Received: 4 July 2020 / Accepted: 10 November 2020 / Published online: 23 November 2020 © The Author(s) 2020 Abstract The full-heavy tetraquarks bbb¯b¯ and ccc¯c¯ are [5]. Since then, more and more exotic states were observed systematically investigated within the chiral quark model and proposed, such as Y (4260), Zc(3900), X(5568), and so and the quark delocalization color screening model. Two on. The study of exotic states can help us to understand the structures, meson–meson and diquark–antidiquark, are con- hadron structures and the hadron–hadron interactions better. sidered. For the full-beauty bbb¯b¯ systems, there is no any The full-heavy tetraquark states (QQQ¯ Q¯ , Q = c, b) bound state or resonance state in two structures in the chiral attracted extensive attention for the last few years, since such quark model, while the wide resonances with masses around states with very large energy can be accessed experimentally 19.1 − 19.4 GeV and the quantum numbers J P = 0+,1+, and easily distinguished from other states. In the experiments, and 2+ are possible in the quark delocalization color screen- the CMS collaboration measured pair production of ϒ(1S) ing model. For the full-charm ccc¯c¯ systems, the results are [6].
    [Show full text]
  • Polarized Structure Functions in a Constituent Quark Scenario †
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server FTUV 98-8; IFIC 98-8 Polarized structure functions in a constituent quark scenario † Sergio Scopetta and Vicente Vento(a) Departament de Fisica Te`orica, Universitat de Val`encia 46100 Burjassot (Val`encia), Spain and (a) Institut de F´ısica Corpuscular, Consejo Superior de Investigaciones Cient´ıficas and Marco Traini Dipartimento di Fisica, Universit`a di Trento, I-38050 Povo (Trento), Italy and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento Abstract Using a simple picture of the constituent quark as a composite system of point-like partons, we construct the polarized parton distributions by a convolution between constituent quark momentum distributions and constituent quark structure functions. We determine the latter at a low hadronic scale by using unpolarized and/or polarized phenomenological information and Regge behavior at low x. The momentum distributions are described by appropriate quark models. The resulting parton distributions and structure functions are evolved to the experimental scale. If one uses unpolarized data to fix the parameters, good agreement with the experi- ments is achieved for the proton, while not so for the neutron. By relaxing our assump- tions for the sea distributions, we define new quark functions for the polarized case which reproduce accurately both the proton and the neutron data, with only one additional parameter. When our results are compared with similar calculations using non-composite con- stituent quarks, the accord with experiment of the present scheme becomes impressive. We conclude that, also in the polarized case, DIS data are consistent with a low energy scenario dominated by composite, mainly non-relativistic constituents of the nucleon.
    [Show full text]
  • Quark Masses 1 66
    66. Quark masses 1 66. Quark Masses Updated August 2019 by A.V. Manohar (UC, San Diego), L.P. Lellouch (CNRS & Aix-Marseille U.), and R.M. Barnett (LBNL). 66.1. Introduction This note discusses some of the theoretical issues relevant for the determination of quark masses, which are fundamental parameters of the Standard Model of particle physics. Unlike the leptons, quarks are confined inside hadrons and are not observed as physical particles. Quark masses therefore cannot be measured directly, but must be determined indirectly through their influence on hadronic properties. Although one often speaks loosely of quark masses as one would of the mass of the electron or muon, any quantitative statement about the value of a quark mass must make careful reference to the particular theoretical framework that is used to define it. It is important to keep this scheme dependence in mind when using the quark mass values tabulated in the data listings. Historically, the first determinations of quark masses were performed using quark models. These are usually called constituent quark masses and are of order 350MeV for the u and d quarks. Constituent quark masses model the effects of dynamical chiral symmetry breaking discussed below, and are not directly related to the quark mass parameters mq of the QCD Lagrangian of Eq. (66.1). The resulting masses only make sense in the limited context of a particular quark model, and cannot be related to the quark mass parameters, mq, of the Standard Model. In order to discuss quark masses at a fundamental level, definitions based on quantum field theory must be used, and the purpose of this note is to discuss these definitions and the corresponding determinations of the values of the masses.
    [Show full text]
  • Hadron Structures and Decays Within Quantum Chromodynamics Alaa Abd El-Hady Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Hadron structures and decays within Quantum Chromodynamics Alaa Abd El-Hady Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Elementary Particles and Fields and String Theory Commons, and the Nuclear Commons Recommended Citation El-Hady, Alaa Abd, "Hadron structures and decays within Quantum Chromodynamics " (1998). Retrospective Theses and Dissertations. 11585. https://lib.dr.iastate.edu/rtd/11585 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI fihns the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper aligimient can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Chapter 16 Constituent Quark Model
    Chapter 16 Constituent Quark Model 1 Quarks are fundamental spin- 2 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There are six 2 types of quarks called “flavours”. The electric charges of the quarks take the value + 3 or 1 (in units of the magnitude of the electron charge). − 3 2 Symbol Flavour Electric charge (e) Isospin I3 Mass Gev /c 2 1 1 u up + 3 2 + 2 0.33 1 1 1 ≈ d down 3 2 2 0.33 − 2 − ≈ c charm + 3 0 0 1.5 1 ≈ s strange 3 0 0 0.5 − 2 ≈ t top + 3 0 0 172 1 ≈ b bottom 0 0 4.5 − 3 ≈ These quarks all have antiparticles which have the same mass but opposite I3, electric charge and flavour (e.g. anti-strange, anti-charm, etc.) 16.1 Hadrons from u,d quarks and anti-quarks Baryons: 2 Baryon Quark content Spin Isospin I3 Mass Mev /c 1 1 1 p uud 2 2 + 2 938 n udd 1 1 1 940 2 2 − 2 ++ 3 3 3 ∆ uuu 2 2 + 2 1230 + 3 3 1 ∆ uud 2 2 + 2 1230 0 3 3 1 ∆ udd 2 2 2 1230 3 3 − 3 ∆− ddd 1230 2 2 − 2 113 1 1 3 Three spin- 2 quarks can give a total spin of either 2 or 2 and these are the spins of the • baryons (for these ‘low-mass’ particles the orbital angular momentum of the quarks is zero - excited states of quarks with non-zero orbital angular momenta are also possible and in these cases the determination of the spins of the baryons is more complicated).
    [Show full text]
  • 8. Quark Model of Hadrons Particle and Nuclear Physics
    8. Quark Model of Hadrons Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 8. Quark Model of Hadrons 1 In this section... Hadron wavefunctions and parity Light mesons Light baryons Charmonium Bottomonium Dr. Tina Potter 8. Quark Model of Hadrons 2 The Quark Model of Hadrons Evidence for quarks The magnetic moments of proton and neutron are not µN = e~=2mp and 0 respectively ) not point-like Electron-proton scattering at high q2 deviates from Rutherford scattering ) proton has substructure Hadron jets are observed in e+e− and pp collisions Symmetries (patterns) in masses and properties of hadron states, \quarky" periodic table ) sub-structure Steps in R = σ(e+e− ! hadrons)/σ(e+e− ! µ+µ−) Observation of cc¯ and bb¯ bound states and much, much more... Here, we will first consider the wave-functions for hadrons formed from light quarks (u, d, s) and deduce some of their static properties (mass and magnetic moments). Then we will go on to discuss the heavy quarks (c, b). We will cover the t quark later... Dr. Tina Potter 8. Quark Model of Hadrons 3 Hadron Wavefunctions Quarks are always confined in hadrons (i.e. colourless states) Mesons Baryons Spin 0, 1, ... Spin 1/2, 3/2, ... Treat quarks as identical fermions with states labelled with spatial, spin, flavour and colour. = space flavour spin colour All hadrons are colour singlets, i.e. net colour zero qq¯ 1 Mesons = p (rr¯+ gg¯ + bb¯) colour 3 qqq 1 Baryons = p (rgb + gbr + brg − grb − rbg − bgr) colour 6 Dr. Tina Potter 8.
    [Show full text]
  • Quark Model 1 15
    15. Quark model 1 15. QUARK MODEL Revised August 2013 by C. Amsler (University of Bern), T. DeGrand (University of Colorado, Boulder), and B. Krusche (University of Basel). 15.1. Quantum numbers of the quarks Quantum chromodynamics (QCD) is the theory of the strong interactions. QCD is a quantum field theory and its constituents are a set of fermions, the quarks, and gauge bosons, the gluons. Strongly interacting particles, the hadrons, are bound states of quark and gluon fields. As gluons carry no intrinsic quantum numbers beyond color charge, and because color is believed to be permanently confined, most of the quantum numbers of strongly interacting particles are given by the quantum numbers of their constituent quarks and antiquarks. The description of hadronic properties which strongly emphasizes the role of the minimum-quark-content part of the wave function of a hadron is generically called the quark model. It exists on many levels: from the simple, almost dynamics-free picture of strongly interacting particles as bound states of quarks and antiquarks, to more detailed descriptions of dynamics, either through models or directly from QCD itself. The different sections of this review survey the many approaches to the spectroscopy of strongly interacting particles which fall under the umbrella of the quark model. Table 15.1: Additive quantum numbers of the quarks. d u s c b t Q – electric charge 1 + 2 1 + 2 1 + 2 − 3 3 − 3 3 − 3 3 I – isospin 1 1 0 0 0 0 2 2 1 1 Iz – isospin z-component + 0 0 0 0 − 2 2 S – strangeness 0 0 1 0 0 0 − C – charm 0 0 0 +1 0 0 B – bottomness 0 0 0 0 1 0 − T – topness 0 0 0 0 0 +1 Quarks are strongly interacting fermions with spin 1/2 and, by convention, positive parity.
    [Show full text]
  • The Quark Model
    Lecture The Quark model WS2018/19: ‚Physics of Strongly Interacting Matter‘ 1 Quark model The quark model is a classification scheme for hadrons in terms of their valence quarks — the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model in its modern form was developed by Murray Gell-Mann - american physicist who received the 1969 Nobel Prize in physics for his work on the theory of elementary particles. * QM - independently proposed by George Zweig 1929 .Hadrons are not ‚fundamental‘, but they are built from ‚valence quarks‘, i.e. quarks and antiquarks, which give the quantum numbers of the hadrons | Baryon | qqq | Meson | qq q= quarks, q – antiquarks 2 Quark quantum numbers The quark quantum numbers: . flavor (6): u (up-), d (down-), s (strange-), c (charm-), t (top-), b(bottom-) quarks anti-flavor for anti-quarks q: u, d, s, c, t, b . charge: Q = -1/3, +2/3 (u: 2/3, d: -1/3, s: -1/3, c: 2/3, t: 2/3, b: -1/3 ) . baryon number: B=1/3 - as baryons are made out of three quarks . spin: s=1/2 - quarks are the fermions! . strangeness: Ss 1, Ss 1, Sq 0 for q u, d, c,t,b (and q) charm: . Cc 1, Cc 1, Cq 0 for q u, d, s,t,b (and q) . bottomness: Βb 1, Bb 1, Bq 0 for q u, d, s,c,t (and q) . topness: Tt 1, Tt 1, Tq 0 for q u, d, s,c,b (and q) 3 Quark quantum numbers The quark quantum numbers: hypercharge: Y = B + S + C + B + T (1) (= baryon charge + strangeness + charm + bottomness +topness) .
    [Show full text]
  • Quark Masses 1 59
    59. Quark masses 1 59. Quark Masses Updated August 2019 by A.V. Manohar (UC, San Diego), L.P. Lellouch (CNRS & Aix-Marseille U.), and R.M. Barnett (LBNL). 59.1. Introduction This note discusses some of the theoretical issues relevant for the determination of quark masses, which are fundamental parameters of the Standard Model of particle physics. Unlike the leptons, quarks are confined inside hadrons and are not observed as physical particles. Quark masses therefore cannot be measured directly, but must be determined indirectly through their influence on hadronic properties. Although one often speaks loosely of quark masses as one would of the mass of the electron or muon, any quantitative statement about the value of a quark mass must make careful reference to the particular theoretical framework that is used to define it. It is important to keep this scheme dependence in mind when using the quark mass values tabulated in the data listings. Historically, the first determinations of quark masses were performed using quark models. These are usually called constituent quark masses and are of order 350MeV for the u and d quarks. Constituent quark masses model the effects of dynamical chiral symmetry breaking discussed below, and are not directly related to the quark mass parameters mq of the QCD Lagrangian of Eq. (59.1). The resulting masses only make sense in the limited context of a particular quark model, and cannot be related to the quark mass parameters, mq, of the Standard Model. In order to discuss quark masses at a fundamental level, definitions based on quantum field theory must be used, and the purpose of this note is to discuss these definitions and the corresponding determinations of the values of the masses.
    [Show full text]
  • Constituent Quark Model and New Particles
    Constituent-Quark Model and New Particles David Akers* Lockheed Martin Corporation, Dept. 6F2P, Bldg. 660, Mail Zone 6620, 1011 Lockheed Way, Palmdale, CA 93599 *Email address: [email protected] An elementary constituent-quark (CQ) model by Mac Gregor is reviewed with currently published data from light meson spectroscopy. It was previously shown in the CQ model that there existed several mass quanta m = 70 MeV, B = 140 MeV and X = 420 MeV, which were responsible for the quantization of meson yrast levels. The existence of a 70-MeV quantum was postulated by Mac Gregor and was shown to fit the Nambu empirical mass formula mn = (n/2)137me , n a positive integer. The 70-MeV quantum can be derived in three different ways: 1) pure electric coupling, 2) pure magnetic coupling, and 3) mixed electric and magnetic charges (dyons). Schwinger first introduced dyons in a magnetic model of matter. It is shown in this paper that recent data of new light mesons fit into the CQ model (a pure electric model) without the introduction of magnetic charges. However, by introducing electric and magnetic quarks (dyons) into the CQ model, new dynamical forces can be generated by the presence of magnetic fields internal to the quarks (dyons). The laws of angular momentum and of energy conservation are valid in the presence of magnetic charge. With the introduction of the Russell-Saunders coupling scheme into the CQ model, several new meson particles are predicted to exist. The existence of the f0(560) meson is predicted and is shown to fit current experimental data from the Particle Data Group listing.
    [Show full text]
  • Quark Model and Qcd
    KFKI 1989 32/A V.V. ANISOVICH QUARK MODEL AND QCD Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE FOR PHYSICS BUDAPEST KFKI-1989-32/A PREPRINT QUARK MODEL AND QCD V.V. ANISOVICH M v>fc Academy of Sciences of the USSR Iv^l VP e>L*s <,~.^ Leningrad Nuclear Physics Institute * Leningrad MÜ ISSN 0368 5330 V.V. Anlsovich: Quark model and OCD KFKI 1989 32/A ABSTRACT ThefoMentlngtopics*•»discussed- ^-"'íu's ^«J«<rf ^*-f .- -t? Miß© In the domain of soft processes; Z Phenomenological Lagrangian for soft processes and exotic mesons •p. Spectroscopy of low lying hadrons: •' (I) mesons^ (II) baryons, a«-^' (Hi) mesons with heavy quarks (c.b) 4. Confinement forces , <^~4 5. Spectral integration over quark masses. B.B. Анисович: Кварковая модель и КХД. KFKI-I989-32/A АННОТАЦИЯ Рассматриваются следующие темы: 1. КХД в области мягких процессов 2. Феноменологический лагранжиан для мягких процессов и экзотичных мезонов 3. Спектроскопия ниэколежащих сдронов а) мезонов б) барионов а) мезонов с тяжелыми кварками (с, Ь) А. Силы конфэйнмента 5. Спектральные интегралы по массам кварков. Anylfzovics V.V.: Kvark modell ós OCD KFKI 1989 32/A KIVONAT A következő témákat tárgyaljuk: 1. Kvantumszindlnamika lágy folyamatokban 2. Fenomenologlkus Lagrangian lágy folyamatok és egzotikus mezonok esetére 3. Spektroszkópia: (1) mezonok (ii) barlonok (ül) nehéz kvarkokat (c,b) tartalmazó mezonok 4 Confinement erők 5 Spektrállnlegrálás kvark tömegekre 1. QCD IN THE DOMAIN OP SOFT PROCESSES Por soft phycico it is possible to use two alternative Languages: the language of hadrons and the language of quarks and gluons. Í Using the language of the quarks and gluone for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Langrqjgian in the straight forward v/ау« Tftesu "are v., ,«ч v (ij chiral symmetry breaking; a^/ Шг) confinement of colour particles.
    [Show full text]
  • Tetra- and Penta-Quark Structures in the Constituent Quark Model
    S S symmetry Article Tetra- and Penta-Quark Structures in the Constituent Quark Model Gang Yang 1 , Jialun Ping 2 and Jorge Segovia 3,* 1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China; [email protected] 2 Department of Physics, Nanjing Normal University, Nanjing 210023, China; [email protected] 3 Dpto. Sistemas Físicos, Químicos y Naturales, U. Pablo de Olavide, E-41013 Sevilla, Spain * Correspondence: [email protected] Received: 11 September 2020; Accepted: 14 October 2020; Published: 13 November 2020 Abstract: With the development of high energy physics experiments, a large amount of exotic states in the hadronic sector have been observed. In order to shed some light on the nature of the tetraquark and pentaquark candidates, a constituent quark model, along with the Gaussian expansion method, has been employed systematically in real- and complex-range investigations. We review herein the double- and fully-heavy tetraquarks, but also the hidden-charm, hidden-bottom and doubly charmed pentaquarks. Several exotic hadrons observed experimentally were well reproduced within our approach; moreover, their possible compositeness and other properties, such as their decay widths and general patterns in the spectrum, are analyzed. Besides, we report also some theoretical predictions of tetra- and penta-quark states which have not seen by experiment yet. Keywords: double-heavy tetraquark 1; full-heavy tetraquark 2; hidden-charm pentaquark 3; hidden-bottom pentaquark 4; doubly charmed pentaquark 5; Gaussian expansion method 6; constituent quark model 1. Introduction A large number of conventional hadrons, baryons (three quarks) and mesons (quark-antiquark) are described well within a constituent quark model picture [1–3], which was first proposed by M.
    [Show full text]