Hadron Structures and Decays Within Quantum Chromodynamics Alaa Abd El-Hady Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Hadron Structures and Decays Within Quantum Chromodynamics Alaa Abd El-Hady Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Hadron structures and decays within Quantum Chromodynamics Alaa Abd El-Hady Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Elementary Particles and Fields and String Theory Commons, and the Nuclear Commons Recommended Citation El-Hady, Alaa Abd, "Hadron structures and decays within Quantum Chromodynamics " (1998). Retrospective Theses and Dissertations. 11585. https://lib.dr.iastate.edu/rtd/11585 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI fihns the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper aligimient can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 Noith Zed) Road, Ann Aibor MI 48106-1346 USA 313/761-4700 800/521-0600 Hadron structures and decays within Quantum Chromodynamics by Alaa Abd El-Hady A dissertation submitted to the graduate faculty in partial fuifillnient of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Nuclear Physics Major Professor: James P. Vary Iowa State University Ames. Iowa 1998 Copyright © Alaa Abd El-Hady. 1998. .-Vll rights reserved. XIMI N\imber: 9826506 Uivn Microform 9826506 Copyright 1998, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 11 Graduate College Iowa State University This is to certify that the Doctoral dissertation of Alaa Abd El-Hady has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Major Professor Signature was redacted for privacy. For the Major Program Signature was redacted for privacy. For the Graduate College Ill TABLE OF CONTENTS ABSTRACT vii INTRODUCTION 1 MESON SPECTROSCOPY AND IN-MEDIUM EFFECTS 7 Meson spectroscopy 7 Medium effects 11 HEAVY QUARK SYMMETRY AND B DECAYS iO [sgur-VV'ise function and lc6 from Betlie-Salpeter equations 20 B —)• D{D') form factors in a Bethe-Salpeter model ."{l) Decay constants, semileptonic, and nonleptonic B decays 45 CHIRAL SYMMETRY AND HYPERON DECAYS 58 Clural Lagrangian for hyperon nonleptonic decays 59 Hyperon nonleptonic decay amplitudes CP VIOLATION IN B DECAYS FROM ANOMALOUS tbW INTERACTIONS . 75 High energy effective Lagrangian 75 Low energy effective interactions 7(5 CP violation in neutral B decays 77 CONCLUSIONS AND OUTLOOK 81 BIBLIOGRAPHY 8:5 ACKNOWLEDGEMENTS 88 IV LIST OF TABLES Table 1 Fitting parameters and RMS 9 Table 2 Fitted spectra for reductions A and B 10 Table 8 Values of Vcb in the units of 10"^ from different sets of experimental data. ... 80 Table 4 The values of the form factors at a-- = 1 87 Table 5 Decay constants of the B and D mesons in MeV 51 Table 6 Nonleptonic decay rates for B meson o(j Table 7 Experimental data for S-wave and P-wave amplitudes for A/ = 1/2 78 Table 8 Fitting results for A/ = 1/2 S-wave amplitudes for parameter values hj — 0.75. and = 4.0 74 Table 9 Fitting results for A/ = 1/2 P-wave amplitudes using the same parameter values 74 V LIST OF FIGURES Figure I Plot of the mass and the DD threshold as a function of c/cto i;{ Figure 2 Plot of the O mass and the KK threshold as a function of (T/<ro 14 Figure Medium effects on the masses of charmonium states 17 Figure -I Medium effects on the average radii of charmonium states 18 Figure 5 Medium effects on the radiative decay widths of charmonium states 19 Figure 6 Radial wavefunction for the B meson 'J.'J Figure 7 Radial wavefunction for the D' meson "24 Figure 8 The Isgur-VVise function. The deviation of the IVV function from unity at zero recoil is due to the finite heavy quark mass effects incorporated in our BSE model. 26 Figure 9 Plot of V'^b vs. from ARGUS 93 data 27 Figure 10 Plot of ^(u;) vs. from CLEO 93 data 28 Figure II Plot of I'cb vs. uj from CLEO 94 data 29 Figure 12 The calculated form factors ^,(u;) without perturbative QCD corrections and the calculated Isgur-VVise funrtinn $(x') from Eq. 21 38 Figure 13 The mass parameter .V e.vtracted from the form factors ) 40 Figure 14 The l/mg correction functions \i(u--)/A. \2(u.)/.\. \3(^)/.V and ^3(^)/.V^(^) e.\tracted from the form factors "11 Figure 15 The calculated form factors ^, (w) with perturbative QCD corrections with // = 0.6 GeV 43 Figure 16 The differential decay rate with and without the QCD correction, together with the corresponding values of Vet, 44 Figure 17 The calculated form factors FQ, F\.V, AQ. A\. and .IT as a function of g- 53 Figure 18 The differential decay rate for B —> D'lu with and without the QCD correction. together with the corresponding values of V'cb 54 Figure 19 F{u;)lVc6| versus u; for 5 —)• Dli) 55 VI Figure 20 Tree level S-wave diagram. Solid lines denote octet baryons and dashed lines denote mesons. A square denotes a weak vertex fj-l Figure 21 Tree level P-wave diagrams. Solid lines denote octet baryons and dashed lines denote mesons. A square denotes a weak vertex, and a circle denotes a strong vertex (55 Figure 22 One loop S-wave diagrams, octet contribution (5(5 Figure 2:? One loop S-wave diagrams, decuplet contribution. Double solid lines denote baryon decuplet (56 Figure 24 Source of difference between our calculations and Jenkins" calculations. See text for explanation ()7 Figure 25 One loop P-wave diagrams, octet contribution (i!) Figure 26 One loop P-wave diagrams, decuplet contribution 70 Figure 27 VVavefunction renormalization for baryons 72 Figure 28 VVavefunction renormalization for mesons 7;{ VII ABSTRACT We have evaluated the meson spectrum using a relativistic model based on reductions of Bethe- Salpeter equation. We included one gluon exchange from Quantum Chromodynamics (QCD) and phenomenological confinement in the interaction kernel. We used an ansatz for the running of the coupling constant with the meson masses. We fitted more than forty states ranging from a hundred .MeV to a few GeV using seven parameters, with root mean square deviation from e.xperimental data of lO-oO .VIeV. This establishes our successful QCD-based model for many applications which we investigate. We employed our model to e.xamine the strong interaction medium effects on meson properties. We have evaluated the masses of specific mesons as the confinement strength is weakened by the medium. VV'e have shown how these effects may be observed experimentally in specific examples. Wo liave shown how charmonium and o meson hadronic decay channels may be closed, and leptonic yield may be enhanced. We demonstrated how radiative decays of charmonium states may also be useful for investigating our predicted in-medium effects. We next applied our model to investigate B meson decays. We showed the consistency of our model with the heavy quark symmetry, which enabled us to calculate the Isgur-Wise function and extract the Cabibbo-Kobayashi-.VIaskawa (CKM) mixing matri.x element from recent experiments. We have evaluated the leptonic decay constants, semileptonic decay form factors and used factorization to calculate the nonleptonic decays of B mesons. Looking forward to future experiments which will investigate domains within and beyond the stan­ dard model, we have applied chiral perturbation theory (\PT) to evaluate hyperon nonleptonic decays. We invoked the heavy baryon formalism and included the decuplet baryon contribution. We have ob­ tained the A/ = 1/2 octet amplitudes and the A/ = 3/2 27-plet amplitudes to one loop. We discussed the convergence of \PT amplitudes for both the S-wave and the P-wave for hyperon decays. We have evaluated CP violation in B decays from a certain anomalous /6tr coupling appearing in many versions of models which go beyond the standard model. The effect of this anomalous interaction may be large enough to be seen experimentally in B factories. This may help us in the search for physics beyond the standard model. I INTRODUCTION Ai present, it is widely believed that we have a successful theory, "the standard model", which can describe particles and their interactions down to lO""' m or.
Recommended publications
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Zero-Point Energy in Bag Models
    Ooa/ea/oHsnif- ^*7 ( 4*0 0 1 5 4 3 - m . Zero-Point Energy in Bag Models by Kimball A. Milton* Department of Physics The Ohio State University Columbus, Ohio 43210 A b s t r a c t The zero-point (Casimir) energy of free vector (gluon) fields confined to a spherical cavity (bag) is computed. With a suitable renormalization the result for eight gluons is This result is substantially larger than that for a spher­ ical shell (where both interior and exterior modes are pre­ sent), and so affects Johnson's model of the QCD vacuum. It is also smaller than, and of opposite sign to the value used in bag model phenomenology, so it will have important implications there. * On leave ifrom Department of Physics, University of California, Los Angeles, CA 90024. I. Introduction Quantum chromodynamics (QCD) may we 1.1 be the appropriate theory of hadronic matter. However, the theory is not at all well understood. It may turn out that color confinement is roughly approximated by the phenomenologically suc­ cessful bag model [1,2]. In this model, the normal vacuum is a perfect color magnetic conductor, that iis, the color magnetic permeability n is infinite, while the vacuum.in the interior of the bag is characterized by n=l. This implies that the color electric and magnetic fields are confined to the interior of the bag, and that they satisfy the following boundary conditions on its surface S: n.&jg= 0, nxBlg= 0, (1) where n is normal to S. Now, even in an "empty" bag (i.e., one containing no quarks) there will be non-zero fields present because of quantum fluctua­ tions.
    [Show full text]
  • 18. Lattice Quantum Chromodynamics
    18. Lattice QCD 1 18. Lattice Quantum Chromodynamics Updated September 2017 by S. Hashimoto (KEK), J. Laiho (Syracuse University) and S.R. Sharpe (University of Washington). Many physical processes considered in the Review of Particle Properties (RPP) involve hadrons. The properties of hadrons—which are composed of quarks and gluons—are governed primarily by Quantum Chromodynamics (QCD) (with small corrections from Quantum Electrodynamics [QED]). Theoretical calculations of these properties require non-perturbative methods, and Lattice Quantum Chromodynamics (LQCD) is a tool to carry out such calculations. It has been successfully applied to many properties of hadrons. Most important for the RPP are the calculation of electroweak form factors, which are needed to extract Cabbibo-Kobayashi-Maskawa (CKM) matrix elements when combined with the corresponding experimental measurements. LQCD has also been used to determine other fundamental parameters of the standard model, in particular the strong coupling constant and quark masses, as well as to predict hadronic contributions to the anomalous magnetic moment of the muon, gµ 2. − This review describes the theoretical foundations of LQCD and sketches the methods used to calculate the quantities relevant for the RPP. It also describes the various sources of error that must be controlled in a LQCD calculation. Results for hadronic quantities are given in the corresponding dedicated reviews. 18.1. Lattice regularization of QCD Gauge theories form the building blocks of the Standard Model. While the SU(2) and U(1) parts have weak couplings and can be studied accurately with perturbative methods, the SU(3) component—QCD—is only amenable to a perturbative treatment at high energies.
    [Show full text]
  • Quantum Mechanics Quantum Chromodynamics (QCD)
    Quantum Mechanics_quantum chromodynamics (QCD) In theoretical physics, quantum chromodynamics (QCD) is a theory ofstrong interactions, a fundamental forcedescribing the interactions between quarksand gluons which make up hadrons such as the proton, neutron and pion. QCD is a type of Quantum field theory called a non- abelian gauge theory with symmetry group SU(3). The QCD analog of electric charge is a property called 'color'. Gluons are the force carrier of the theory, like photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of Particle physics. A huge body of experimental evidence for QCD has been gathered over the years. QCD enjoys two peculiar properties: Confinement, which means that the force between quarks does not diminish as they are separated. Because of this, when you do split the quark the energy is enough to create another quark thus creating another quark pair; they are forever bound into hadrons such as theproton and the neutron or the pion and kaon. Although analytically unproven, confinement is widely believed to be true because it explains the consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons interact very weakly creating a quark–gluon plasma. This prediction of QCD was first discovered in the early 1970s by David Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 Nobel Prize in Physics. There is no known phase-transition line separating these two properties; confinement is dominant in low-energy scales but, as energy increases, asymptotic freedom becomes dominant.
    [Show full text]
  • Full-Heavy Tetraquarks in Constituent Quark Models
    Eur. Phys. J. C (2020) 80:1083 https://doi.org/10.1140/epjc/s10052-020-08650-z Regular Article - Theoretical Physics Full-heavy tetraquarks in constituent quark models Xin Jina, Yaoyao Xueb, Hongxia Huangc, Jialun Pingd Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, People’s Republic of China Received: 4 July 2020 / Accepted: 10 November 2020 / Published online: 23 November 2020 © The Author(s) 2020 Abstract The full-heavy tetraquarks bbb¯b¯ and ccc¯c¯ are [5]. Since then, more and more exotic states were observed systematically investigated within the chiral quark model and proposed, such as Y (4260), Zc(3900), X(5568), and so and the quark delocalization color screening model. Two on. The study of exotic states can help us to understand the structures, meson–meson and diquark–antidiquark, are con- hadron structures and the hadron–hadron interactions better. sidered. For the full-beauty bbb¯b¯ systems, there is no any The full-heavy tetraquark states (QQQ¯ Q¯ , Q = c, b) bound state or resonance state in two structures in the chiral attracted extensive attention for the last few years, since such quark model, while the wide resonances with masses around states with very large energy can be accessed experimentally 19.1 − 19.4 GeV and the quantum numbers J P = 0+,1+, and easily distinguished from other states. In the experiments, and 2+ are possible in the quark delocalization color screen- the CMS collaboration measured pair production of ϒ(1S) ing model. For the full-charm ccc¯c¯ systems, the results are [6].
    [Show full text]
  • Quantum Chromodynamics 1 9
    9. Quantum chromodynamics 1 9. QUANTUM CHROMODYNAMICS Revised October 2013 by S. Bethke (Max-Planck-Institute of Physics, Munich), G. Dissertori (ETH Zurich), and G.P. Salam (CERN and LPTHE, Paris). 9.1. Basics Quantum Chromodynamics (QCD), the gauge field theory that describes the strong interactions of colored quarks and gluons, is the SU(3) component of the SU(3) SU(2) U(1) Standard Model of Particle Physics. × × The Lagrangian of QCD is given by 1 = ψ¯ (iγµ∂ δ g γµtC C m δ )ψ F A F A µν , (9.1) q,a µ ab s ab µ q ab q,b 4 µν L q − A − − X µ where repeated indices are summed over. The γ are the Dirac γ-matrices. The ψq,a are quark-field spinors for a quark of flavor q and mass mq, with a color-index a that runs from a =1 to Nc = 3, i.e. quarks come in three “colors.” Quarks are said to be in the fundamental representation of the SU(3) color group. C 2 The µ correspond to the gluon fields, with C running from 1 to Nc 1 = 8, i.e. there areA eight kinds of gluon. Gluons transform under the adjoint representation− of the C SU(3) color group. The tab correspond to eight 3 3 matrices and are the generators of the SU(3) group (cf. the section on “SU(3) isoscalar× factors and representation matrices” in this Review with tC λC /2). They encode the fact that a gluon’s interaction with ab ≡ ab a quark rotates the quark’s color in SU(3) space.
    [Show full text]
  • Supersymmetry Min Raj Lamsal Department of Physics, Prithvi Narayan Campus, Pokhara Min [email protected]
    Supersymmetry Min Raj Lamsal Department of Physics, Prithvi Narayan Campus, Pokhara [email protected] Abstract : This article deals with the introduction of supersymmetry as the latest and most emerging burning issue for the explanation of nature including elementary particles as well as the universe. Supersymmetry is a conjectured symmetry of space and time. It has been a very popular idea among theoretical physicists. It is nearly an article of faith among elementary-particle physicists that the four fundamental physical forces in nature ultimately derive from a single force. For years scientists have tried to construct a Grand Unified Theory showing this basic unity. Physicists have already unified the electron-magnetic and weak forces in an 'electroweak' theory, and recent work has focused on trying to include the strong force. Gravity is much harder to handle, but work continues on that, as well. In the world of everyday experience, the strengths of the forces are very different, leading physicists to conclude that their convergence could occur only at very high energies, such as those existing in the earliest moments of the universe, just after the Big Bang. Keywords: standard model, grand unified theories, theory of everything, superpartner, higgs boson, neutrino oscillation. 1. INTRODUCTION unifies the weak and electromagnetic forces. The What is the world made of? What are the most basic idea is that the mass difference between photons fundamental constituents of matter? We still do not having zero mass and the weak bosons makes the have anything that could be a final answer, but we electromagnetic and weak interactions behave quite have come a long way.
    [Show full text]
  • The Minkowski Quantum Vacuum Does Not Gravitate
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KITopen Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 946 (2019) 114694 www.elsevier.com/locate/nuclphysb The Minkowski quantum vacuum does not gravitate Viacheslav A. Emelyanov Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany Received 9 April 2019; received in revised form 24 June 2019; accepted 8 July 2019 Available online 12 July 2019 Editor: Stephan Stieberger Abstract We show that a non-zero renormalised value of the zero-point energy in λφ4-theory over Minkowski spacetime is in tension with the scalar-field equation at two-loop order in perturbation theory. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 1. Introduction Quantum fields give rise to an infinite vacuum energy density [1–4], which arises from quantum-field fluctuations taking place even in the absence of matter. Yet, assuming that semi- classical quantum field theory is reliable only up to the Planck-energy scale, the cut-off estimate yields zero-point-energy density which is finite, though, but in a notorious tension with astro- physical observations. In the presence of matter, however, there are quantum effects occurring in nature, which can- not be understood without quantum-field fluctuations. These are the spontaneous emission of a photon by excited atoms, the Lamb shift, the anomalous magnetic moment of the electron, and so forth [5]. This means quantum-field fluctuations do manifest themselves in nature and, hence, the zero-point energy poses a serious problem.
    [Show full text]
  • Polarized Structure Functions in a Constituent Quark Scenario †
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server FTUV 98-8; IFIC 98-8 Polarized structure functions in a constituent quark scenario † Sergio Scopetta and Vicente Vento(a) Departament de Fisica Te`orica, Universitat de Val`encia 46100 Burjassot (Val`encia), Spain and (a) Institut de F´ısica Corpuscular, Consejo Superior de Investigaciones Cient´ıficas and Marco Traini Dipartimento di Fisica, Universit`a di Trento, I-38050 Povo (Trento), Italy and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento Abstract Using a simple picture of the constituent quark as a composite system of point-like partons, we construct the polarized parton distributions by a convolution between constituent quark momentum distributions and constituent quark structure functions. We determine the latter at a low hadronic scale by using unpolarized and/or polarized phenomenological information and Regge behavior at low x. The momentum distributions are described by appropriate quark models. The resulting parton distributions and structure functions are evolved to the experimental scale. If one uses unpolarized data to fix the parameters, good agreement with the experi- ments is achieved for the proton, while not so for the neutron. By relaxing our assump- tions for the sea distributions, we define new quark functions for the polarized case which reproduce accurately both the proton and the neutron data, with only one additional parameter. When our results are compared with similar calculations using non-composite con- stituent quarks, the accord with experiment of the present scheme becomes impressive. We conclude that, also in the polarized case, DIS data are consistent with a low energy scenario dominated by composite, mainly non-relativistic constituents of the nucleon.
    [Show full text]
  • 9. Quantum Chromodynamics 1 9
    9. Quantum chromodynamics 1 9. Quantum Chromodynamics Revised September 2017 by S. Bethke (Max-Planck-Institute of Physics, Munich), G. Dissertori (ETH Zurich), and G.P. Salam (CERN).1 This update retains the 2016 summary of αs values, as few new results were available at the deadline for this Review. Those and further new results will be included in the next update. 9.1. Basics Quantum Chromodynamics (QCD), the gauge field theory that describes the strong interactions of colored quarks and gluons, is the SU(3) component of the SU(3) SU(2) U(1) Standard Model of Particle Physics. × × The Lagrangian of QCD is given by 1 = ψ¯ (iγµ∂ δ g γµtC C m δ )ψ F A F A µν , (9.1) q,a µ ab s ab µ q ab q,b 4 µν L q − A − − X µ where repeated indices are summed over. The γ are the Dirac γ-matrices. The ψq,a are quark-field spinors for a quark of flavor q and mass mq, with a color-index a that runs from a =1 to Nc = 3, i.e. quarks come in three “colors.” Quarks are said to be in the fundamental representation of the SU(3) color group. C 2 The µ correspond to the gluon fields, with C running from 1 to Nc 1 = 8, i.e. there areA eight kinds of gluon. Gluons transform under the adjoint representation− of the C SU(3) color group. The tab correspond to eight 3 3 matrices and are the generators of the SU(3) group (cf.
    [Show full text]
  • Basics of Quantum Chromodynamics (Two Lectures)
    Basics of Quantum Chromodynamics (Two lectures) Faisal Akram 5th School on LHC Physics, 15-26 August 2016 NCP Islamabad 2015 Outlines • A brief introduction of QCD Classical QCD Lagrangian Quantization Green functions of QCD and SDE’s • Perturbative QCD Perturbative calculation of QCD Green functions Feynman Rules of QCD Renormalization Running of QCD coupling (Asymptotic freedom) • Non-Perturbative QCD Confinement QCD phase transition Dynamical breaking of chiral symmetry Elementary Particle Physics Today Elementary particles: Quarks Leptons Gauge Bosons Higgs Boson (can interact through (cannot interact through (mediate interactions) (impart mass to the elementary strong interaction) strong interaction) particles) 푢 푐 푡 Meson: 푠 = 0,1,2 … Quarks: Hadrons: 1 3 푑 푠 푏 Baryons: 푠 = , , … 2 2 푣푒 푣휇 푣휏 Meson: Baryon Leptons: 푒 휇 휏 Gauge Bosons: 훾, 푊±, 푍0, and 8 gluons 399 Mesons, 574 Baryons have been discovered Higgs Bosons: 퐻 (God/Mother particle) • Strong interaction (Quantum Chromodynamics) • Electro-weak interaction (Quantum electro-flavor dynamics) The Standard Model Explaining the properties of the Hadrons in terms of QCD’s fundamental degrees of freedom is the Problem laying at the forefront of Hadronic physics. How these elementary particles and the SM is discovered? 1. Scattering Experiments Cross sections, Decay Constants, 2. Decay Processes Masses, Spin , Couplings, Form factors, etc. 3. Study of bound states Models Particle Accelerators Models and detectors Experimental Particle Physics Theoretical Particle Particle Physicist Phenomenologist Physicist Measured values of Calculated values of physical observables ≈ physical observables It doesn’t matter how beautifull your theory is, It is more important to have beauty It doesn’t matter how smart you are.
    [Show full text]
  • Group Theory of Spontaneous Symmetry Breaking
    Group Theory of Spontaneous Symmetry Breaking Christopher de Firmian Physics 251 June 7, 2019 Classical Analogy I Imagine trying to balance a rotationally symmetric pencil on a point. Any tiny perturbation would destabilize the unstable equilibrium and cause it to topple over. I A collision with an air molecule or, even if in vacuum, a stray cosmic ray or quantum fluctuation would cause the pencil to fall over. I In a perfect mathematical world, this rotational symmetry would be realized, but in the real and messy universe we exist in, we say these would-be symmetries are spontaneously broken. Quantum Mechanically I Similar to the classical analogy, one could imagine an electron's magnetic moment anti-aligned with an external magnetic field. This exemplifies another unstable equilibrium. I We, however, want to generalize our search for spontaneously broken symmetries to symmetries beyond what we can intuitively imagine. Hence, for arbitrary potentials, we search for local maxima. Discrete Symmetry Example 1 µ 1 2 2 λ 4 I Consider the Lagrangian L = 2 (@µφ)(@ φ) − 2 m φ − 4! φ 1 2 2 λ 4 I We then have a potential V (φ) = 2 m φ + 4! φ 2 I Consider a scenario in which we have m < 0 and λ > 0. More obvious if we let m2 ! −µ2 < 0 I Then our potential appears quartic with a local maximum and 1 2 2 λ 4 two minima. V (φ) = − 2 µ φ + 4! φ 1 2 2 λ 4 I V (φ) = − 2 µ φ + 4! φ I It is energetically favorable for φ to take the values that minimize the potential V (φ).
    [Show full text]