Surface Compositions on Pluto and Charon
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Tectonics of Charon Ross A. Beyer1,2, Francis Nimmo3, William B. Mckinnon4, Jeffrey Moore2, Paul Schenk5, Kelsi Singer6, John R
47th Lunar and Planetary Science Conference (2016) 2714.pdf Tectonics of Charon Ross A. Beyer1;2, Francis Nimmo3, William B. McKinnon4, Jeffrey Moore2, Paul Schenk5, Kelsi Singer6, John R. Spencer6, Hal Weaver7, Leslie Young6, Kimberly Ennico2, Cathy Olkin6, Alan Stern6, and the New Horizons Science Team. 1Carl Sagan Center at the SETI Institute, 2NASA Ames Research Center, Moffett Field, CA, USA ([email protected]), 3UCSC, 4WUStL, 5LPI, 6SwRI, 7JHU APL Charon, Pluto’s large companion, has a variety of (0.288 m s−2). Charon’s tectonic terrain is exception- terrains that exhibit tectonic features. The Pluto-facing ally rugged and and contains a network of fault-bounded hemisphere that New Horizons [1] observed at high res- troughs and scarps in the equatorial to middle latitudes. olution has two broad provinces: the relatively smooth This transitions northward and over the pole to the visi- plains of the informally named (as are all names in this ble limb into an irregular zone where the fault traces are abstract) Vulcan Planum to the south of the encounter neither so parallel nor so obvious, but which contains ir- hemisphere, and the zone north of Vulcan Planum. This regular depressions (one as deep as 10 km just outside of area is characterized by ridges, graben, and scarps, which Mordor Macula) and other large relief variations. are signs of extensional tectonism. The border between Chasmata: There are a number of chasmata that gen- these two provinces strikes diagonally across the en- erally parallel the strike of the northern margin of Vulcan counter hemisphere from as far south as −19◦ latitude ◦ Planum, and we will discuss the largest two here as they in the west to 25 in the east (Figure1). -
Charon Tectonics
Icarus 287 (2017) 161–174 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Charon tectonics ∗ Ross A. Beyer a,b, , Francis Nimmo c, William B. McKinnon d, Jeffrey M. Moore b, Richard P. Binzel e, Jack W. Conrad c, Andy Cheng f, K. Ennico b, Tod R. Lauer g, C.B. Olkin h, Stuart Robbins h, Paul Schenk i, Kelsi Singer h, John R. Spencer h, S. Alan Stern h, H.A. Weaver f, L.A. Young h, Amanda M. Zangari h a Sagan Center at the SETI Institute, 189 Berndardo Ave, Mountain View, California 94043, USA b NASA Ames Research Center, Moffet Field, CA 94035-0 0 01, USA c University of California, Santa Cruz, CA 95064, USA d Washington University in St. Louis, St Louis, MO 63130-4899, USA e Massachusetts Institute of Technology, Cambridge, MA 02139, USA f Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA g National Optical Astronomy Observatories, Tucson, AZ 85719, USA h Southwest Research Institute, Boulder, CO 80302, USA i Lunar and Planetary Institute, Houston, TX 77058, USA a r t i c l e i n f o a b s t r a c t Article history: New Horizons images of Pluto’s companion Charon show a variety of terrains that display extensional Received 14 April 2016 tectonic features, with relief surprising for this relatively small world. These features suggest a global ex- Revised 8 December 2016 tensional areal strain of order 1% early in Charon’s history. Such extension is consistent with the presence Accepted 12 December 2016 of an ancient global ocean, now frozen. -
Charon Tectonics
Icarus 287 (2017) 161–174 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Charon tectonics ∗ Ross A. Beyer a,b, , Francis Nimmo c, William B. McKinnon d, Jeffrey M. Moore b, Richard P. Binzel e, Jack W. Conrad c, Andy Cheng f, K. Ennico b, Tod R. Lauer g, C.B. Olkin h, Stuart Robbins h, Paul Schenk i, Kelsi Singer h, John R. Spencer h, S. Alan Stern h, H.A. Weaver f, L.A. Young h, Amanda M. Zangari h a Sagan Center at the SETI Institute, 189 Berndardo Ave, Mountain View, California 94043, USA b NASA Ames Research Center, Moffet Field, CA 94035-0 0 01, USA c University of California, Santa Cruz, CA 95064, USA d Washington University in St. Louis, St Louis, MO 63130-4899, USA e Massachusetts Institute of Technology, Cambridge, MA 02139, USA f Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA g National Optical Astronomy Observatories, Tucson, AZ 85719, USA h Southwest Research Institute, Boulder, CO 80302, USA i Lunar and Planetary Institute, Houston, TX 77058, USA a r t i c l e i n f o a b s t r a c t Article history: New Horizons images of Pluto’s companion Charon show a variety of terrains that display extensional Received 14 April 2016 tectonic features, with relief surprising for this relatively small world. These features suggest a global ex- Revised 8 December 2016 tensional areal strain of order 1% early in Charon’s history. Such extension is consistent with the presence Accepted 12 December 2016 of an ancient global ocean, now frozen. -
The Newsletter of the Barnard-Seyfert Astronomical Society
October The ECLIPSE 2015 The Newsletter of the Barnard-Seyfert Astronomical Society From the President: Next Membership Meeting: October 21, 2015, 7:30 pm October! A chance for the bugs and the heat to die down. Cumberland Valley Now all we need are clear skies to enjoy the season. Girl Scout Council Building Fall also means it is time for some year-end activities. We 4522 Granny White Pike need YOU… to consider helping take BSAS into the next year as part of our Board of Directors. Specifcally, if anyone has Topic: “What’s up in the fall sky?” A either the experience or inclination, we need a Treasurer as look at what interesting astronomical objects are in the fall night sky and well as a couple of at-large directors and a Vice-President. how to fnd them, led by Terry Reeves. Treasurer is not about high fnance, we just process money from memberships and pay our few bills. Come join us, bring some new ideas… I could bring cookies if that helps! There are a lot of things out there that we could be doing over the next few years, so don’t make us twist your arms too hard. In this Issue: Our calendars are getting thinner President’s Message 1 at the bottom, that means that it is time to order new ones! We will Observing Highlights 2 be taking orders at the next two meetings, you can always email us Book Review: Geek Physics as well. Three separate calendars, by Robin Byrne 3 three ways to astronomically enjoy the new year. -
Geological Mapping of Pluto and Charon Using New Horizons Data
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic GEOLOGICAL MAPPING OF PLUTO AND CHARON USING NEW HORIZONS DATA J.M. Moore* a, J.R. Spencer b, W.B. McKinnon c, A.D. Howard d, O.M. White a, O.M. Umurhan a, P.M. Schenk e, R.A. Beyer a, K. Singer b, S.A. Stern b, H.A. Weaver f, L.A. Young b, K. Ennico Smith a, C. Olkin b, and the New Horizons Geology and Geophysics Imaging Teamz a NASA Ames Research Center, Moffett Field, CA, 94035, ([email protected]), b Southwest Research Inst., 1050 Walnut St., Suite 300, Boulder, CO 80302, c Dept. Earth and Planetary Sciences, Washington Univ. St. Louis, St. Louis, MO 63130, d Dept. Environmental Sciences, University of Virginia, Charlottesville, VA 22904, e Lunar and Planetary Inst., 3600 Bay Area Blvd., Houston, TX 77058, f Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 Commission IV, WG IV/8 KEY WORDS: Pluto, Charon, Geological Mapping, Spatial Databases ABSTRACT: Pluto and Charon exhibit strikingly different surface appearances, despite their similar densities and presumed bulk compositions. Systematic mapping has revealed that much of Pluto’s surface can be attributed to surface-atmosphere interactions and the mobilization of volatile ices by insolation. Many mapped valley systems appear to be the consequence of glaciation involving nitrogen ice. Other geological activity requires or required internal heating. The convection and advection of volatile ices in Sputnik Planum can be powered by present-day radiogenic heat loss. -
Asteroids, Comets, Meteors -‐‑ ACM2017 -‐‑ Montevid
Asteroids, Comets, Meteors - ACM2017 - Montevideo THE GEOLOGY OF CHARON AS REVEALED BY NEW HORIZONS J. M. Moore1, J. R. Spencer2, W. B. McKinnon3, R. A. Beyer1,4, S.A. Stern2, K. Ennico1, C.B. Olkin2, H.A. Weaver5, L.A. Young2, and the New Horizons Science Team 1National Aeronautics and Space Administration (NASA) Ames Research Center, MS-245-3 Space 2 Sci. Division, Moffett Field, CA 94035, USA, Southwest Research Institute, Boulder, CO 80302, USA, 3Washington University, St. Louis, MO 63130, USA, 4SETI Institute, Mt. View, CA 94043, USA, 5Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA. Introduction: Pluto’s large moon Charon (ra- Clarke Montes appears to expose a more rugged dius 606 km; r = 1.70 g cm-3) exhibits a striking terrain, with smooth plains embaying the mar- variety of landscapes. Charon can be divided gins, two of which are lobate. In addition to the into two broad provinces separated by a roughly moats surrounding these mountains, there are aligned assemblage of ridges and canyons, two additional depressions surrounded by which span from east to west. North of this tec- rounded or lobate margins. We speculate that tonic belt is rugged, cratered terrain (Oz Terra); both the moats and depressions may be the ex- south of it are smoother but geologically com- pressions of the flow of, and incomplete enclo- plex plains (Vulcan Planum). (All place names sure by, viscous, cryovolcanic materials, such as here are informal.) Relief exceeding 20 km is proposed at Ariel and Miranda [5, 6]. The seen in limb profiles and stereo topography. -
Singer Et Al., 2019
Will be published in early 2021 as a book chapter in the University of Arizona Press Book: The Pluto System After New Horizons Impact Craters on Pluto and Charon and Terrain Age Estimates K. N. Singer Southwest Research Institute S. Greenstreet University of Washington P. M. Schenk Lunar and Planetary Institute S. J. Robbins Southwest Research Institute V. J. Bray University of Arizona Pluto’s terrains display a diversity of crater retention ages ranging from areas with no identifiable craters to heavily cratered terrains. This variation in crater densities is consistent with geologic activity occurring throughout Pluto’s history and also a variety of resurfacing styles, including both exogenic and endogenic processes. Using estimates of impact flux and cratering rates over time, Pluto’s heavily cratered terrains appear to be relatively ancient, 4 Ga or older. Charon’s smooth plains, informally named Vulcan Planitia, did experience early resurfacing, but there is a relatively high spatial density of craters on Vulcan Planitia and almost all overprint the other types of volcanic or tectonic features. Both Vulcan Planitia and the northern terrains on Charon are also estimated to be ancient, 4 Ga or older. The craters on Pluto and Charon also show a distinct break in their size-frequency distributions (SFDs), where craters smaller than ~10-15 km in diameter have a shallower SFD power-law slope than those larger than this break diameter. This SFD shape on Pluto and Charon is different than what is observed on the Earth’s Moon, and gives the Kuiper belt impactor SFD a different shape than that of the asteroid belt. -
Ice& Stone 2020
Ice & Stone 2020 WEEK 29: JULY 12-18 Presented by The Earthrise Institute # 29 Authored by Alan Hale This week in history JULY 12 13 14 15 16 17 18 JULY 12, 2001: American astronomer Gary Melnick and his colleagues publish their discovery of water vapor around the old, evolved star CW Leonis, suggesting the presence of exocomets around that star. The subject of exocomets, including the importance of this discovery, is discussed in a previous “Special Topics” presentation. JULY 12, 2126: Comet 109P/Swift-Tuttle, the parent comet of the Perseid meteors, will pass through perihelion at a heliocentric distance of 0.956 AU. A little over three weeks later the comet will pass 0.15 AU from Earth. 109P/ Swift-Tuttle is a future “Comet of the Week.” JULY 12 13 14 15 16 17 18 JULY 14, 1996: European Southern Observatory astronomer Guido Pizarro takes the first of several photographs that show the presence of a cometary object discovered early the following month by Eric Elst. Comet Elst- Pizarro did not show a coma but did exhibit a distinct tail, and was found to be traveling in a low-eccentricity orbit entirely within the main asteroid belt. Dual-designated as “asteroid” (7968) and as “comet” 133P, Elst- Pizarro was the first-known example of a “main belt comet,” more commonly referred to today as “active asteroids.” These objects are the subject of a future “Special Topics” presentation. JULY 14, 2015: NASA’s New Horizons mission passes by Pluto and its system of moons. Pluto is the subject of this week’s “Special Topics” presentation, and the New Horizons encounter is discussed in detail there. -
Pluto's Haze As a Surface Material
Pluto’s Haze as a Surface Material W.M. Grundy1, T. Bertrand2, R.P. Binzel3, M.W. Buie4, B.J. Buratti5, A.F. Cheng6, J.C. Cook7, D.P. Cruikshank2, S.L. Devins5, C.M. Dalle Ore2,8, A.M. Earle3, K. Ennico2, F. Forget9, P. Gao10, G.R. Gladstone11, C.J.A. Howett4, D.E. Jennings12, J.A. Kammer11, T.R. Lauer13, I.R. Linscott14, C.M. Lisse6, A.W. Lunsford12, W.B. McKinnon15, C.B. Olkin4, A.H. Parker4, S. Protopapa4, E. Quirico17, D.C. Reuter12, B. Schmitt16, K.N. Singer4, J.A. Spencer4, S.A. Stern4, D.F. Strobel17, M.E. Summers18, H.A. Weaver6, G.E. Weigle II11, M.L. Wong10, E.F. Young4, L.A. Young4, and X. Zhang19 1. Lowell Observatory, Flagstaff AZ 2. NASA Ames Research Center, Moffett Field CA 3. Massachusetts Institute of Technology, Cambridge MA 4. Southwest Research Institute, Boulder CO 5. NASA Jet Propulsion Laboratory, La Cañada Flintridge CA 6. Johns Hopkins University Applied Physics Laboratory, Laurel MD 7. Pinhead Institute, Telluride CO 8. SETI Institute, Mountain View CA 9. Laboratoire de Météorologie Dynamique (CNRS/UPMC), Paris France 10. California Institute of Technology, Pasadena CA 11. Southwest Research Institute, San Antonio TX 12. NASA Goddard Space Flight Center, Greenbelt MD 13. National Optical Astronomy Observatory, Tucson AZ 14. Stanford University, Stanford CA 15. Washington University of St. Louis, St. Louis MO 16. Université Grenoble Alpes, CNRS, IPAG, Grenoble France 17. Johns Hopkins University, Baltimore MD 18. George Mason University, Fairfax VA 19. University of California, Santa Cruz CA Published in 2018 in Icarus vol. -
Science Journals
RESEARCH ◥ cryogenic ices are distinguishable via their RESEARCH ARTICLE SUMMARY characteristic vibrational absorption features. RESULTS: New Horizons made its closest ap- PLANETARY SCIENCE proach to the system on 14 July 2015. Observa- tions of Pluto and Charon obtained that day reveal regionally diverse colors and compositions. Surface compositions On Pluto, the color images show nonvolatile tholins coating an ancient, heavily cratered equa- across Pluto and Charon torial belt. A smooth, thousand-kilometer plain must be able to refresh its surface rapidly enough W. M. Grundy,* R. P. Binzel, B. J. Buratti, J. C. Cook, D. P. Cruikshank, C. M. Dalle Ore, to erase all impact craters. ◥ A. M. Earle, K. Ennico, C. J. A. Howett, A. W. Lunsford, C. B. Olkin, A. H. Parker, ON OUR WEB SITE Infrared observations of S. Philippe, S. Protopapa, E. Quirico, D. C. Reuter, B. Schmitt, K. N. Singer, Read the full article this region show volatile A. J. Verbiscer, R. A. Beyer, M. W. Buie, A. F. Cheng, D. E. Jennings, at http://dx.doi. ices including N2 and CO. I. R. Linscott, J. Wm. Parker, P. M. Schenk, J. R. Spencer, J. A. Stansberry, org/10.1126/ H2O ice is not detected S. A. Stern, H. B. Throop, C. C. C. Tsang, H. A. Weaver, G. E. Weigle II, science.aad9189 there, but it does appear in .................................................. L. A. Young, and the New Horizons Science Team neighboring regions. CH4 ice appears on crater rims and mountain ridges INTRODUCTION: The Kuiper Belt hosts a over the course of time, the understanding of at low latitudes and is abundant at Pluto’s high swarm of distant, icy objects ranging in size which is a prerequisite to reconstructing the northern latitudes. -
Pluto and Charon: Surface Colors and Compositions — a Hypothesis
47th Lunar and Planetary Science Conference (2016) 1696.pdf PLUTO AND CHARON: SURFACE COLORS AND COMPOSITIONS--A HYPOTHESIS D. P Cruikshank1 S. A. Stern2, W. M. Grundy3, J. M. Moore1 L. A. Young2, C. B. Olkin2, H. A. Weaver4 , K. Ennico1, J. C. Cook2, and the New Horizons Composition Theme Team 1NASA Ames Research Center ([email protected]), 2Southwest Research Institute, 3Lowell Observatory, 4Appl. Phys. Lab Johns Hopkins Univ. Introduction: The surface of Pluto displays an ence of a number of small molecules, including NH3, array of colors ranging from yellow to red to brown, plus complex macromolecular carbonaceous material. while the surface of Charon is largely gray with a north Mass spectra of organic molecules desorbed from the polar zone of red color similar to regions on Pluto[1,2]. residue show a high degree of aromatization, while UV Pluto’s surface shows layers of intensely colored mate- fluorescence imaging shows an overall high concentra- rial in tilted and transported blocks, and fractured geo- tion of organics. The yellow-to-brown colors of the graphical units. This arrangement suggests episodes of residue are consistent with the presence of conjugated formation or deposition of that material interspersed carbon-carbon chains. Material of comparable com- with episodes of emplacement of ices having little or plexity characterizes the insoluble organic matter no color. The ices identified on the surfaces of these (IOM) in carbonaceous meteorites[11]. IOM is found two bodies (N2, CH4, CO, C2H6, H2O on Pluto, and to contain small molecules and radicals trapped in the H2O and NH3 on Charon)[3,4] are colorless, as are carbonaceous complex for astronomical time scales. -
The Youngest Crater on Charon? 30 October 2015, by Tricia Talbert
Image: The youngest crater on Charon? 30 October 2015, by Tricia Talbert "Why are these two similar-looking and similar- sized craters, so near to each other, so compositionally distinct?" asked Will Grundy, New Horizons Composition team lead from Lowell Observatory in Flagstaff, Arizona. "We have various ideas when it comes to the ammonia in Organa. The crater could be younger, or perhaps the impact that created it hit a pocket of ammonia-rich subsurface ice. Alternatively, maybe Organa's impactor delivered its own ammonia." Charon’s Young Ammonia Crater. The informally named Organa crater (shown in green) is rich in frozen ammonia and – so far – appears to be unique on Pluto’s largest moon. Credit: NASA/JHUAPL/SwRI New Horizons scientists have discovered a striking contrast between one of the fresh craters on This composite image is based on observations from the Pluto's largest moon Charon and a neighboring New Horizons Ralph/LEISA instrument made at 10:25 UT crater dotting the moon's Pluto-facing hemisphere. (6:25 a.m. EDT) on July 14, 2015, when New Horizons was 50,000 miles (81,000 kilometers) from Charon. The The crater, informally named Organa, caught spatial resolution is 3 miles (5 kilometers) per pixel. The LEISA data were downlinked Oct. 1-4, 2015, and scientists' attention as they were studying the processed into a map of Charon's 2.2 micron ammonia- highest-resolution infrared compositional scan of ice absorption band. Long Range Reconnaissance Charon. Organa and portions of the surrounding Imager (LORRI) panchromatic images used as the material ejected from it show infrared absorption at background in this composite were taken about 8:33 UT wavelengths of about 2.2 microns, indicating that (4:33 a.m.