Genome-Wide Microarray Expression

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Microarray Expression The Journal of Immunology Genome-Wide Microarray Expression Analysis of CD4؉ T Cells from Nonobese Diabetic Congenic Mice Identifies Cd55 (Daf1) and Acadl as Candidate Genes for Type 1 Diabetes1 Junichiro Irie,* Brian Reck,† Yuehong Wu,* Linda S. Wicker,‡ Sarah Howlett,‡ Daniel Rainbow,‡ Eleanor Feingold,† and William M. Ridgway2* NOD.Idd3/5 congenic mice have insulin-dependent diabetes (Idd) regions on chromosomes 1 (Idd5)and3(Idd3) derived from the nondiabetic strains B10 and B6, respectively. NOD.Idd3/5 mice are almost completely protected from type 1 diabetes (T1D) but the genes within Idd3 and Idd5 responsible for the disease-altering phenotype have been only partially characterized. To test the hypothesis that candidate Idd genes can be identified by differential gene expression between activated CD4؉ T cells from the diabetes-susceptible NOD strain and the diabetes-resistant NOD.Idd3/5 congenic strain, genome-wide microarray expression analysis was performed using an empirical Bayes method. Remarkably, 16 of the 20 most differentially expressed genes were located in the introgressed regions on chromosomes 1 and 3, validating our initial hypothesis. The two genes with the greatest differential RNA expression on chromosome 1 were those encoding decay-accelerating factor (DAF, also known as CD55) and acyl-coenzyme A dehydrogenase, long chain, which are located in the Idd5.4 and Idd5.3 regions, respectively. Neither gene has been implicated previously in the pathogenesis of T1D. In the case of DAF, differential expression of mRNA was extended to the protein level; NOD CD4؉ T cells expressed higher levels of cell surface DAF compared with NOD.Idd3/5 CD4؉ T cells following activation with anti-CD3 and -CD28. DAF up-regulation was IL-4 dependent and blocked under Th1 conditions. These results validate the approach of using congenic mice together with genome-wide analysis of tissue-specific gene expression to identify novel candidate genes in T1D. The Journal of Immunology, 2008, 180: 1071–1079. n complex genetic diseases such as type 1 diabetes (T1D),3 cessful in excluding candidate genes and narrowing the list of pos- dozens of allelic variants interact to promote or discourage sible candidate genes (5–14). I disease manifestation (1–3). Similar findings have been made There is a practical limit, however, to fine-mapping disease in animal models of complex genetic disease such as the NOD genes using congenic strains of mice since recombination in the mouse, which spontaneously develops T1D (4, 5). Positional clon- genome is not random and often the smallest congenic interval that ing to discover genes causing T1D in NOD mice has involved the can be isolated can contain up to 50 genes (4). Expression analysis generation of congenic mice and this approach has been very suc- of genes within the interval can contribute evidence of genetic variation and thereby greatly assist candidate gene prioritization in a manner unbiased by previous biological knowledge of any of the *Division of Rheumatology and Immunology, School of Medicine, University of genes. The use of genome-wide microarray expression analysis Pittsburgh, Pittsburgh, PA 15261; †Department of Biostatistics, Graduate School of (15, 16) not only allows simultaneous assessment of all of the Public Health, University of Pittsburgh, Pittsburgh, PA 15261; and ‡Juvenile Diabetes genes within the interval (given microarray chips with sufficient Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, De- partment of Medical Genetics, Cambridge Institute for Medical Research, University gene substrate to recognize splice variants), but also highlights of Cambridge, Cambridge, United Kingdom any genes controlled in trans by a candidate causal gene. Received for publication September 13, 2006. Accepted for publication October The combination of microarray analysis with congenic strain 31, 2007. fine-mapping has had variable success in genetic mouse models of The costs of publication of this article were defrayed in part by the payment of page autoimmunity. In two different lupus mouse models, microarray charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. analysis identified strong genetic candidates (17, 18). In T1D, 1 W.M.R. was supported by National Institutes of Health (NIH) National Institute of however, an earlier attempt at this analysis was not successful Diabetes and Digestive and Kidney Diseases 60714 and NIH RFA A102-006. L.S.W. when applied to expression in whole, naive spleen (19). The au- is a Juvenile Diabetes Research Foundation (JDRF)/Wellcome Trust Principal Research Fellow and the research in the laboratory of L.S.W. for this study was also thors concluded that analyzing expression in a noninduced whole supported by NIH P01 AI039671. The availability of NOD congenic mice through the organ was not informative, implying that selecting specific im- Taconic Farms Emerging Models Program has been supported by grants from the mune cell subsets may be more productive. Therefore in this re- Merck Genome Research Institute, National Institute of Allergy and Infectious Dis- eases, and the JDRF. port, we have chosen to analyze differential gene expression in ϩ 2 Address correspondence and reprint requests to Dr. William M. Ridgway, Division purified, activated CD4 T cells because a large amount of liter- of Rheumatology and Immunology, School of Medicine, University of Pittsburgh, ature supports a pathogenic role for this cell type in NOD mice S725 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261. E-mail address: [email protected] (20–22), suggesting that some genes causing T1D, known as Idd (for insulin dependent diabetes) genes, are expressed in the CD4ϩ 3 Abbreviations used in this paper: T1D, type 1 diabetes; Idd, insulin-dependent di- abetes; SNP, single nucleotide polymorphism; DAF, decay-accelerating factor; Ct, T cell subset. cycle threshold; ACADL, acyl-coenzyme A dehydrogenase, long chain; SAPE, The NOD.Idd3/5 congenic mouse, with the B6-derived Idd3 in- streptavidin-PE. terval on chromosome 3, and the B10-derived Idd5 interval on Copyright © 2008 by The American Association of Immunologists, Inc. 0022-1767/08/$2.00 chromosome 1, is almost completely protected from diabetes www.jimmunol.org 1072 MICROARRAY ANALYSIS OF NOD CONGENIC CD4ϩ T CELLS (1–2% incidence at 7 mo of age for NOD.Idd3/5 females compared with 80% for NOD females) (23). The genetic basis of T1D pro- tection from diabetes in NOD.Idd3/5 mice has been partially char- acterized. The Idd3 region is a 650-kb interval containing five known genes (Tenr, Il2, Il21, Centrin4, and Fgf2), two predicted genes of unknown function (KIAA1109 and KIAA1371), and three pseudogenes. The prime candidate gene encodes IL-2 and the causative single nucleotide polymorphisms are hypothesized to subtly alter its mRNA expression levels (24). As detailed in the accompanying article (25), there are four subregions within the FIGURE 1. Dot plot representation of the whole gene chip data set from ϩ larger Idd5 region: Idd5.1 (2.0 Mb), Idd5.2 (1.5 Mb), Idd5.3 (3.5 NOD-, NOD.Idd3/5-, and B6.G7-activated CD4 T cells. Shown is the Mb), and Idd5.4 (78 Mb). The genes accounting for Idd5.1 and distribution of probe sets representing the entire data set from the NOD, NOD.Idd3/5, and B6.G7 gene chips, analyzed by intersecting probe sets Idd5.2 are most likely Ctla4 (6–8) and Nramp1 (4, 8), respec- from different strains represented on the x and y axes (see Results). Each tively. The molecular basis of these two candidate genes has been circle represents ϳ10 probe sets. Probe sets in the top 7% of differential attributed to single nucleotide polymorphisms in the coding re- expression between NOD- and NOD.Idd3/5-activated CD4ϩ T cells (ver- gions which alter splicing in case of Ctla4 and the primary amino tical line) intersected with probe sets in top 7% of differential expression acid sequence for Nramp1. between NOD- and B6.G7-activated CD4ϩ T cells (horizontal line). The To further characterize the genetic basis of T1D resistance in upper right quadrant shows the probe sets that were in the top 7% in both NOD.Idd3/5 mice, we formulated the hypothesis that the geneti- the NOD vs NOD.Idd3/5 and the NOD vs B6.G7 comparisons.; the full list cally controlled resistance to diabetes would be correlated to al- of these genes is found in supplemental table 1. tered gene expression patterns in candidate genes on chromosomes 1 and 3 of activated NOD.Idd3/5 CD4ϩ T cells. Thus, activated CD4ϩ T cells from NOD and NOD.Idd3/5 should show differ- within the B10-derived introgressed region of chromosome 1 in ential expression primarily in the congenic intervals on chro- NOD.Idd3/5 mice. mosomes 1 and 3; conversely, the common NOD genome out- side the congenic region on these two chromosomes should be Preparation, purification, and stimulation of splenocytes equivalently expressed. Exceptions to this hypothesis, i.e., dif- ϩ The spleen from each mouse was removed aseptically and minced. After ferential expression of genes from NOD and NOD.Idd3/5 CD4 lysing RBC, the cells were washed three times with PBS. To purify CD4- T cells outside the congenic intervals, could result from down- positive splenocytes, splenocytes were prepared by magnetic separation stream or trans effects of genes in the congenic intervals. As a using a MiniMACS system (Miltenyi Biotec) according to the manufac- ϩ turer’s instructions. Purified CD4-positive splenocytes were suspended in control, we also compared gene expression between CD4 T RPMI 1640 medium (Invitrogen Life Technologies) supplemented with cells purified from NOD and B6.G7 mice, two strains differing 10% heat-inactivated FBS (Invitrogen Life Technologies) and 1 mM L- throughout the genome except that they share the NOD MHC alanyl-glutamine (Invitrogen Life Technologies), 100 U/ml penicillin, 100 region on chromosome 17.
Recommended publications
  • Two Transgenic Mouse Models for Β-Subunit Components of Succinate-Coa Ligase Yielding Pleiotropic Metabolic Alterations
    Two transgenic mouse models for -subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations Kacso, Gergely; Ravasz, Dora; Doczi, Judit; Németh, Beáta; Madgar, Ory; Saada, Ann; Ilin, Polina; Miller, Chaya; Ostergaard, Elsebet; Iordanov, Iordan; Adams, Daniel; Vargedo, Zsuzsanna; Araki, Masatake; Araki, Kimi; Nakahara, Mai; Ito, Haruka; Gál, Aniko; Molnár, Mária J; Nagy, Zsolt; Patocs, Attila; Adam-Vizi, Vera; Chinopoulos, Christos Published in: Biochemical Journal DOI: 10.1042/BCJ20160594 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Kacso, G., Ravasz, D., Doczi, J., Németh, B., Madgar, O., Saada, A., Ilin, P., Miller, C., Ostergaard, E., Iordanov, I., Adams, D., Vargedo, Z., Araki, M., Araki, K., Nakahara, M., Ito, H., Gál, A., Molnár, M. J., Nagy, Z., ... Chinopoulos, C. (2016). Two transgenic mouse models for -subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochemical Journal, 473(20), 3463-3485. https://doi.org/10.1042/BCJ20160594 Download date: 02. okt.. 2021 Biochemical Journal (2016) 473 3463–3485 DOI: 10.1042/BCJ20160594 Research Article Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations Gergely Kacso1,2, Dora Ravasz1,2, Judit Doczi1,2, Beáta Németh1,2, Ory Madgar1,2, Ann Saada3, Polina Ilin3, Chaya Miller3, Elsebet Ostergaard4, Iordan Iordanov1,5, Daniel Adams1,2, Zsuzsanna Vargedo1,2, Masatake
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Linked Mental Retardation Detected by Array CGH
    JMG Online First, published on September 16, 2005 as 10.1136/jmg.2005.036178 J Med Genet: first published as 10.1136/jmg.2005.036178 on 16 September 2005. Downloaded from Chromosomal copy number changes in patients with non-syndromic X- linked mental retardation detected by array CGH D Lugtenberg1, A P M de Brouwer1, T Kleefstra1, A R Oudakker1, S G M Frints2, C T R M Schrander- Stumpel2, J P Fryns3, L R Jensen4, J Chelly5, C Moraine6, G Turner7, J A Veltman1, B C J Hamel1, B B A de Vries1, H van Bokhoven1, H G Yntema1 1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 2Department of Clinical Genetics, University Hospital Maastricht, Maastricht, The Netherlands; 3Center for Human Genetics, University of Leuven, Leuven, Belgium; 4Max Planck Institute for Molecular Genetics, Berlin, Germany; 5INSERM 129-ICGM, Faculté de Médecine Cochin, Paris, France; 6Service de Génétique et INSERM U316, Hôpital Bretonneau, Tours, France; 7 GOLD Program, Hunter Genetics, University of Newcastle, Callaghan, New South Wales 2308, Australia http://jmg.bmj.com/ Corresponding author: on October 2, 2021 by guest. Protected copyright. Helger G. Yntema, PhD Department of Human Genetics Radboud University Nijmegen Medical Centre P.O. Box 9101 6500 HB Nijmegen The Netherlands E-mail: [email protected] tel: +31-24-3613799 fax: +31-24-3616658 1 Copyright Article author (or their employer) 2005. Produced by BMJ Publishing Group Ltd under licence. J Med Genet: first published as 10.1136/jmg.2005.036178 on 16 September 2005. Downloaded from ABSTRACT Introduction: Several studies have shown that array based comparative genomic hybridization (array CGH) is a powerful tool for the detection of copy number changes in the genome of individuals with a congenital disorder.
    [Show full text]
  • Nuclear Organization and the Epigenetic Landscape of the Mus Musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Liu, Alicia, "Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome" (2019). Doctoral Dissertations. 2273. https://opencommons.uconn.edu/dissertations/2273 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia J. Liu, Ph.D. University of Connecticut, 2019 ABSTRACT X-linked imprinted genes have been hypothesized to contribute parent-of-origin influences on social cognition. A cluster of imprinted genes Xlr3b, Xlr4b, and Xlr4c, implicated in cognitive defects, are maternally expressed and paternally silent in the murine brain. These genes defy classic mechanisms of autosomal imprinting, suggesting a novel method of imprinted gene regulation. Using Xlr3b and Xlr4c as bait, this study uses 4C-Seq on neonatal whole brain of a 39,XO mouse model, to provide the first in-depth analysis of chromatin dynamics surrounding an imprinted locus on the X-chromosome. Significant differences in long-range contacts exist be- tween XM and XP monosomic samples. In addition, XM interaction profiles contact a greater number of genes linked to cognitive impairment, abnormality of the nervous system, and abnormality of higher mental function. This is not a pattern that is unique to the imprinted Xlr3/4 locus. Additional Alicia J. Liu - University of Connecticut - 2019 4C-Seq experiments show that other genes on the X-chromosome, implicated in intellectual disability and/or ASD, also produce more maternal contacts to other X-linked genes linked to cognitive impairment.
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Expressed Sequence Tag Analysis of the Response of Apple
    Physiologia Plantarum 133: 298–317. 2008 Copyright ª Physiologia Plantarum 2008, ISSN 0031-9317 Expressed sequence tag analysis of the response of apple (Malus x domestica ‘Royal Gala’) to low temperature and water deficit Michael Wisniewskia,*, Carole Bassetta,*, John Norellia, Dumitru Macarisina, Timothy Artlipa, Ksenija Gasicb and Schuyler Korbanb aUnited States Department of Agriculture – Agricultural Research Service (USDA-ARS), Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA bDepartment of Natural Resources and Environmental Sciences, University of Illinois, 310 ERML, 1201 W. Gregory Drive, Urbana, IL 61801, USA Correspondence Leaf, bark, xylem and root tissues were used to make nine cDNA libraries from *Corresponding author, non-stressed (control) ‘Royal Gala’ apple trees, and from ‘Royal Gala’ trees e-mail: [email protected]; exposed to either low temperature (5°C for 24 h) or water deficit (45% of [email protected] saturated pot mass for 2 weeks). Over 22 600 clones from the nine libraries # Received 26 September 2007; revised 3 were subjected to 5 single-pass sequencing, clustered and annotated using January 2008 BLASTX. The number of clusters in the libraries ranged from 170 to 1430. Regarding annotation of the sequences, BLASTX analysis indicated that within doi: 10.1111/j.1399-3054.2008.01063.x the libraries 65–72% of the clones had a high similarity to known function genes, 6–15% had no functional assignment and 15–26% were completely novel. The expressed sequence tags were combined into three classes (control, low-temperature and water deficit) and the annotated genes in each class were placed into 1 of 10 different functional categories.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Genetic Variants on Chromosome 1Q41 Influence Ocular Axial Length and High Myopia
    Genetic Variants on Chromosome 1q41 Influence Ocular Axial Length and High Myopia Qiao Fan1, Veluchamy A. Barathi2,3, Ching-Yu Cheng1,2,3, Xin Zhou1, Akira Meguro4, Isao Nakata5,6, Chiea-Chuen Khor2,7,8,9, Liang-Kee Goh1,10,11, Yi-Ju Li12,13, Wan’e Lim2, Candice E. H. Ho2, Felicia Hawthorne13, Yingfeng Zheng2, Daniel Chua2, Hidetoshi Inoko14, Kenji Yamashiro5, Kyoko Ohno- Matsui15, Keitaro Matsuo16, Fumihiko Matsuda6, Eranga Vithana2,3, Mark Seielstad17, Nobuhisa Mizuki4, Roger W. Beuerman2,3,10, E.-Shyong Tai1,18, Nagahisa Yoshimura5, Tin Aung2,3, Terri L. Young10,13, Tien-Yin Wong1,2,3,19, Yik-Ying Teo1,7,20,21.*, Seang-Mei Saw1,2,3,10,20.* 1 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore, 2 Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, 3 Department of Ophthalmology, National University of Singapore, Singapore, Singapore, 4 Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan, 5 Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan, 6 Center for Genomic Medicine and Inserm U.852, Kyoto University Graduate School of Medicine, Kyoto, Japan, 7 Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore, 8 Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore, 9 Department of Pediatrics, National University of Singapore, Singapore, Singapore, 10 Duke–National University of Singapore Graduate Medical School, Singapore,
    [Show full text]
  • Datasheet: MCA1370Z Product Details
    Datasheet: MCA1370Z Description: HAMSTER ANTI MOUSE CD31:Preservative Free Specificity: CD31 Other names: PECAM-1 Format: Preservative Free Product Type: Monoclonal Antibody Clone: 2H8 Isotype: IgG Quantity: 0.5 mg Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Flow Cytometry 0.1ug/ml Immunohistology - Frozen Immunohistology - Paraffin ELISA Immunoprecipitation Western Blotting Immunofluorescence Functional Assays Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls. Target Species Mouse Product Form Purified IgG - liquid Preparation Purified IgG prepared by Caprylic Acid Precipitation Buffer Solution Phosphate buffered saline Preservative None present. Stabilisers Sterile filtered. Approx. Protein IgG concentration 0.5 mg/ml Concentrations Immunogen D10.G4.1 cells (Kaye et al. 1984). Page 1 of 3 External Database Links UniProt: Q08481 Related reagents Entrez Gene: 18613 Pecam1 Related reagents Synonyms Pecam, Pecam-1 Fusion Partners Splenic lymphocytes from an immunized Armenian hamster were fused with cells from the SP2/0 murine myeloma. Specificity Hamster anti Mouse CD31 monoclonal antibody, clone 2H8 recognizes murine CD31, also known as Platelet endothelial cell adhesion molecule or PECAM-1.
    [Show full text]
  • The Genetics of Bipolar Disorder
    Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF.
    [Show full text]
  • Functional Characterization of the Biological Significance of the ZBED6/ZC3H11A Locus in Placental Mammals
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1372 Functional characterization of the biological significance of the ZBED6/ZC3H11A locus in placental mammals SHADY YOUNIS ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0072-6 UPPSALA urn:nbn:se:uu:diva-329190 2017 Dissertation presented at Uppsala University to be publicly examined in B/B42, Biomedicinskt centrum (BMC), Uppsala, Monday, 30 October 2017 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Docent Ola Hansson (Department of Clinical Sciences, Malmö University Hospital, Lund University). Abstract Younis, S. 2017. Functional characterization of the biological significance of the ZBED6/ ZC3H11A locus in placental mammals. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1372. 57 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0072-6. The recent advances in molecular and computational biology have made possible the study of complicated transcriptional regulatory networks that control a wide range of biological processes and phenotypic traits. In this thesis, several approaches were combined including next generation sequencing, gene expression profiling, chromatin and RNA immunoprecipitation, bioinformatics and genome editing methods in order to characterize the biological significance of the ZBED6 and ZC3H11A genes. A mutation in the binding site of ZBED6, located in an intron of IGF2, disrupts the binding and leads to 3-fold upregulation of IGF2 mRNA in pig muscle tissues. The first part of the thesis presents a detailed functional characterization of ZBED6. Transient silencing of ZBED6 expression in mouse myoblasts led to increased Igf2 expression (~2-fold).
    [Show full text]