Master Plant List.Fp5
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Arizona Game and Fish Department Heritage Data Management System
ARIZONA GAME AND FISH DEPARTMENT HERITAGE DATA MANAGEMENT SYSTEM Plant Abstract Element Code: PMAGA010N2 Data Sensitivity: YES CLASSIFICATION, NOMENCLATURE, DESCRIPTION, RANGE NAME: Agave schottii var. treleasei (Toumey) Kearney & Peebles COMMON NAME: Trelease Agave, Schott Agave, Trelease Shindagger, Trelease’s century plant SYNONYMS: Agave treleasei Toumey FAMILY: Agavaceae AUTHOR, PLACE OF PUBLICATION: Agave schottii var. treleasei (Toumey) T.H. Kearney, and R.H. Peebles, Jour. Wash. Acad. Sciences 29(11): 474. 1939. Agave treleasei Toumey, Annual Rep. Missouri Bot. Gard. 12: 75-76, pl. 32-33. 1901. TYPE LOCALITY: USA: Arizona: Pima County: Castle Rock, SW slope of Santa Catalina Mt. TYPE SPECIMEN: HT: Toumey s.n. (“in herb. Toumey”); possibly IT at: ARIZ, MO, US. “Present location of specimen unknown” (Phillips and Hodgson 1991). What appears to be an isotype found at MO (Hodgson, 1995). TAXONOMIC UNIQUENESS: The variety treleasei is 1 of 2 in the species Agave schottii; the other is var. schottii. In North America, the species schottii is 1 of 34 in the genus Agave. There are more than 200 species recognized from the southern USA to northern South America, and throughout the Caribbean. The variety treleasei is very rare and poorly known. In the Santa Catalina Mountains, it is possibly a polyploid form of schottii, or another case of hybridization between A. chrysantha or A. palmeri and A. schottii var. schottii (Hodgson 1987 Pers. Comm.). Formerly, a population in the Ajo Mountains was thought to be a disjunct population of var. treleasi, but through genetic testing, it was determined to be of hybrid origin between Agave s. -
Floristic Analysis of Marmoucha's Plant Diversity (Middle Atlas, Morocco)
LAZAROA 34: 117-140. 2013 doi: 10.5209/rev_LAZA.2013.v34.n1.40753 ISSN: 0210-9778 Floristic analysis of Marmoucha’s plant diversity (Middle Atlas, Morocco) Fatima Nassif & Abbès Tanji (*) Abstract: Nassif, F. & Tanji, A. Floristic analysis of Marmoucha’s plant diversity (Middle Atlas, Morocco). Lazaroa 34: 117-140 (2013). As part of an ethnobotanical exploration among the Berbers of Marmoucha in the Middle Atlas in Morocco, a floristic analysis was conducted to inventory the existing plants and assess the extent of plant diversity in this area. Located in the eastern part of the Middle Atlas, the Marmoucha is characterized by the presence of various ecosystems ranging from oak and juniper forests to high altitude steppes typical from cold areas with thorny plants. The fieldwork was conducted over five years (2008-2012) using surveys and informal techniques. The results show that the number of species recorded in Marmoucha is 508 distributed over 83 families and 325 genera, representing 13%, 54% and 33% of species, families and genera at the national level, respectively. With 92 species, the Asteraceae is the richest family, representing 18% of the total reported followed by Poaceae and the Fabaceae . From a comparative perspective, the ranking of the eight richer families of the local flora in relation to their position in the national flora reveals a significant match between the positions at local and national levels with slight ranking differences except in the case of Rosaceae. In the study area, the number of endemics is significant. It amounts to 43 species and subspecies belonging to 14 families with the Asteraceae counting 10 endemics. -
Chromatid Abnormalities in Meiosis: a Brief Review and a Case Study in the Genus Agave (Asparagales, Asparagaceae)
Chapter 10 Chromatid Abnormalities in Meiosis: A Brief Review and a Case Study in the Genus Agave (Asparagales, Asparagaceae) Benjamín Rodríguez‐Garay Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.68974 Abstract The genus Agave is distributed in the tropical and subtropical areas of the world and represents a large group of succulent plants, with about 200 taxa from 136 species, and its center of origin is probably limited to Mexico. It is divided into two subgenera: Littaea and Agave based on the architecture of the inflorescence; the subgenus Littaea has a spicate or racemose inflorescence, while plants of the subgenus Agave have a paniculate inflorescence with flowers in umbellate clusters on lateral branches. As the main conclusion of this study, a hypothesis rises from the described observations: frying pan‐shaped chromosomes are formed by sister chromatid exchanges and a premature kinetochore movement in prophase II, which are meiotic aberrations that exist in these phylogenetic distant species, Agave stricta and A. angustifolia since ancient times in their evolution, and this may be due to genes that are prone to act under diverse kinds of environmental stress. Keywords: tequila, mescal, chromatid cohesion, centromere, inversion heterorozygosity, kinetochore 1. Introduction The genus Agave is distributed in the tropical and subtropical areas of the world and repre‐ sents a large group of succulent plants, with about 200 taxa from 136 species, and its center of origin is probably limited to Mexico [1]. It is divided into two subgenera: Littaea and Agave based on the architecture of the inflorescence; the subgenus Littaea has a spicate or racemose © 2017 The Author(s). -
Flora Del Valle De Lerma (Prov
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio de Ciencias Agropecuarias y Ambientales del Noroeste... APORTES BOTÁNICOS DE SALTA - Ser. Flora HERBARIO MCNS FACULTAD DE CIENCIAS NATURALES UNIVERSIDAD NACIONAL DE SALTA Buenos Aires 177 - 4400 Salta - República Argentina ISSN 0327 – 506X Vol. 8 Febrero 2008 Nº 10 Edición Internet Mayo 2012 FLORA DEL VALLE DE LERMA A G A V A C E A E Endl. Lázaro Juan Novara1 Árboles o arbustos vigorosos, raro sufrútices o hierbas xerófitas perennes, hapaxantes o de floración anual, con tallos vegetativos subterráneos, verticales y muy breves, totalmente cubiertos por las hojas, o bien con floración anual, tronco alargado, ramificado, visible y evidente. Hojas alternas, simples, lineares, paralelinervadas, sin vaina, con lámina fibrosa, coriácea o carnosa, inerme o armada, cubriendo totalmente un tallo reducido o bien formando una corona en el ápice de tallos alargados. Inflorescencias en panojas o racimos amplios, laxos, generalmente terminales, raro laterales. Flores casi siempre actinomorfas, raro levemente zigomorfas, perfectas. Tépalos 6, en 2 ciclos trímeros, soldados formando un tubo o un anillo más o menos largo. Estambres 6, libres entre sí, soldados a los tépalos; anteras generalmente dorsifijas, con 2 tecas y dehiscencia longitudinal introrsa. Ovario súpero o ínfero, 3-carpelar, 3-locular, placentación axilar; estilo simple; estigma 3-lobado a 3-fido. Óvulos numerosos. Fruto cápsula, raro carnoso, abayado. Semillas numerosas, aplanadas. Familia compuesta por algo más de 300 especies de los trópicos y subtrópicos boreales y xerófitos de todo el mundo. Su principal área de distribución está en América, llegando a regiones secas del norte de Sudamérica (Diggs & al. -
PC23 Doc. 29.1 (Rev
Original language: English PC23 Doc. 29.1 (Rev. 1) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-third meeting of the Plants Committee Geneva (Switzerland), 22 and 24-27 July 2017 Species specific matters Maintenance of the Appendices Periodic review of species included in Appendices I and II OVERVIEW OF SPECIES UNDER PERIODIC REVIEW 1. This document has been prepared by the Secretariat. 2. In Resolution Conf. 14.8 (Rev. CoP17) on Periodic review of species included in Appendices I and II, the Conference of the Parties agrees on a process and guidelines for the Animals and Plants Committees to undertake a periodic review of animal or plant species included in the CITES Appendices and in paragraph 6: DIRECTS the Secretariat to maintain a record of species selected for periodic review, including: species previously and currently reviewed, dates of relevant Committee documents, recommendations from the reviews, and any reports and associated documents. 3. Annex 1 shows the record of plant species selected for review between the 13th and 15th meetings of the Conference of the Parties (CoP13, Bangkok, 2004; CoP15, Doha, 2010). 4. The record of plant species to be reviewed between CoP15 and the 17th meeting of the Conference of the Parties (CoP17, Johannesburg, 2016) is shown in Annex 2. 5. At its 21th meeting (PC21; Veracruz, May 2014), the Plants Committee reviewed records of species selected for periodic review and made several recommendations concerning species under review which are reflected in the tables shown in Annexes 1 and 2. 6. Annex 3 shows the List of abbreviations of the IUCN Red List of Threatened Species and Annex 4 presents the list of ISO country codes. -
Amaryllis – Hardy Scientific Name: Hippeastrum Johnsoni Common
Name: Amaryllis – Hardy Scientific name: Hippeastrum johnsoni Common Names: Cluster Amaryllis, Hurricane Lily, Magic Lily, Spider Lily, Stone Garlic. Life Cycle: Hardy bulb. Height: 12 to 36 inches (30 to 90 cm). Native: Asia. Growing Region: Zones 7 to 10. Flowers: Late summer through to autumn. Flower Details: White, red, pink, orange, yellow. Lily- like. Umbel; four to eight flowers. Foliage: Slender. Long. Grow Outside: Usually grown from bulbs or vegetatively propagated plants as seed grown plants can take up to 12 years to bloom. Bulbs: 3 to 8 inches (8 to 20 cm) depending upon species. End of summer Requirements and care: Full sunlight or partial shade. Good drainage. Acidic to neutral soil. Rich soil, moist soil. Regular watering to maintain soil moisture. Requires a feed every two years; do this during the growing season. Propagate: by planting bulblets once blooming has finished. Source: http://www.plant-biology.com/Lycoris-Hardy-Amaryllis.php http://www.brecksbulbs.ca/product/Hardy-Amaryllis-Mixture/Summer_Bulbs Extension programs service people of all ages regardless of socioeconomic level, race, color, sex, religion, disability, or national origin. The Texas A&M University System, U.S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating A member of The Texas A&M University System and its statewide Agriculture Program. Common Name: Artemesia - Powis Castle Botanical name: Artemesiax Powis Castle Plant Type: Perennial Light Requirement: High Water Requirement: Low Hardiness/Zone: 4 - 8 Heat/Drought Tolerance: High Height: 3 ft Width/Spacing: 3ft Flower Color: Yellow Blooming Period: Rarely flowers Plant Form or Habit: Evergreen woody perennial, or shrub Foliage Color and Texture: Leaves are finely dissected like filigreed silver lacework. -
RHS the Garden Magazine Index 2020
GardenThe INDEX 2020 Volume 145, Parts 1–12 Index 2020 January 2020 February 2020 March 2020 April 2020 May 2020 June 2020 1 2 3 4 5 6 Coloured numbers campestre ‘William ‘Voodoo’ 9: 78 ‘Kaleidoscope’ lauterbachiana Plas Brondanw, North in bold before the page Caldwell’ 3: 32, 32 ‘Zwartkop’ 7: 22, 22; 11: 46, 46 1: 56, 57 Wales 12: 38–42, 38–42 number(s) denote the x freemanii Autumn 8: 54, 54 ‘Lavender Lady’ 6: 12, macrorrhizos 11: 33, 33 Andrews, Susyn, on: part number (month). Blaze (‘Jeffersred’) Aeschynanthus 3: 138 12; 11: 46–47, 47 micholitziana 2: 78 hollies, AGM cultivars Each part is paginated 10: 14, 14–15 Aesculus ‘Macho Mocha’ Aloe Safari Sunrise (‘X5’) 12: 31, 31 separately. griseum 1: 49; 2: 14, 14– hippocastanum 11: 46, 47 6: 12, 12 Anemone: 15; 11: 34, 35; 12: 10, 10; ‘Hampton Court ‘Mayan Queen’ 11: 46 Aloysia: ‘Frilly Knickers’ 9: 7, 7 Numbers in italics 12: 83 Gold’ 3: 89, 89 ‘Pineapple Express’ citrodora (lemon Wild Swan denote an image. micrantham 10: 80 ‘Wisselink’ 3: 89, 89 11: 47 verbena) 6: 87, 87, 88; (‘Macane001’) 5: 74, palmatum 4: 74–75; x neglecta ‘Silver Fox’ 11: 47 to infuse gin 4: 82, 83 74, 76 Where a plant has a 12: 65, 65 ‘Erythroblastos’ Aglaonema (Chinese gratissima angelica root to infuse Trade Designation ‘Garnet’ 10: 27, 27 3: 88, 88 evergreen): 1: 57; 7: 34, (whitebrush or gin 4: 82, 82 (also known as a selling platanoides Agapanthus: 5: 82, 83 34; 12: 32, 32 spearmint verbena) Angelonia Serena Series name) it is typeset in ‘Walderseei’ 3: 87, 87 ‘Blue Dot 9: 109 ‘King of Siam’ 1: 56, 57 6: 86, 88 8: 16, 17 a different font to pseudoplatanus ‘Bressingham Blue’ pictum ‘Tricolor’ Alstroemeria: angel’s trumpet (see distinguish it from the ‘Brilliantissimum’ 9: 109 1: 44, 45 Indian Summer Brugmansia) cultivar name (shown 3: 86, 86–87 ‘Cally Blue 9: 109 Agrostis nebulosa (‘Tesronto’) 8: 16, 16 Angwin, Kirsty, on: in ‘Single Quotes’). -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Pollination Biology of Two Chiropterophilous Agaves in Arizona1
American Journal of Botany 87(6): 825±836. 2000. POLLINATION BIOLOGY OF TWO CHIROPTEROPHILOUS AGAVES IN ARIZONA1 LIZ A. SLAUSON Desert Botanical Garden, 1201 N. Galvin Parkway, Phoenix, Arizona 85008 USA I studied the pollination biology of two closely related species of agave, Agave palmeri and A. chrysantha (Agavaceae), which exhibit several chiropterophilous (bat-pollinated) traits. Floral studies, ¯oral visitor observations, and pollination studies were conducted over four summers at six different sites to examine ¯oral traits and determine the relative importance of diurnal vs. nocturnal pollinators. Agave chrysantha appears to have developed minor shifts in several ¯oral characters that enhance diurnal pollination. Although ¯oral shifts towards diurnal pollination were fewer in A. palmeri, stigmas were diurnally receptive and copious ¯oral rewards were available in the morning, indicating that some adaptations exist to allow for multiple pollinators. Differences in fruit and seed set between naturally day- and night-pollinated umbels for both species were either not signi®cant or signi®cantly higher in day-pollinated plants. Bats were not important pollinators of A. chry- santha, and the mutualistic relationship between A. palmeri and the lesser long-nosed bat was found to be asymmetric. ``Bat-adapted'' ¯oral traits appear to be ¯exible enough to respond to the climatic and pollinator unpredictability experienced by agaves at the northern edge of their distribution. This variability may be a more important factor affecting evolution of ¯oral characters than a particular pollinator. Key words: Agave chrysantha; Agave palmeri; century plant; fruit set; Leptonycteris curasoae; lesser long-nosed bat; pollination; seed set. Agaves, or century plants, are perennial, rosette-shaped tarivorous, migratory bats from spring as they migrate leaf succulents native to the southwestern United States, north, through the fall when they return to southern roosts Mexico, Central America, and the Canary Islands. -
Plant List by Plant Numbers
Demonstration Landscape / Plant List by Plant Number Plant # Plant Type Common Name Botanical Name Water* Sun** Height x Width Succulent Blue Chalksticks Senecio Serpens L F 1' x 2-3' 1 Accent Flax Lily Dianella Tasmanica L F, PS 3' x 3' 2 Shrub Soft Caress Oregon Grape Mahonia eurybracteata 'Soft Caress' M PS, S 3' x 4' 3 Flower Coral Bells Heuchera 'Santa Ana Cardinal' L PS 2' x 2' 4 Succulent Blue Chalk Fingers Senecio Vitalis 'Serpents' L F, PS 1.5' x 3-4' 5 Succulent Aloe Aloe X 'Blue Elf' L F, PS 1' x 2' 6 Accent Giant Chain Fern Woodwardia Fimbriata M, H PS, S 4-5' x 3' 7 Shrub Tawhiwhi Pittosporum tenuifolium 'Silver Sheen' M F, PS 12-15' x N/A 8 Flower Giant Catmint Nepeta Faassenii X 'Six Hills Giant' M F 2-3' x 4' 9 Vine Creeping Fig Ficus Pumila M F, PS 15' x 3' 10 Shrub Red Conebush Leucadendron X 'Red Gem' L F 4' x 5' 11 Accent Little Rev Flax Lily Dianella Revoluta 'Little Rev' L F, PS 2-4' x 1-2' 12 Succulent Soap Aloe Aloe Saponaria L F, PS 2' x 2' 13 Accent Agave Agave Attenuata L F, PS 4-5' x 6-8' 14 Flower Mexican Bush Sage Salvia Leucantha 'Midnight' L F, PS 4' x 8' 16 Accent Mountain Flax Phormium Cookianum M F,PS, S 3-4' x 3-4' 16 Succulent Stalked Aeonium Saucer Plant Aeonium Undulatum L F, PS 3' x 1' 17 Grass Blue Grama Bouteloua Gracilis 'Blonde Ambition' L F 1.5' x 2' 18 Accent Blue Flame Agave Agave X 'Blue Flame' L F 2.5' x 3' 19 Shrub Dwarf Rosemary Rosmarinus Officinalis 'Prostratus' L F 1' x 5' 20 Succulent Red Yucca Hesperaloe Parviflora L F 2' x 3-4' 21 Shrub Dwarf Coyote Brush Baccharis Pilularis 'Pigeon Point' L F 2' x 8' 22 Flower Bulbine Bulbine Frutescens 'Yellow African' L F, PS 1' x 1.5' 23 Succulent Medicinal Aloe Aloe Vera L F 2' x 2' 24 Succulent Ocotillo Fouquieria Splendens VL F 10-30' x 15' 25 Succulent Beaked Yucca Yucca Rostrata VL F 4-12' x 4-6' 26 Succulent Golden Barrel Cactus Echinocactus Grusonii VL F 2' x 3' 27 Succulent Mexican Fence Post Stenocereus Marginatus VL F 12-20' x 1' 28 Flower Salmon Beauty Yarrow Achillea Millefolium 'Salmon Beauty' L F 1-2' x 2-3' 29 Flower St. -
Anti-Inflammatory Activity of Different Agave Plants and the Compound Cantalasaponin-1
Molecules 2013, 18, 8136-8146; doi:10.3390/molecules18078136 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Anti-Inflammatory Activity of Different Agave Plants and the Compound Cantalasaponin-1 Nayeli Monterrosas-Brisson 1,2, Martha L. Arenas Ocampo 2, Enrique Jiménez-Ferrer 1, Antonio R. Jiménez-Aparicio 2, Alejandro Zamilpa 1, Manases Gonzalez-Cortazar 1, Jaime Tortoriello 1 and Maribel Herrera-Ruiz 1,* 1 Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico; E-Mails: [email protected] (M.-B.N.); [email protected] (J.-F.E.); [email protected] (Z.A.); [email protected] (G.C.M.); [email protected] (T.J.) 2 Doctorado en Desarrollo de Productos Bióticos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, P. O. Box 24, Yautepec 62730, Morelos, Mexico; E-Mails: [email protected] (A.O.M.L.); [email protected] (J.A.R.A.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +52-777-361-2155. Received: 22 April 2013; in revised form: 29 May 2013 / Accepted: 6 June 2013 / Published: 10 July 2013 Abstract: Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants’ leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA) technique. -
Water Relations of Bromeliaceae in Their Evolutionary Context
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants.