Risk Assessment of Mycotoxins in Ruminants and Ruminant Products

Total Page:16

File Type:pdf, Size:1020Kb

Risk Assessment of Mycotoxins in Ruminants and Ruminant Products Risk assessment of mycotoxins in ruminants and ruminant products Jouany J.P., Yiannikouris A., Bertin G. in Papachristou T.G. (ed.), Parissi Z.M. (ed.), Ben Salem H. (ed.), Morand-Fehr P. (ed.). Nutritional and foraging ecology of sheep and goats Zaragoza : CIHEAM / FAO / NAGREF Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 85 2009 pages 205-224 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=801009 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Jouany J.P., Yiannikouris A., Bertin G. Risk assessment of mycotoxins in ruminants and ruminant products. In : Papachristou T.G. (ed.), Parissi Z.M. (ed.), Ben Salem H. (ed.), Morand-Fehr P. (ed.). Nutritional and foraging ecology of sheep and goats. Zaragoza : CIHEAM / FAO / NAGREF, 2009. p. 205-224 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 85) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://www.ciheam.org/ http://om.ciheam.org/ Risk assessment of mycotoxins in ruminants and ruminant products J.P. Jouany*, A. Yiannikouris** and G. Bertin** *INRA, UR1213 Herbivores, Research Centre of Clermont-Theix, F-63122 Saint-Genès Champanelle (France) **Alltech Inc., 3031 Catnip Hill Pike, Nicholasville, Ky 40356 (USA) Abstract. Mycotoxins are secondary metabolites produced by several fungi, more specifically those of the genera Aspergillus, Fusarium and Penicillium. They were discovered in the early 1960s, when more than 100,000 young turkeys died in the United Kingdom from an apparently new disease, which was named "turkey × disease". The toxin-producing fungus was identified as A. flavus and the toxin was given the name aflatoxin by virtue of its origin. Forages, cereals and protein sources such as peanuts and cottonseed are potential mycotoxin vectors in ruminant diets. New techniques for preserving wet forages, such as silages or wrapped bales, are unsafe when anaerobic conditions are not strictly controlled. Fresh grasses can also be contaminated with mycotoxins including fungal endophytes that produce toxins such as ergovaline, lolitrem B, peramins and swainsonine. It is generally considered that ruminants are less sensitive to mycotoxins than other animals. This may be due to the capacity of the ruminal microbial ecosystem to degrade or convert mycotoxins into less toxic compounds. However, there is some evidence that ruminants can be poisoned by mycotoxins, causing lower animal production or even death of animals. Part of mycotoxins ingested by ruminants can be recovered in milk or animal tissues, either in the parent form or as metabolites. The transfer rate, usually very low, is estimated at less than 1% for the major toxins. Thus animals are considered as "filters" of mycotoxins in the food chain. However, there is a risk for infants fed only on a milk diet of being exposed to mycotoxin levels that exceed the regulated limits. Although not currently authorised in Europe, some mycotoxin inactivators, based on sequestering or degrading properties, have been tested in vitro and in vivo. The mode of action of yeast -D- glucans against mycotoxins is presented, together with measures to limit the level of feed contamination by mycotoxins. Key words. Mycotoxin – Feedstuff – Ruminant – Transfer in milk – Toxicity – Risk mitigation. Gestion du risque mycotoxique chez le ruminant et dans les produits du ruminant Résumé. Les mycotoxines sont des métabolites secondaires produits par les champignons, plus particulièrement par ceux appartenant aux genres Aspergillus, Fusarium et Penicillium. Elles ont été découvertes vers 1960, après une intoxication ayant entraîné la mort de plus de 100 000 dindons en Angleterre. La toxine impliquée a été identifiée comme provenant d'A. flavus, d'où son nom d'aflatoxine. Les fourrages, les céréales, les sources protéiques issus d'arachide et de graine de coton en particulier, sont des vecteurs potentiels de mycotoxines. La conservation de fourrages humides sous forme d'ensilage ou de balles enrubannées constituent un risque majeur si les conditions anaérobies ne sont pas respectées. On peut également trouver certaines toxines issues d'endophytes qui colonisent les fourrages verts. Les ruminants sont considérés comme peu sensibles aux mycotoxines car ces dernières peuvent être métabolisées par les microbes du rumen. Toutefois, des cas fréquents d'intoxication chez la vache laitière sont imputés aux mycotoxines. Outre leur effet sur l'animal, les mycotoxines ou leurs métabolites peuvent se retrouver dans les produits animaux destinés à l'alimentation humaine, en particulier dans le lait. Le taux de transfert est faible, de l'ordre de 1%, ce qui amène le ruminant à être considéré comme un filtre efficace des mycotoxines présentes dans les produits végétaux. Le risque existe toutefois pour les nourrissons ou les jeunes enfants dont l'alimentation est essentiellement lactée, de dépasser les doses limites réglementaires. Certains additifs capables d'inactiver les mycotoxines ont été testés in vitro et in vivo. Le mode d'action des -D-glucanes de levure sur les mycotoxines sera présenté, ainsi que les moyens de limiter la contamination des aliments. Mots-clés. Mycotoxines – Aliments – Ruminant – Transfert dans le lait – Toxicité – Atténuation du risque. Options Méditerranéennes, A / no. 85, 2009 205 Nutritional and foraging ecology of sheep and goats I – Introduction In the 1960s more than 100,000 young turkeys on poultry farms in the United Kingdom died in a period of a few months from an unidentified disease, which was named "turkey × disease". Ducklings and other poultry animals were also affected, and high mortalities were observed. A careful survey of the inputs and environment of the affected farms indicated that the disease was associated with feeds and specifically with peanut meal imported from Brazil. A disease with symptoms typical of turkey × disease was reproduced when animals were fed the same peanut meal. Intensive investigations were then carried out on the suspected ingredient to identify the nature of the toxin, which was soon found to be of fungal origin. The toxin-producing fungus was identified as Aspergillus flavus (Nesbitt et al., 1962) and the toxin was accordingly called aflatoxin. There has since been a growing awareness of the potential hazards of toxins produced by fungi that contaminate food and feeds, and that might be life-threatening to animals and even humans. Historically, the oldest recognized type of human mycotoxicosis is ergotism. It is caused by toxins from Claviceps purpurea, and became epidemic in the Middle Ages when it was known as Saint Anthony's fire. Early symptoms were hallucinations with burning sensations on the hands and feet, and subsequent necrosis leading to loss of appendages. Although mycotoxins have always existed, studies on these toxins started only 40 years ago. Since then, numerous mycotoxins other than aflatoxins have been discovered, many of which have now been found to cause intoxications. The total number of mycotoxins that exist is not yet known, but there are probably thousands. Mycotoxins do not only account for human and animal disease; they have also a considerable economic impact on crops. The plant pathogenicity of the majority of mycotoxin-producing fungi harms crop production and crop quality. The importance of regulatory control of mycotoxins in the international grain trade and marketing of food and feeds is increasing, and concerns mainly exports from developing countries (Wilson, 2006). Mycotoxins present in animal feeds can be transferred to animal products, mainly milk, and go on to contaminate dairy produce in the food chain. The risk is significant mainly for high-milk consumers such as infants and children, but is not a concern for adults. Analytical difficulties arising from the complexity and diversity of the chemical structures of mycotoxins slowed progress until the 1980s. However, the development of chromatographic techniques coupled with tandem mass spectrometry has allowed a decisive advance in the study of mycotoxins over the last ten years. This paper describes the complex world of mycotoxins, their effect on ruminants, their transfer into animal products (mainly milk) and the possible ways in which the level of contamination in the food chain can be controlled. II – What are mycotoxins? 1. Definition The word mycotoxin combines the Greek mykos, fungus and the Latin toxicum, poison. Mycotoxins are produced by fungi through their secondary metabolism. Mycotoxin concentration can therefore be independent of the growth of the fungi, which is associated with the primary metabolism. The diversity of the compounds formed and the specificity of the fungal strain for mycotoxin production result from the secondary metabolism, which is usually activated by signals from the environment (cold, heat, dryness, fungicide, etc.). Among the numerous mycotoxins,
Recommended publications
  • Detoxification Strategies for Zearalenone Using
    microorganisms Review Detoxification Strategies for Zearalenone Using Microorganisms: A Review 1, 2, 1 1, Nan Wang y, Weiwei Wu y, Jiawen Pan and Miao Long * 1 Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China 2 Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 21 June 2019; Accepted: 19 July 2019; Published: 21 July 2019 Abstract: Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA. Keywords: zearalenone (ZEA); reproductive toxicity; cytotoxicity; immunotoxicity; biological detoxification; probiotics; ZEA biotransformation 1.
    [Show full text]
  • Feed Safety 2016
    Annual Report The surveillance programme for feed materials, complete and complementary feed in Norway 2016 - Mycotoxins, fungi and bacteria NORWEGIAN VETERINARY INSTITUTE The surveillance programme for feed materials, complete and complementary feed in Norway 2016 – Mycotoxins, fungi and bacteria Content Summary ...................................................................................................................... 3 Introduction .................................................................................................................. 4 Aims ........................................................................................................................... 5 Materials and methods ..................................................................................................... 5 Quantitative determination of total mould, Fusarium and storage fungi ........................................ 6 Chemical analysis .......................................................................................................... 6 Bacterial analysis .......................................................................................................... 7 Statistical analysis ......................................................................................................... 7 Results and discussion ...................................................................................................... 7 Cereals .....................................................................................................................
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Overview and Status of EPA Collaborations for Detection of Selected Biotoxins in Drinking Water, Soils, and Wipes
    Overview and Status of EPA collaborations for Detection of Selected Biotoxins in Drinking Water, Soils, and Wipes Matthew L. Magnuson, Ph.D. US Environmental Protection Agency National Homeland Security Research Center Office of Research and Development NHSRC Mission To conduct research and develop scientific products that improve the capability of the Agency to carry out its homeland security responsibilities ADVANCING OUR NATION’S SECURITY THROUGH SCIENCE Office of Research and Development NHSRC Research Projects Homeland Security Multi Use Cross agency “Normal” Environmental Operations Many homeland security practices may also benefit day to day operation. For example, emerging analytical techniques to monitor water quality might be used during other water emergencies and/or clean-up after contamination. Office of Research and Development NHSRC Products • 125 reports and journal articles since 2003 (including classified) • Results presented many other ways—stakeholder meetings, symposia, workshops, etc. • Products and research plans receive rigorous quality reviews Most scientists regarded the new streamlined peer-review process as ‘quite an improvement.’ Office of Research and Development Overview of Detection of Biotoxins • Laboratory methods – SAM method compendium – Collaborative projects – Future directions Office of Research and Development Laboratory methods • Method development and study – Documentation: Methods and study reports • Methods aim to have DQOs fit for their intended use by – EPA/Water Security Division through
    [Show full text]
  • Aflatoxin B1 in Human Serum Issn 0025-7680313
    AFLATOXIN B1 IN HUMAN SERUM ISSN 0025-7680313 ORIGINAL ARTICLE MEDICINA (Buenos Aires) 2002; 62: 313-316 AFLATOXIN B1 CONTENT IN PATIENTS WITH HEPATIC DISEASES CLARA LOPEZ, LAURA RAMOS, LUCIA BULACIO, SILVANA RAMADAN, FERNANDA RODRIGUEZ Centro de Referencia de Micología (CEREMIC). Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Abstract Aflatoxins are toxic metabolites of some Aspergillus flavus, A. parasiticus and A. nomius strains that occur in many foods and feeds. There are four major natural occurring aflatoxins: B1, B2, G1 and G2. These toxins can cause illness in human beings and animals. Aflatoxin B1 is the most abundant and toxic member of the family, and it is also the most potent hepatocarcinogen known. In order to estimate the potential human health risk of AFB1, it is useful to measure blood concentration. The presence of aflatoxin B1 in patients was evaluated by high-performance liquid chromatography, in serum samples, obtained from 20 patient volunteers with hepatic disease. Out of the 20 patients, the presence of AFB1 was detected in only one of them, in a concentration of 0.47 ng/cm3. Nevertheless, this result should draw the attention of control organizations in Argentina to the need for a thorough food and feed inspection. Key words: aflatoxin B1, hepatic diseases,serum samples, HPLC Resumen Aflatoxina B1 en pacientes con enfermedades hep·ticas. Las aflatoxinas son metabolitos tóxicos producidos por cepas de Aspergillus flavus, A. parasiticus y A. nomius, presentes en alimentos y piensos. Las cuatro aflatoxinas principales son: aflatoxina B1, B2, G1 y G2. Dichas toxinas pueden causar enfermedades tanto en seres humanos como en animales.
    [Show full text]
  • The Biosynthesis Pathway of Swainsonine, a New Anticancer
    J. Microbiol. Biotechnol. (2017), 27(11), 1897–1906 https://doi.org/10.4014/jmb.1709.09003 Research Article Review jmb The Biosynthesis Pathway of Swainsonine, a New Anticancer Drug from Three Endophytic Fungi Zhenhui Ren, Runjie Song, Shuai Wang, Haiyun Quan, Lin Yang, Lu Sun, Baoyu Zhao, and Hao Lu* College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China Received: September 1, 2017 Revised: October 9, 2017 Swainsonine (SW) is the principal toxic ingredient of locoweed plants that causes locoism Accepted: October 12, 2017 characterized by a disorder of the nervous system. It has also received widespread attention in First published online the medical field for its beneficial anticancer and antitumor activities. Endophytic fungi, November 3, 2017 Alternaria sect. Undifilum oxytropis isolated from locoweeds, the plant pathogen Slafractonia *Corresponding author leguminicola, and the insect pathogen Metarhizium anisopliae, produce swainsonine. Acquired Phone: +86-29-87092429; SW by biofermentation has a certain foreground and research value. This paper mainly Fax: +86-29-87091032; E-mail: [email protected] summarizes the local and foreign literature published thus far on the swainsonine biosynthesis pathway, and speculates on the possible regulatory enzymes involved in the synthesis pathway within these three fungi in order to provide a new reference for research on swainsonine biosynthesis by endophytic fungi. pISSN 1017-7825, eISSN 1738-8872 Copyright© 2017 by Keywords: Swainsonine, biosynthesis, Alternaria oxytropis, Slafractonia leguminicola, Metarhizium The Korean Society for Microbiology anisopliae and Biotechnology Introduction leukemia [11] and showed that all patients received a good therapeutic effect. SW is a specific inhibitor of α-mannosidase Swainsonine (SW) is an indolizidine alkaloid that was II in the golgi complex, which can affect the synthesis of first identified from Swainsona canescens, a toxic legume various carbolydrates, glycoproteins, and glycolipids, that is found in Australia [1].
    [Show full text]
  • Decontamination of Mycotoxin-Contaminated Feedstuffs
    toxins Review Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed Radmilo Colovi´cˇ 1,*, Nikola Puvaˇca 2,*, Federica Cheli 3,* , Giuseppina Avantaggiato 4 , Donato Greco 4, Olivera Đuragi´c 1, Jovana Kos 1 and Luciano Pinotti 3 1 Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; olivera.djuragic@fins.uns.ac.rs (O.Đ.); jovana.kos@fins.uns.ac.rs (J.K.) 2 Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cve´carska,21000 Novi Sad, Serbia 3 Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 20134 Milan, Italy; [email protected] 4 Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy; [email protected] (G.A.); [email protected] (D.G.) * Correspondence: radmilo.colovic@fins.uns.ac.rs (R.C.);ˇ nikola.puvaca@fimek.edu.rs (N.P.); [email protected] (F.C.) Received: 8 August 2019; Accepted: 23 October 2019; Published: 25 October 2019 Abstract: Mycotoxins are known worldwide as fungus-produced toxins that adulterate a wide heterogeneity of raw feed ingredients and final products. Consumption of mycotoxins-contaminated feed causes a plethora of harmful responses from acute toxicity to many persistent health disorders with lethal outcomes; such as mycotoxicosis when ingested by animals. Therefore, the main task for feed producers is to minimize the concentration of mycotoxin by applying different strategies aimed at minimizing the risk of mycotoxin effects on animals and human health.
    [Show full text]
  • Chemical Compound Outline (Part II)
    Chemical Compound Outline (Part II) Ads by Google Lil Wayne Lyrics Search Lyrics Song Wayne Dalton Wayne's Word Index Noteworthy Plants Trivia Lemnaceae Biology 101 Botany Search Major Types Of Chemical Compounds In Plants & Animals Part II. Phenolic Compounds, Glycosides & Alkaloids Note: When the methyl group containing Jack's head is replaced by an isopropyl group, the model depicts a molecule of menthol. Back To Part I Find On This Page: Type Word Inside Box; Find Again: Scroll Up, Click In Box & Enter [Try Control-F or EDIT + FIND at top of page] **Note: This Search Box May Not Work With All Web Browsers** Go Back To Chemical VI. Phenolic Compounds Compounds Part I: VII. Glycosides Table Of Contents VIII. Alkaloids Search For Specific Compounds: Press CTRL-F Keys If you have difficulty printing out this page, try the PDF version: Click PDF Icon To Read Page In Acrobat Reader. See Text In Arial Font Like In A Book. View Page Off-Line: Right Click On PDF Icon To Save Target File To Your Computer. Click Here To Download Latest Acrobat Reader. Follow The Instructions For Your Computer. Types Of Phenolic Compounds: Make A Selection VI. Phenolic Compounds: Composed of one or more aromatic benzene rings with one or more hydroxyl groups (C-OH). This enormous class includes numerous plant compounds that are chemically distinct from terpenes. Although the essential oils are often classified as terpenes, many of these volatile chemicals are actually phenolic compounds, such as eucalyptol from (Eucalytus globulus), citronellal from (E. citriodora) and clove oil from Syzygium aromaticum.
    [Show full text]
  • Occurrence of Aflatoxin B1 and Zearalenone in Corn Based Food Products Chandrika Prabakar 1 and Sarathchandra Ghadevaru 2 1M
    et International Journal on Emerging Technologies 11 (3): 983-988(2020) ISSN No. (Print): 0975-8364 ISSN No. (Online): 2249-3255 Occurrence of Aflatoxin B1 and Zearalenone in Corn based Food Products Chandrika Prabakar 1 and Sarathchandra Ghadevaru 2 1M. Tech in Food Safety and Quality Management, Department of Dood Process Engineering, SRM institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India. 2European Registered Toxicologist, Dean for faculty of Basic sciences Tamilnadu Veterinary and Animal Science University, Chennai-600007, Tamilnadu, India. (Corresponding author: Ghadevaru Sarathchandra) (Received 11 March 2020, Revised 20 May 2020, Accepted 28 May 2020) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Mycotoxins contaminated food products are emerging as a major food safety concern throughout the world. The purpose of this study was to identify the occurrence of zearalenone and Aflatoxin B1 mycotoxins in corn based food products which are commercially available across Chennai, Tamilnadu, India. As maize is a good source of dietary fibre, which serves as a quality energy product for human consumption. Abundant availability of maize to the humans, makes a major food consumption through various food products. Considering the above impact, this study was conducted for 30 samples for aflatoxin B1 detection and 40 samples for Zearalenone, comprising 10 samples of corn chips, 10 Samples of corn flakes and 10 samples of processed and dried corn for Aflatoxin B1 and 20 samples for Zearalenone which are sold commercially as corn based food products in Chennai, India. The study using Romer’s all-purpose method was carried out for extraction of Aflatoxin B1 and similarly multi toxin method was used for extraction of Zearalenone from various corn products and were detected by HPTLC (High performance thin layer chromatography) technique.
    [Show full text]
  • Toxic Effects of Mycotoxins in Humans M
    Research Toxic effects of mycotoxins in humans M. Peraica,1 B. RadicÂ,2 A. LucicÂ,3 & M. Pavlovic 4 Mycotoxicoses are diseases caused by mycotoxins, i.e. secondary metabolites of moulds. Although they occur more frequently in areas with a hot and humid climate, favourable for the growth of moulds, they can also be found in temperate zones. Exposure to mycotoxins is mostly by ingestion, but also occurs by the dermal and inhalation routes. Mycotoxicoses often remain unrecognized by medical professionals, except when large numbers of people are involved. The present article reviews outbreaks of mycotoxicoses where the mycotoxic etiology of the disease is supported by mycotoxin analysis or identification of mycotoxin-producing fungi. Epidemiological, clinical and histological findings (when available) in outbreaks of mycotoxicoses resulting from exposure to aflatoxins, ergot, trichothecenes, ochratoxins, 3-nitropropionic acid, zearalenone and fumonisins are discussed. Voir page 763 le reÂsume en francËais. En la pa gina 763 figura un resumen en espanÄ ol. Introduction baking of bread made with ergot-contaminated wheat, as well as to other ergot toxins and Mycotoxins are secondary metabolites of moulds that hallucinogens, as well as belladonna alkaloids from exert toxic effects on animals and humans. The toxic mandragora apple, which was used to treat ergotism effect of mycotoxins on animal and human health is (3). While ergotism no longer has such important referred to as mycotoxicosis, the severity of which implications for public health, recent reports indicate depends on the toxicity of the mycotoxin, the extent that outbreaks of human mycotoxicoses are still of exposure, age and nutritional status of the possible (4).
    [Show full text]
  • ACVPM Toxicology Review
    Top 20 Toxicology Review “I always keep a supply of stimulant handy in case I see a snake………..which I also keep handy. “ - WC Fields The Top 10 (in no particular order….) 1. Bracken fern Pteridium aquilinum –THINK bloody urine cows, ataxic horse 2. Copper –THINK hemolytic crisis, port wine urine, gunmetal kidneys 3. Cyanide—THINK Bright red blood, like bright red cherries 4. Anticoagulant rodenticides--–THINK hemolytic crisis 5. Ethylene glycol (antifreeze) –THINK kidney failure 6. Insecticides (esp. OPPs, carbamates) –THINK miosis, drool, vomiting, diarrhea, seizure 7. Lead--–THINK GI signs + Neuro Sx (blindness) 8. NITRATE / NITRITE Toxicity –THINK Dark Chocolate blood 9. Mycotoxins Aflatoxins –THINK hepatotoxic, carcinogenic Zearalonone / moldy corn –THINK estrogenism, repro dysfunction 10. Nonprotein nitrogen (NPN) ‘Ammonia tox‘ (urea, ammonia, etc) –THINK Bov Bonkers 1 www.zukureview.com © Zuku LLC, All Rights Reserved I. Pathognomonics, weird names, weird smells, NOEL 1. Gunmetal grey kidneys-Cu tox Trifolium subterraneum, cz mineral imbal Senecio, Heliotropum damage liver cz Cu tetention 2. Port wine urine-Cu tox see above 3. Cherry-red blood-Cyanide pitted fruits 4. Chocolate-brown blood- Nitrates 5. “SPECTACLES” Depigmentation around eyes- molybdenul tox 6. Smells a. Garlicky breath- selenium tox b. Bitter almonds in rumen-cyanide c. “Mouse-like odor” to crushed leaves- Conium maculatum (poison hemlock) 7. Diseases a. “Alkali disease”- selenium toxicity (Astragalus, Oxytropis) b. “Blind staggers”-selenium tox c. “Cracker heels” clicking dewclaws w/ Astragalus-miserotoxin d. “Milk sickness” in early American settlers- Eupatorium (white snakeroot) e. “Crooked calf” syndrome- torticollis, carpal flexure, scoliosis in calves exposed in utero d. 40-70 to Lupinus (Lupine, bluebonnet) f.
    [Show full text]
  • Harmful Effects and Control Strategies of Aflatoxin B1 Produced By
    toxins Review Harmful Effects and Control Strategies of Aflatoxin B1 Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review Ahmed Mohamed Fouad 1,2 , Dong Ruan 1 , HebatAllah Kasem El-Senousey 1,2, Wei Chen 1, Shouqun Jiang 1 and Chuntian Zheng 1,* 1 Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] (A.M.F.); [email protected] (D.R.); [email protected] (H.K.E.-S.); [email protected] (W.C.); [email protected] (S.J.) 2 Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt * Correspondence: [email protected] Received: 7 March 2019; Accepted: 20 March 2019; Published: 23 March 2019 Abstract: The presence of aflatoxin B1 (AFB1) in poultry diets decreases the hatchability, hatchling weight, growth rate, meat and egg production, meat and egg quality, vaccination efficiency, as well as impairing the feed conversion ratio and increasing the susceptibility of birds to disease and mortality. AFB1 is transferred from poultry feed to eggs, meat, and other edible parts, representing a threat to the health of consumers because AFB1 is carcinogenic and implicated in human liver cancer. This review considers how AFB1 produced by Aspergillus flavus and Aspergillus parasiticus strains can affect the immune system, antioxidant defense system, digestive system, and reproductive system in poultry, as well as its effects on productivity and reproductive performance.
    [Show full text]