BIOL 4849 Mycotoxicosis

Total Page:16

File Type:pdf, Size:1020Kb

BIOL 4849 Mycotoxicosis Mycotoxins BIOL 4849 - Summer 2010 Introduction Mycotoxicosis • Mycotoxin – chemically diverse group of compounds – Produced primarily by molds • Some mushrooms • 300-400 different compounds by molds – Location • Hyphae • Conidia BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. • Extracellular Disclaimer: This lecture slide presentation is intended solely for educational purposes. Many of the images contained herein are the property of the original owner, as indicated within the figure itself or within the figure legend. These images are used only for illustrative purposes within the context of this lecture material. Use of these images outside the purpose of this presentation may violate the rights of the original owner. Dr. Cooper and Youngstown State University assume no responsibility for the unauthorized use of the material BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. contained herein. Introduction (cont.) Introduction (cont.) • Mycotoxins are thought to be part of an • Exposure routes environmental survival armament – Eating contaminated foodstuffs: very significant in • Various affects on protein, RNA, or DNA countries that rely on single grain food sources synthesis or membrane disruption • Growth on foodstuffs pre-harvest • Causes impaired cellular function or death • Post-harvest growth • Contamination of surfaces – Absorption through skin/contact: may induce necrosis as well as systemic effects • Possible bioweapons • Possible source of indoor health problems BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. Introduction (cont.) Introduction (cont.) • Exposure routes (cont.) • “Toxic mold syndrome”: Special Notes – Inhalation of mycotoxins or fungal elements – The presence of a species of mold known to containing mycotoxins produce mycotoxins does not imply the presence • Significant industrial problem (e.g., saw mills) of a mycotoxin – need conditions favorable for mycotoxin production • Indoor mold problems (i.e., toxic mold syndrome) – Not all strains of a toxic mold species produce mycotoxins – Various other factors play roles: duration of exposure; host condition to include health, diet, genetics, etc.; and other factors BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. 1 Mycotoxins BIOL 4849 - Summer 2010 Aflatoxins Aflatoxins (cont.) • Over a dozen types of aflatoxins: B1 is main • Acute aflatoxicosis type – Associated with grains, particularly maize • Produced by Aspergillus species – Manifested as acute hepatitis – Mainly A. flavus and A. parasiticus – Lethal dose 10-20 mg – Infected foods include corn, figs, peanuts, • Chronic aflatoxicosis tobacco, and others – Aflatoxin B1 is involved in hepatocellular • Primary target is liver carcinoma – Cytochrome P450 enzymes convert aflatoxins into – Aflatoxin B1 now classified as a Group 1 a form that binds both proteins and DNA carcinogen – Detoxification involves glutathione S-transferase – Risk factors include hepatitis B or C infection BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. Ergot Alkaloids Ergot Alkaloids (cont.) • Various types of indole alkaloids having • Ergotism is very rare today various effects • Two types – Smooth muscle contraction – Gangrenous syndrome (St. Anthony’s fire): – Central sympatholytic activity constant ingestion of ergot leads to continuous – Peripheral α-adenergic blockade vasoconstriction, leading to ischemia and • Ergot is produced by the sclerotia of gangrene Claviceps, a pathogen of tall grasses and – Convulsive form: convulsions, fomications (feeling grains of insects crawling on the skin), disorientation, dementia; repetitive seizures can cause death • Ingestion of contaminated grains led to a • Thought to due to different toxic fungal strains number of historic outbreaks of ergotism BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. Ochratoxin Ochratoxin (cont.) • Produced by Aspergillus ochraceus and other • Biochemical effects include Aspergillus species; Penicillium verrucosum – Inhibition of phenylalanine metabolism also produces this mycotoxin – Inhibition of mitochondrial ATP production • Ochratoxin A is main type – Stimulation of lipid peroxidation – Found in many seeds and nuts • Ochratoxin causes the following in animals: – Fat soluble, so when animals consume sources, – Nephrotoxicity (important in pork industry) the toxin remains in tissue – Hepatotoxicity – Humans can then consume the animals and ingest – Immunosuppression the mycotoxin – Teratogenesis/carcinogenesis BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. 2 Mycotoxins BIOL 4849 - Summer 2010 Ochratoxin (cont.) Gliotoxin • Has been linked to chronic nephritis in • Produced by Aspergillus fumigatus (no other humans (outbreak in Balkans) Aspergillus species), Penicillium spp., and • Listed as a category 2A carcinogen Candida albicans • Contains a disulfide bridge that conjugates with the thiol groups of proteins and generates reactive oxygen species by reducing the dithiol back to the disulfide bridge BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. Gliotoxin (cont.) Trichothecenes • Biological effects include • Produced by various fungi, most notably – Immunosuppression Fusarium and Stachybotrys – Kills neutrophils and macrophages • More than 60 types, all highly toxic – Inhibits phagocytosis • Most notable types: T-2 toxin and vomitoxin – Various other immunological reactions • All are sequiterpenes having a 12,13-epoxy- • Virulence attribute of A. fumigatus trichothene ring • Different toxins inhibit different stages of protein synthesis BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. Trichothecenes (cont.) Trichothecenes (cont.) • Toxins found • Black mold syndrome (Stachybotrys): no – Naturally occurring on plants conclusive evidence that toxins from this – Man-made (bioweapons) fungus are responsible for symptoms in – Sick building syndrome contaminated homes • 1942-1948: 100,000 deaths in former Soviet • However, T-2 toxin is a potential bioweapon Union due to alimentary toxic aleukia due to and reported used by Soviets in Afghanistan overwintered grain infected with Fusarium (“yellow rain”) • Similar syndrome in horses caused by Stachybotrys BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. 3 Mycotoxins BIOL 4849 - Summer 2010 Mushroom Poisoning Mushroom Poisoning (cont.) • Difference between mycotoxicosis and – Symptoms include: mushroom poisoning – essentially none • Abdominal cramps, nausea, and vomiting – Mycotoxicosis results from unknowingly ingesting • Followed by liver damage contaminated foodstuffs • Which can lead to liver failure, renal failure, and – Mushroom poisoning results from knowingly death during a 6-16 day period following ingesting a foodstuff that has been misidentified ingestion of the toxin • Best example: amanitin from the mushroom – Mortality is 20% in adults Amanita phalloides – Treatment can include liver transplant – Amanitin causes symptoms within 6-24 hours after – Amanitin inhibits RNA polymerase II ingestion BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. Mushroom Poisoning (cont.) • Another mushroom mycotoxin of note: orellanine – Structurally similar to paraquat • Produces superoxide anions • Causing lipid peroxidation of membranes and depletion of NADPH – Leads to renal failure within 3 weeks • Other mushroom toxins are more well known for their hallucinogenic effects BIOL 4849 (Summer 2010) Copyright © 2010 Chester R. Cooper, Jr. 4 .
Recommended publications
  • Detoxification Strategies for Zearalenone Using
    microorganisms Review Detoxification Strategies for Zearalenone Using Microorganisms: A Review 1, 2, 1 1, Nan Wang y, Weiwei Wu y, Jiawen Pan and Miao Long * 1 Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China 2 Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 21 June 2019; Accepted: 19 July 2019; Published: 21 July 2019 Abstract: Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA. Keywords: zearalenone (ZEA); reproductive toxicity; cytotoxicity; immunotoxicity; biological detoxification; probiotics; ZEA biotransformation 1.
    [Show full text]
  • Feed Safety 2016
    Annual Report The surveillance programme for feed materials, complete and complementary feed in Norway 2016 - Mycotoxins, fungi and bacteria NORWEGIAN VETERINARY INSTITUTE The surveillance programme for feed materials, complete and complementary feed in Norway 2016 – Mycotoxins, fungi and bacteria Content Summary ...................................................................................................................... 3 Introduction .................................................................................................................. 4 Aims ........................................................................................................................... 5 Materials and methods ..................................................................................................... 5 Quantitative determination of total mould, Fusarium and storage fungi ........................................ 6 Chemical analysis .......................................................................................................... 6 Bacterial analysis .......................................................................................................... 7 Statistical analysis ......................................................................................................... 7 Results and discussion ...................................................................................................... 7 Cereals .....................................................................................................................
    [Show full text]
  • New Markers in the Mycotox Profile
    New Markers in the MycoTOX Profile We are happy to announce the addition of four new mycotoxin markers to our MycoTOX Profile. The test now includes 11 mycotoxins from 40 species of mold, making it by far the most comprehensive and competitively priced mycotoxin test available. It also still more sensitive and accurate than other tests available, because we use LC/MS/MS technology. Here is an overview of the four new mycotoxin markers: Gliotoxin Gliotoxin (GTX) is produced by the mold genus Aspergillus. Aspergillus spreads in the environment by releasing conidia which are capable of infiltrating the small alveolar airways of individuals. In order to evade the body’s defenses Aspergillus releases Gliotoxin to inhibit the immune system. One of the targets of Gliotoxin is PtdIns (3,4,5) P3. This results in the downregulation of phagocytic immune defense, which can lead to the exacerbation of polymicrobial infections. Gliotoxin impairs the activation of T-cells and induces apoptosis in monocytes and in monocyte-derived dendritic cells. These impairments can lead to multiple neurological syndromes. Mycophenolic Acid Mycophenolic Acid (MPA) produced by the Penicillium fungus. MPA is an immunosuppressant which inhibits the proliferation of B and T lymphocytes. MPA exposure can increase the risk of opportunistic infections such as Clostridia and Candida. MPA is associated with miscarriage and congenital malformations when the woman is exposed in pregnancy. Dihydrocitrinone Dihydrocitrinone is a metabolite of Citrinin (CTN), which is a mycotoxin that is produced by the mold species Aspergillus, Penicillium, and Monascus. CTN exposure can lead to nephropathy, because of its ability to increase permeability of mitochondrial membranes in the kidneys.
    [Show full text]
  • Fungal Keratitis: Immune Recognition, Neutrophil-Hyphae Interactions, And
    FUNGAL KERATITIS: IMMUNE RECOGNITION, NEUTROPHIL-HYPHAE INTERACTIONS, AND FUNGAL ANTI-OXIDATIVE DEFENSES by SIXTO MANUEL LEAL JR. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Eric Pearlman, Ph.D. Department of Pathology CASE WESTERN RESERVE UNIVERSITY August, 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedication I dedicate this cumulative work to the invisible hand that has blessed my personal and academic life with incredible people, guidance, talent, courage, perseverance, and productivity. 3 Table of Contents List of Figures 7 List of Tables 9 Acknowledgements 10 List of Abbreviations 12 Abstract 14 Chapter 1. Introduction Fungi in their natural environment 16 Fungi and human disease 18 Fungi that cause human corneal infection 21 Fungal keratitis- Clinical characteristics and outcome 22 Anti-microbial Defenses at the Ocular Surface 23 Immune Recognition of Fungi 27 β2 integrins
    [Show full text]
  • PESTICIDE EVALUATION REPORT and SAFER USE ACTION PLAN(PERSUAP)
    PESTICIDE EVALUATION REPORT and SAFER USE ACTION PLAN(PERSUAP) By the USAID Kenya Agricultural Value Chain Enterprises (USAID-KAVES) Project Revised March 2014 This publication was produced for review by the United States Agency for International Development. It was prepared by Fintrac Inc. under contract reference AID-623-C-13-00002 Fintrac Inc. www.fintrac.com [email protected] US Virgin Islands 3077 Kronprindsens Gade 72 St. Thomas, USVI 00802 Tel: (340) 776-7600 Fax: (340) 776-7601 Washington, D.C. 1400 16th Street NW, Suite 400 Washington, D.C. 20036 USA Tel: (202) 462-3304 Fax: (202) 462-8478 USAID-KAVES Karen Office Park 3rd Floor Baobab, Suite H Langata Road, Karen, Nairobi Prepared by Fintrac Inc. USAID-KAVES PERSUAP 3 KENYA AGRICULTURAL VALUE CHAIN ENTERPRISES PROJECT (KAVES) PESTICIDE EVALUATION REPORT and SAFER USE ACTION PLAN (PERSUAP) Revised March 20134 The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States government. Photos by Fintrac Inc. and Real IPM. Prepared by Fintrac Inc. INITIAL ENVIRONMENTAL EXAMINATION, AMENDMENTPESTICIDE EVALUATION REPORT AND SAFER USE ACTION PLAN (PERSUAP) FOR USAID/KENYA’S KENYA AGRICULTURAL VALUE CHAIN ENTERPRISES (KAVES) PROJECT CONTRACT NO. AID-623-C-13-00002 PROJECT NAME: Kenya Agricultural Value Chain Enterprises (KAVES) Project REGION/COUNTRY: East Africa/Kenya PROGRAM AREA: 4.5 Agriculture, Feed the Future ORIGINATING OFFICE Agriculture Business and Environment Office CURRENT DATE (as of revisions): March 2014 IEE AMENDMENT: Yes PREPARED BY: Fintrac Inc. IMPLEMENTATION START: January 16, 2013 LOP AMOUNT: $39,810,558 IMPLEMENTATION END: January 15th 2018 Filename & date of original IEE: Kenya_FY09_EconGrowth_IEE_01xx09.doc The purpose of this IEE amendment is to approve the 2013 Pesticide Evaluation Report (PER) and Safer Use Action Plan (SUAP) developed under the KAVES project and which will be used during project implementation.
    [Show full text]
  • Overview and Status of EPA Collaborations for Detection of Selected Biotoxins in Drinking Water, Soils, and Wipes
    Overview and Status of EPA collaborations for Detection of Selected Biotoxins in Drinking Water, Soils, and Wipes Matthew L. Magnuson, Ph.D. US Environmental Protection Agency National Homeland Security Research Center Office of Research and Development NHSRC Mission To conduct research and develop scientific products that improve the capability of the Agency to carry out its homeland security responsibilities ADVANCING OUR NATION’S SECURITY THROUGH SCIENCE Office of Research and Development NHSRC Research Projects Homeland Security Multi Use Cross agency “Normal” Environmental Operations Many homeland security practices may also benefit day to day operation. For example, emerging analytical techniques to monitor water quality might be used during other water emergencies and/or clean-up after contamination. Office of Research and Development NHSRC Products • 125 reports and journal articles since 2003 (including classified) • Results presented many other ways—stakeholder meetings, symposia, workshops, etc. • Products and research plans receive rigorous quality reviews Most scientists regarded the new streamlined peer-review process as ‘quite an improvement.’ Office of Research and Development Overview of Detection of Biotoxins • Laboratory methods – SAM method compendium – Collaborative projects – Future directions Office of Research and Development Laboratory methods • Method development and study – Documentation: Methods and study reports • Methods aim to have DQOs fit for their intended use by – EPA/Water Security Division through
    [Show full text]
  • Ergot Alkaloid Biosynthesis in Aspergillus Fumigatus : Association with Sporulation and Clustered Genes Common Among Ergot Fungi
    Graduate Theses, Dissertations, and Problem Reports 2009 Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Coyle, Christine M., "Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi" (2009). Graduate Theses, Dissertations, and Problem Reports. 4453. https://researchrepository.wvu.edu/etd/4453 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle Dissertation submitted to the Davis College of Agriculture, Forestry, and Consumer Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Daniel G. Panaccione, Ph.D., Chair Kenneth P. Blemings, Ph.D. Joseph B.
    [Show full text]
  • Evasion of Adaptive Immune Defenses by the Lethal
    EVASION OF ADAPTIVE IMMUNE DEFENSES BY THE LETHAL CHYTRID FUNGUS BATRACHOCHYTRIUM DENDROBATIDIS By Jeffrey Scott Fites Jr. Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences May, 2014 Nashville, TN Approved: Katherine Friedman, Ph. D., chair Clint Carter, Ph. D. Julián Hillyer, Ph. D. D. Borden Lacy, Ph. D. Louise Rollins-Smith, Ph. D., thesis advisor DEDICATION To my family, My loving wife Meg, My newborn son Peter, My parents Jeff and Robin, And my sister Kateri. ii ACKNOWLEGMENTS I have many people to acknowledge for the achievements I have made in graduate school both personal and academic. I could not have accomplished a paper in Science or completed my Ph. D. thesis work without their assistance and support. I practiced karate for eight years from elementary school through high school. At every promotion to a higher rank, my karate instructor would remind all the students that they did not make achievements alone and that they must “put all their ducks in a row” to thank all the people responsible helping us along our way. He would say that we should start by thanking the oldest living members of our families, our parents, grandparents, and great-grandparents because, “if it wasn’t for our great-grandparents, our grandparents wouldn’t be here; and if it wasn’t for our grandparents, our parents wouldn’t be here; and if it wasn’t for our parents, we wouldn’t be here.” In such fashion, I will begin by thanking my oldest living relatives, my grandparents, Jack and Pauline Fites.
    [Show full text]
  • Occurrence and Significance of Mycotoxins in Forage Crops And
    J Sci Food Agric 1998, 77,1È17 Occurrence and Signiücance of Mycotoxins in Forage Crops and Silage: a Review Keith A Scudamore1* and Christopher T Livesey2 1 Central Science Laboratory, London Road, Slough, Berks, SL3 7HJ, UK 2 Veterinary Laboratories Agency, New Haw, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK (Received 5 December 1996; revised version received 29 May 1997; accepted 4 September 1997) Abstract: Study of mycotoxins in animal feeding stu†s has concentrated on the occurrence of aÑatoxins and, to a lesser extent, other mycotoxins in cereals, raw materials and concentrate feeds. However, ruminant diets contain a high propor- tion of forage crops such as grass or maize silage, hay and straw. Under adverse growing, production or storage conditions, fungal spoilage is likely to occur with some degree of mycotoxin contamination. The mould Ñora of forage crops is likely to di†er signiÐcantly from that of cereals and mycotoxin contamination, should it occur, could di†er qualitatively and quantitatively. Information relating to forage crops as a potential source of mycotoxins is reviewed. Some Ðeld inci- dents and animal disease which may be mycotoxin related are discussed and analytical methods are reviewed. Information on dose and e†ect of candidate mycotoxins is given where available. The review suggests areas which the authors consider merit further study. Crown Copyright 1998. J Sci Food Agric 77,1È17 (1998) Key words: mycotoxins; fungi; moulds; silage; forage crops; hay; straw; occurrence; analysis; risk assessment; animal disease INTRODUCTION access, silage will be at risk from storage moulds such as Penicillium and Aspergillus. However, moulds may be During growth, forage crops are at risk in the Ðeld from aerobic or anaerobic and this means that, even if infection by a number of di†erent fungi, some of which oxygen is excluded, some moulds may be able to may produce mycotoxins.
    [Show full text]
  • Aflatoxin B1 in Human Serum Issn 0025-7680313
    AFLATOXIN B1 IN HUMAN SERUM ISSN 0025-7680313 ORIGINAL ARTICLE MEDICINA (Buenos Aires) 2002; 62: 313-316 AFLATOXIN B1 CONTENT IN PATIENTS WITH HEPATIC DISEASES CLARA LOPEZ, LAURA RAMOS, LUCIA BULACIO, SILVANA RAMADAN, FERNANDA RODRIGUEZ Centro de Referencia de Micología (CEREMIC). Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Abstract Aflatoxins are toxic metabolites of some Aspergillus flavus, A. parasiticus and A. nomius strains that occur in many foods and feeds. There are four major natural occurring aflatoxins: B1, B2, G1 and G2. These toxins can cause illness in human beings and animals. Aflatoxin B1 is the most abundant and toxic member of the family, and it is also the most potent hepatocarcinogen known. In order to estimate the potential human health risk of AFB1, it is useful to measure blood concentration. The presence of aflatoxin B1 in patients was evaluated by high-performance liquid chromatography, in serum samples, obtained from 20 patient volunteers with hepatic disease. Out of the 20 patients, the presence of AFB1 was detected in only one of them, in a concentration of 0.47 ng/cm3. Nevertheless, this result should draw the attention of control organizations in Argentina to the need for a thorough food and feed inspection. Key words: aflatoxin B1, hepatic diseases,serum samples, HPLC Resumen Aflatoxina B1 en pacientes con enfermedades hep·ticas. Las aflatoxinas son metabolitos tóxicos producidos por cepas de Aspergillus flavus, A. parasiticus y A. nomius, presentes en alimentos y piensos. Las cuatro aflatoxinas principales son: aflatoxina B1, B2, G1 y G2. Dichas toxinas pueden causar enfermedades tanto en seres humanos como en animales.
    [Show full text]
  • Decontamination of Mycotoxin-Contaminated Feedstuffs
    toxins Review Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed Radmilo Colovi´cˇ 1,*, Nikola Puvaˇca 2,*, Federica Cheli 3,* , Giuseppina Avantaggiato 4 , Donato Greco 4, Olivera Đuragi´c 1, Jovana Kos 1 and Luciano Pinotti 3 1 Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; olivera.djuragic@fins.uns.ac.rs (O.Đ.); jovana.kos@fins.uns.ac.rs (J.K.) 2 Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cve´carska,21000 Novi Sad, Serbia 3 Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 20134 Milan, Italy; [email protected] 4 Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy; [email protected] (G.A.); [email protected] (D.G.) * Correspondence: radmilo.colovic@fins.uns.ac.rs (R.C.);ˇ nikola.puvaca@fimek.edu.rs (N.P.); [email protected] (F.C.) Received: 8 August 2019; Accepted: 23 October 2019; Published: 25 October 2019 Abstract: Mycotoxins are known worldwide as fungus-produced toxins that adulterate a wide heterogeneity of raw feed ingredients and final products. Consumption of mycotoxins-contaminated feed causes a plethora of harmful responses from acute toxicity to many persistent health disorders with lethal outcomes; such as mycotoxicosis when ingested by animals. Therefore, the main task for feed producers is to minimize the concentration of mycotoxin by applying different strategies aimed at minimizing the risk of mycotoxin effects on animals and human health.
    [Show full text]
  • How Fungi Defend Themselves Against Microbial Competitors and Animal Predators
    Research Collection Review Article How fungi defend themselves against microbial competitors and animal predators Author(s): Künzler, Markus Publication Date: 2018-09 Permanent Link: https://doi.org/10.3929/ethz-b-000302429 Originally published in: PLoS pathogens 14(9), http://doi.org/10.1371/journal.ppat.1007184 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library PEARLS How fungi defend themselves against microbial competitors and animal predators Markus KuÈ nzler* EidgenoÈssische Technische Hochschule ZuÈrich, Department of Biology, Institute of Microbiology, ZuÈrich, Switzerland * [email protected] Lifestyle exposes filamentous fungi to antagonists Filamentous fungi arrange their cells in linear, coenocytic arrays, referred to as hyphae, that extend at their tips and are able to branch and fuse, leading to a loose, three-dimensional net- work referred to as mycelium [1]. This architecture represents an optimal adaptation to the osmotrophic lifestyle of fungi in that it maximizes the surface for nutrient absorption and a1111111111 enables the fungus to efficiently reach and colonize its substrates. Some hyphae of the long- a1111111111 lived and constantly renewed vegetative mycelium may differentiate in other, more compact a1111111111 tissues, e.g., the (usually) short-lived and spore-producing fruiting bodies formed by dikaryotic a1111111111 fungi during their sexual reproduction. The different fungal tissues are exposed to different a1111111111 types of antagonists dependent on the ecological niche of the fungus. The vegetative mycelium of a saprophytic fungus, e.g., is exposed to other microorganisms that compete for the same nutrients and may feed on the degradation products released by the action of the hydrolytic enzymes secreted by the fungus.
    [Show full text]