Genomic Changes Associated with Adaptation to Arid Environments in Cactophilic Drosophila Species Rahul V

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Changes Associated with Adaptation to Arid Environments in Cactophilic Drosophila Species Rahul V Rane et al. BMC Genomics (2019) 20:52 https://doi.org/10.1186/s12864-018-5413-3 RESEARCH ARTICLE Open Access Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species Rahul V. Rane1,2* , Stephen L. Pearce1, Fang Li3, Chris Coppin1, Michele Schiffer2, Jennifer Shirriffs2, Carla M. Sgrò4, Philippa C. Griffin2, Goujie Zhang3,5, Siu F. Lee1,2, Ary A. Hoffmann2 and John G. Oakeshott1 Abstract Background: Insights into the genetic capacities of species to adapt to future climate change can be gained by using comparative genomic and transcriptomic data to reconstruct the genetic changes associated with such adaptations in the past. Here we investigate the genetic changes associated with adaptation to arid environments, specifically climatic extremes and new cactus hosts, through such an analysis of five repleta group Drosophila species. Results: We find disproportionately high rates of gene gains in internal branches in the species’ phylogeny where cactus use and subsequently cactus specialisation and high heat and desiccation tolerance evolved. The terminal branch leading to the most heat and desiccation resistant species, Drosophila aldrichi, also shows disproportionately high rates of both gene gains and positive selection. Several Gene Ontology terms related to metabolism were enriched in gene gain events in lineages where cactus use was evolving, while some regulatory and developmental genes were strongly selected in the Drosophila aldrichi branch. Transcriptomic analysis of flies subjected to sublethal heat shocks showed many more downregulation responses to the stress in a heat sensitive versus heat resistant species, confirming the existence of widespread regulatory as well as structural changes in the species’ differing adaptations. Gene Ontology terms related to metabolism were enriched in the differentially expressed genes in the resistant species while terms related to stress response were over-represented in the sensitive one. Conclusion: Adaptations to new cactus hosts and hot desiccating environments were associated with periods of accelerated evolutionary change in diverse biochemistries. The hundreds of genes involved suggest adaptations of this sort would be difficult to achieve in the timeframes projected for anthropogenic climate change. Keywords: Comparative genomics, Transcriptomics, Cactophilic Drosophila, Heat stress, Host adaptation Background because many of its species have diverged in their re- One approach to assessing the ability of species to adapt sponses to climatic extremes [2–4]. genetically to future climate change is to reconstruct the One particularly promising species group to study in way such adaptation has occurred in the past. The best this respect is the repleta group (subgenus Drosophila), way to do this is to compare the genomes of closely re- which originated about 15 million years ago in the lated species that have diverged for the relevant pheno- Americas [5]. Many species in this group, such as the types, but where genetic changes due to drift or other mulleri subgroup species Drosophila mojavensis, D. buz- adaptations irrelevant to those phenotypes are minimal zatii and D. aldrichi, are desert-adapted and display ex- [1]. Drosophila is an ideal genus for such an analysis tremely high heat, cold and desiccation tolerance [2, 3] but other species, such as the hydei and repleta sub- group species D. hydei and D. repleta, are largely found * Correspondence: [email protected] outside the desert and are much less tolerant of these 1 CSIRO, Clunies Ross St, GPO Box 1700, Acton, ACT 2601, Australia stresses [2, 3, 6]. Notably also, while all the repleta group 2Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville 3010, Australia species are saprophagous (feed on rotting tissue) they Full list of author information is available at the end of the article © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Rane et al. BMC Genomics (2019) 20:52 Page 2 of 22 vary widely in their host preferences; the desert species model prediction for that species. We present new ge- are dietary specialists that feed and breed on necrotic nomes for the other three species, acknowledging that an- cactus tissue, whereas D. hydei and D. repleta are dietary other version of the D. hydei genome has also recently generalists which can utilise a wide range of rotting been published ([23] and see below). Comparative analyses fruits and vegetables, as well as animal faeces and, in the among these four genomes plus D. mojavensis,andbe- case of D. hydei, cacti as well [7–10]. tween the five repleta species and previously published ge- Some comparative genomic studies have been con- nomes from other Drosophila groups, are then used to ducted on two repleta group species, the cactophilic D. suggest genetic factors contributing to high temperature mojavensis and D. buzzatii. Both are relatively tolerant tolerance and cactus vs generalist dietary adaptations. to climate stresses [5, 11, 12] but the former is much These analyses are founded on a robust genome-wide more restricted geographically and in the range of cacti phylogeny for a total of 24 Drosophila species for which it will use [13]. Comparisons between these two species good quality genomes were available at the time [24]. and two other drosophilids outside the repleta species Orthologue and duplication predictions and branch site group (D. virilis and D. grimshawi) showed expansions modelling are then used to identify lineage-specific gene of gene families involved in proteolysis, sensory percep- expansions and bursts of positive selection in the repleta tion and gene regulation in the cactophilic species [5]. species group. We also compare transcriptomes across a The same study also found the cactophilic species were time course of heat shock response for the heat sensitive undergoing rapid positive selection in genes involved in D. hydei and heat tolerant D. buzzatii, and test whether gene regulation and the catabolism of some of the het- gene sets showing divergent transcriptomic responses to erocyclic toxins found in the cacti [5]. Transcriptomic heat between these species are related to those showing comparisons of populations living on different hosts genomic divergence. within both D. mojavensis and another repleta species group cactophile, D. mettleri, have also highlighted tran- Results scriptional changes in key metabolic and sensory path- Genome assemblies and annotations ways which might contribute to desiccation and/or host Among the three newly sequenced species, the highly in- adaptation [12, 14–16]. There is thus evidence for both bred D. hydei and D. repleta lines had better assembly regulatory and structural changes, in the form of gene statistics than the D. aldrichi line, which was less inbred gains as well as positive selection, associated with the ac- than the other two (see Materials and Methods and quisition of cactophilism in the repleta group. However Additional file 1: Text S2). This is apparent from the lar- interpretation of the associations is limited by the few ger scaffolds and smaller scaffold L50 s for D. hydei and species studied and in some cases the substantial phylo- D. repleta compared to D. aldrichi (Additional file 2: genetic distance involved in the comparison. Table S1). The D. hydei assembly also had superior as- Several genome-wide association (GWAS) studies sembly (and annotation) statistics to the other recently have also found quantitative trait loci (QTLs) contribut- published version of this genome [23]; compared to the ing to polymorphic variation in thermal and desiccation other version, our assembly had an N50 three times lar- stress traits within D. melanogaster [17–20]. Associa- ger and covered 90% of the genome in less than half the tions have been recorded with hundreds of different number of scaffolds (Additional file 2: Tables S1, S2). genes, including a number of heat shock proteins, but The generalist feeders D. hydei and D. repleta yielded their relevance to the cactophilic repleta species is assembled genome sizes of ~ 165 Mb, which is very close questionable because of the ecological differences and to previous estimates generated using DAPI staining phylogenetic distance involved, and the fact that most (177+/− 22 and 167+/− 13 Mb respectively; [25]). No of the D. melanogaster studies are based on microarray DAPI estimate has been published for the cactophilic D. rather than sequencing data. aldrichi but our assembled genome size (191 Mb) for To follow up the work on the cactophilic species above, this species was larger than the two generalists but simi- the current study investigates gene gains and positive se- lar to that previously published for the cactophilic D. lection in five sequenced repleta group species, and tran- mojavensis (194 Mb; [26]), which itself was corroborated scriptional differences in two of them with very different by a DAPI estimate (183+/− 3 Mb; [25]). Notably the thermal tolerances. The five species are D. mojavensis and previously published assembly of the other cactophilic D. buzzatii, plus one additional highly stress tolerant cac- species in our analysis, D. buzzatii, was only estimated tophile, D. aldrichi (specifically its Clade A; [21]), and two at 161 Mb, most likely due to significant underestima- less tolerant dietary generalists, D. repleta and D. hydei. tion of both repeat and gene content during genome as- We use the D. mojavensis genome (generated from its Cat- sembly ([27] and see below). alina Island clade; [22]) as published but we re-annotate The repeat contents of the various genomes were the published D.
Recommended publications
  • 1 Method to Obtain Homozygous Introgressing Segments in Drosophila to 2 Identify the Presence of Hybrid Sterility Genes of the Reproductive Isolation
    Method to obtain homozygous introgressing segments in Drosophila to identify the presence of hybrid sterility genes of the reproductive isolation Francisco García-Franco ( [email protected] ) Universidad Autónoma Metropolitana https://orcid.org/0000-0002-3424-5271 Lilian Barandica-Cañon Universidad de Cartagena Ezel Galindo-Pérez Universidad Autónoma Metropolitana Martha Martínez García Universidad Nacional Autónoma de México Blanca Chávez-Sandoval Universidad Autónoma Metropolitana Biological Sciences - Article Keywords: Synmorphic Species, Polygenic Chromosome Asynapses, Bioinformatic Analysis, Crossing Strategies Posted Date: November 19th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-110613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 1 Method to obtain homozygous introgressing segments in Drosophila to 2 identify the presence of hybrid sterility genes of the reproductive isolation 3 Corresponding authors: *[email protected] and *[email protected] 4 ABSTRACT 5 Here, we present for the first time, a method to generate homozygous segmental 6 introgressions, by means of crosses between a pair of synmorphic species. The 7 introgressions were monitored by the cytogenetic method of polygenic chromosome 8 asynapses. Later the introgressions were evaluated in their capacity to produce sterility 9 in segmental males. Also, the smallest segment with the capacity to produce sterility in 10 segmental males was mapped by in situ hybridization of polythene chromosomes, using 11 8 sequences of BACs clones as probes. Finally, a bioinformatic analysis was carried out 12 to identify the presence of particular genes. From 2 parental strains, D. buzzatii and D. 13 koepferae, 6 simple segmental hybrid lines were generated, whose introgressing 14 segments are distributed along chromosome 4 of these species.
    [Show full text]
  • Original Article Pupal Emergence Pattern in Cactophilic Drosophila
    Running title: Host related pupal emergence in cactophilic flies Title for authors: E. M. Soto et al. Correspondence: Ignacio Soto. Intendente Güiraldes 2160. Ciudad Universitaria, Pabellón II. (C1428EHA). Buenos Aires. Argentina. Tel: +54 11 4576 3348; Fax: +54 11 4576 3354. e-mail: [email protected] Original article Pupal emergence pattern in cactophilic Drosophila and the effect of host plants Eduardo M. Soto, Julián Padró, Pablo Milla Carmona, Diego T. Tuero, Valeria P. Carreira and Ignacio M. Soto Departamento de Ecología Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. IEGEBA-CONICET. Buenos Aires. Argentina. This is an Accepted Article that has been peer-reviewed and approved for publication in the Insect Science but has yet to undergo copy-editing and proof correction. Please cite this article as doi: 10.1111/1744-7917.12484. This article is protected by copyright. All rights reserved. Abstract Drosophila buzzatii and D. koepferae are sibling cactophilic species. The former breeds primarily on prickly pears (genus Opuntia) whereas the latter breeds on columnar cacti of the genera Cereus and Trichocereus, although with certain degree of niche overlapping. We examined the interspecific differences in diurnal temporal patterns of adult emergence from puparia and evaluated whether this behavior is affected by rearing in the different cactus hosts available in nature. We detected important host-dependent genetic variation for this trait differentially affecting the emergence schedule of these species. Diurnal pattern of emergence time was directly correlated with developmental time and negatively correlated with adult wing size, suggesting that early emergences are at least indirectly correlated with increased fitness.
    [Show full text]
  • Perl, Craig Darren.Pdf
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details NOVEL MORPHOLOGICAL AND PHYSIOLOGICAL SCALING RELATIONSHIPS IN THE SOUTHERN RED WOOD ANT Craig Darren Perl University of Sussex This thesis is submitted to the University of Sussex in application for the degree of Doctor of Philosophy December 2017 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration with others except where specifically indicated in the text. No part of this dissertation has been submitted to any other university in application for a higher degree. Signature: Craig Perl 1st December, 2017 ii Summary Red wood ants (Formica rufa) are visual navigators whose colonies contain workers that differ substantially in size. By investigating the allometry of the ants’ compound eyes, and the regions within them, I showed that facets in particular regions scaled differently: both grade and slope shifts occurred. Facets in some eye regions were absolutely larger than others, while other facet regions scaled at different rates with body size.
    [Show full text]
  • Introduction and Bibliography
    Pacific Science (1988), vol. 42, nos. 1-2 © 1988 by the University of Hawaii Press. All rights reserved Introduction and Bibliography Hampton Carson first came to Hawaii in LITERATURE CITED June 1963 at the urging of Elmo Hardy and Wilson Stone. That year saw the first major CARSON, H. L. 1980. Hypotheses that blur gathering in Honolulu of scientists from and grow. Pages 383-384 in E. Mayr and many specialties in the interdisciplinary and W. B. Provine, eds. The evolutionary syn­ cooperative pattern that has proved so pro­ thesis: Perspectives on the unification of ductive in the study of Hawaiian Drosophila biology. Harvard Univ. Press, Cambridge, on "the Project" (Spieth 1980). Carson came Mass . with Harrison Stalker from Washington SPIETH, H. T. 1980. Hawaiian Drosophila University in St. Louis. Together (following Project. Proc., Hawaiian Entomol. Soc. Dobzhansky), they had developed a power­ 23(2) :275-291. ful method of population studies based on detailed examination of the distribution of inversions in the polytene chromosomes of Bibliography ofHampton Lawrence Carson Drosophila robusta and other species of the 1934-1986 mesic forests of the central and eastern United States. 1. CARSON, H. L. 1934. Labrador quarry. Carson's cytological approach can be traced General Mag. 37(1) :97-104. to the influence of McClung, and especially 2. CARSON, H. L. 1935. Use of medicinal of Metz, during his graduate studies at the herbs among the Labrador Eskimo. University of Pennsylvania in the late 1930s General Mag. 37(4):436-439. and early 1940s (Carson 1980). These studies 3. CARSON, H . L.
    [Show full text]
  • Principles of Genome Evolution in the Drosophila Melanogaster Species Group
    PLoS BIOLOGY Principles of Genome Evolution in the Drosophila melanogaster Species Group Jose´ M. Ranz1*, Damien Maurin1¤a, Yuk S. Chan1, Marcin von Grotthuss1, LaDeana W. Hillier2, John Roote1, Michael Ashburner1, Casey M. Bergman1¤b 1 Department of Genetics, University of Cambridge, Cambridge, United Kingdom, 2 Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling.
    [Show full text]
  • Basal Resistance Enhances Warming Tolerance of Alien Over Indigenous Species Across Latitude
    Basal resistance enhances warming tolerance of alien over indigenous species across latitude Charlene Janion-Scheepersa,1, Laura Phillipsa, Carla M. Sgròa, Grant A. Duffya, Rebecca Hallasa, and Steven L. Chowna aSchool of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia Edited by David L. Denlinger, Ohio State University, Columbus, OH, and approved November 21, 2017 (received for review September 4, 2017) Soil systems are being increasingly exposed to the interactive effects meta-analyses (19)], the F2 generation of populations of each spe- of biological invasions and climate change, with rising temperatures cies to overcome parental effects and the potential for laboratory expected to benefit alien over indigenous species. We assessed this adaptation (20), and taking account of the influence of phylogenetic expectation for an important soil-dwelling group, the springtails, by relatedness (21), we investigated both basal thermal tolerance and determining whether alien species show broader thermal tolerance the extent of phenotypic plasticity in the upper critical thermal limits. limits and greater tolerance to climate warming than their indigenous Although phenotypic plasticity of thermal tolerance traits may counterparts. We found that, from the tropics to the sub-Antarctic, only play a limited role in reducing exposure to climate change in alien species have the broadest thermal tolerances and greatest some ectotherms (22), it has been identified as a potentially signif- tolerance to environmental warming. Both groups of species show icant mediator of responses to thermal challenge (23), including in little phenotypic plasticity or potential for evolutionary change in springtails (9, 24). Phenotypic plasticity is also thought to be a major tolerance to high temperature.
    [Show full text]
  • Revised Phylogenetic Relationships Within the Drosophila Buzzatii Species Cluster (Diptera: Drosophilidae: Droso­ Phila Repleta Group) Using Genomic Data
    77 (2): 239 – 250 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. Revised phylogenetic relationships within the Drosophila buzzatii species cluster (Diptera: Drosophilidae: Droso- phila repleta group) using genomic data Juan Hurtado *, 1, 2, #, Francisca Almeida*, 1, 2, #, Santiago Revale 3 & Esteban Hasson *, 1, 2 1 Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Au- tónoma de Buenos Aires, Argentina; Juan Hurtado [[email protected]]; Francisca Almeida [[email protected]]; Esteban Hasson [ehasson @ege.fcen.uba.ar] — 2 Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científi- cas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina — 3 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK — * Corresponding authors; # Contributed equally to this work Accepted on March 15, 2019. Published online at www.senckenberg.de/arthropod-systematics on September 17, 2019. Published in print on September 27, 2019. Editors in charge: Brian Wiegmann & Klaus-Dieter Klass. Abstract. The Drosophila buzzatii cluster is a South American clade that encompasses seven closely related cactophilic species and constitutes a valuable model system for evolutionary research. Though the monophyly of the cluster is strongly supported by molecular, cytological and morphological evidence, phylogenetic relationships within it are still controversial. The phylogeny of the D. buzzatii clus- ter has been addressed using limited sets of molecular markers, namely a few nuclear and mitochondrial genes, and the sharing of fxed chromosomal inversions. However, analyses based on these data revealed inconsistencies across markers and resulted in poorly resolved basal branches. Here, we revise the phylogeny of the D.
    [Show full text]
  • Genomic Changes Associated with Adaptation to Arid Environments in Cactophilic Drosophila Species
    Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species Rane, Rahul V.; Pearce, Stephen L.; Li, Fang; Coppin, Chris; Schiffer, Michele; Shirriffs, Jennifer; Sgro, Carla M.; Griffin, Philippa C.; Zhang, Goujie; Lee, Siu F.; Hoffmann, Ary A.; Oakeshott, John G Published in: BMC Genomics DOI: 10.1186/s12864-018-5413-3 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Rane, R. V., Pearce, S. L., Li, F., Coppin, C., Schiffer, M., Shirriffs, J., Sgro, C. M., Griffin, P. C., Zhang, G., Lee, S. F., Hoffmann, A. A., & Oakeshott, J. G. (2019). Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species. BMC Genomics, 20, 1-22. [52]. https://doi.org/10.1186/s12864- 018-5413-3 Download date: 01. Oct. 2021 Rane et al. BMC Genomics (2019) 20:52 https://doi.org/10.1186/s12864-018-5413-3 RESEARCH ARTICLE Open Access Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species Rahul V. Rane1,2* , Stephen L. Pearce1, Fang Li3, Chris Coppin1, Michele Schiffer2, Jennifer Shirriffs2, Carla M. Sgrò4, Philippa C. Griffin2, Goujie Zhang3,5, Siu F. Lee1,2, Ary A. Hoffmann2 and John G. Oakeshott1 Abstract Background: Insights into the genetic capacities of species to adapt to future climate change can be gained by using comparative genomic and transcriptomic data to reconstruct the genetic changes associated with such adaptations in the past. Here we investigate the genetic changes associated with adaptation to arid environments, specifically climatic extremes and new cactus hosts, through such an analysis of five repleta group Drosophila species.
    [Show full text]
  • Drosophila | Other Diptera | Ephemeroptera
    NATIONAL AGRICULTURAL LIBRARY ARCHIVED FILE Archived files are provided for reference purposes only. This file was current when produced, but is no longer maintained and may now be outdated. Content may not appear in full or in its original format. All links external to the document have been deactivated. For additional information, see http://pubs.nal.usda.gov. United States Department of Agriculture Information Resources on the Care and Use of Insects Agricultural 1968-2004 Research Service AWIC Resource Series No. 25 National Agricultural June 2004 Library Compiled by: Animal Welfare Gregg B. Goodman, M.S. Information Center Animal Welfare Information Center National Agricultural Library U.S. Department of Agriculture Published by: U. S. Department of Agriculture Agricultural Research Service National Agricultural Library Animal Welfare Information Center Beltsville, Maryland 20705 Contact us : http://awic.nal.usda.gov/contact-us Web site: http://awic.nal.usda.gov Policies and Links Adult Giant Brown Cricket Insecta > Orthoptera > Acrididae Tropidacris dux (Drury) Photographer: Ronald F. Billings Texas Forest Service www.insectimages.org Contents How to Use This Guide Insect Models for Biomedical Research [pdf] Laboratory Care / Research | Biocontrol | Toxicology World Wide Web Resources How to Use This Guide* Insects offer an incredible advantage for many different fields of research. They are relatively easy to rear and maintain. Their short life spans also allow for reduced times to complete comprehensive experimental studies. The introductory chapter in this publication highlights some extraordinary biomedical applications. Since insects are so ubiquitous in modeling various complex systems such as nervous, reproduction, digestive, and respiratory, they are the obvious choice for alternative research strategies.
    [Show full text]
  • A Supertree Analysis and Literature Review of the Genus Drosophila and Closely Related Genera (Diptera, Drosophilidae)
    A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera, Drosophilidae) KIM VAN DER LINDE and DAVID HOULE Insect Syst.Evol. van der Linde, K. and Houle, D.: A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera, Drosophilidae). Insect Syst. Evol. 39: 241- 267. Copenhagen, October 2008. ISSN1399-560X. In the 17 years since the last familywide taxonomic analysis of the Drosophilidae, many stud- ies dealing with a limited number of species or groups have been published. Most of these studies were based on molecular data, but morphological and chromosomal data also contin- ue to be accumulated. Here, we review more than 120 recent studies and use many of those in a supertree analysis to construct a new phylogenetic hypothesis for the genus Drosophila and related genera. Our knowledge about the phylogeny of the genus Drosophila and related gen- era has greatly improved over the past two decades, and many clades are now firmly suppor- ted by many independent studies. The genus Drosophila is paraphyletic and comprises four major clades interspersed with at least five other genera, warranting a revision of the genus. Despite this progress, many relationships remain unresolved. Much phylogenetic work on this important family remains to be done. K. van der Linde & D. Houle, Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, U.S.A. ([email protected]). *Corresponding author: Kim van der Linde, Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, U.S.A.; telephone (850) 645-8521, fax (850) 645- 8447, email: ([email protected]).
    [Show full text]
  • Redalyc.Differences in Wing Melanization and Pigmentation
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 [email protected] Sociedad Entomológica Argentina Argentina MONGIARDINO KOCH, Nicolás; HASSON, Esteban; SOTO, Ignacio M. Differences in wing melanization and pigmentation pattern in Drosophila buzzatii (Diptera: Drosophilidae) under chemical stress Revista de la Sociedad Entomológica Argentina, vol. 71, núm. 1-2, 2012, pp. 87-97 Sociedad Entomológica Argentina Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=322028525014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ISSN 0373-5680 (impresa), ISSN 1851-7471 (en línea) Rev. Soc. Entomol. Argent. 71 (1-2): 87-97, 2012 87 Differences in wing melanization and pigmentation pattern in Drosophila buzzatii (Diptera: Drosophilidae) under chemical stress MONGIARDINO KOCH, Nicolás, Esteban HASSON and Ignacio M. SOTO Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA – CONICET). Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II (C1428 EHA). Buenos Aires. Argentina. Tel: +54-011-4576-3348 - Fax: +54-011-4576-3354; e-mail: [email protected] Diferencias en la melanización y el patrón de pigmentación alar en Drosophila buzzatii (Diptera: Drosophilidae) bajo estrés químico RESUMEN. Recientemente, hemos avanzado en nuestra comprensión de las bases genéticas y los mecanismos subyacentes al proceso de melanización durante el desarrollo, lo que permite el estudio de los procesos evolutivos que gobiernan la variabilidad de pigmentación presente en la naturaleza.
    [Show full text]
  • LTR-Retrotransposons in R. Exoculata and Other Crustaceans: the Outstanding Success of Galea-Like Copia Elements
    LTR-Retrotransposons in R. exoculata and Other Crustaceans: The Outstanding Success of GalEa-Like Copia Elements Mathieu Piednoe¨l1,2., Tifenn Donnart1., Caroline Esnault1¤, Paula Grac¸a1, Dominique Higuet1, Eric Bonnivard1* 1 UMR 7138 Syste´matique Adaptation Evolution, Equipe Ge´ne´tique et Evolution, Universite´ Pierre et Marie Curie, Paris, France, 2 Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany Abstract Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. They can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. LTR-retrotransposons have been reported in many diverse eukaryote species, describing a ubiquitous distribution. Given their abundance, diversity and their extended ranges in C-values, environment and life styles, crustaceans are a great taxon to investigate the genomic component of adaptation and its possible relationships with TEs. However, crustaceans have been greatly underrepresented in transposable element studies. Using both degenerate PCR and in silico approaches, we have identified 35 Copia and 46 Gypsy families in 15 and 18 crustacean species, respectively. In particular, we characterized several full-length elements from the shrimp Rimicaris exoculata that is listed as a model organism from hydrothermal vents. Phylogenic analyses show that Copia and Gypsy retrotransposons likely present two opposite dynamics within crustaceans. The Gypsy elements appear relatively frequent and diverse whereas Copia are much more homogeneous, as 29 of them belong to the single GalEa clade, and species- or lineage-dependent.
    [Show full text]