Genetics Resources: a Directory
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Gene Mapping Techniques
Developmental Neurobiology, edited by Philippe Evrard and Alexandre Minkowski. Nestle Nutrition Workshop Series, Vol. 12. Nestec Ltd., Vevey/Raven Press, Ltd., New York © 1989. Gene Mapping Techniques Jean-Louis Guenet Institut Pasteur, 75724 Paris Cedex 15, France Very accurate gene mapping is essential in both man and laboratory mammals (1- 3). Several techniques have been used over the last 50 years to localize mammalian genes on the chromosomes of a given species. This chapter reviews these tech- niques, with special emphasis on the most recent ones that represent a true break- through in formal genetics. CLASSICAL GENE MAPPING TECHNIQUES AND THEIR LIMITATIONS When two genes are linked they have a tendency to cosegregate during successive generations. The closer the linkage, the more absolute is the cosegregation. This is the fundamental principle of gene mapping, which has been successfully applied to all species, including plants, over many years. In mammals such as humans and mice, the continued discovery of marker genes scattered throughout the genome has facilitated the mapping of new genes so that we now possess for these two species, particularly the mouse, linkage maps that are far more detailed than those existing for other mammals. In the mouse, special matings can be set up, with appropriate stocks, to test for possible autosomal linkage after two successive reproductive rounds: In general, cross-back crosses are used, cross-intercrosses being reserved for studies in which the viability or the fertility of the homozygous mutant under study is impaired. In humans investigations concerning linkage are based on pedigree analysis. In other words, for both species it is essential to define as a starting point a situa- tion where two genes are heterozygous and either in repulsion A + / + B or in cou- pling AB/ + +, then to look for changes in this configuration after a reproductive cycle (forms in coupling giving rise to forms in repulsion and vice versa), and fi- nally to count the percentage or frequency of these recombination events. -
Genetic Mapping and Manipulation: Chapter 2-Two-Point Mapping with Genetic Markers* §
Genetic mapping and manipulation: Chapter 2-Two-point mapping with genetic markers* § David Fay , Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071-3944 USA Table of Contents 1. The basics ..............................................................................................................................1 2. Calculating map distances ......................................................................................................... 3 3. Other considerations ................................................................................................................. 5 4. References ..............................................................................................................................6 1. The basics The basics. Two-point mapping, wherein a mutation in the gene of interest is mapped against a marker mutation, is primarily used to assign mutations to individual chromosomes. It can also give at least a rough indication of distance between the mutation and the markers used. On the surface, the concept of two-point mapping to determine chromosomal linkage is relatively straightforward. It can, however, be the source of some confusion when it comes to processing the actual data based on phenotypic frequencies to accurately determine genetic distances. It is also worth noting that most researchers don't bother much with exhaustive two-point mapping anymore. Once we've assigned our mutation to a linkage group, it's generally off to the races with three-point and SNP mapping -
Sperm Proteins SOF1, TMEM95, and SPACA6 Are Required for Sperm−Oocyte Fusion in Mice
Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm−oocyte fusion in mice Taichi Nodaa,1, Yonggang Lua,1, Yoshitaka Fujiharaa,2, Seiya Ouraa,b, Takayuki Koyanoc, Sumire Kobayashia,b, Martin M. Matzukd,e,3, and Masahito Ikawaa,f,3 aResearch Institute for Microbial Diseases, Osaka University, 565-0871 Osaka, Japan; bGraduate School of Pharmaceutical Sciences, Osaka University, 565-0871 Osaka, Japan; cDivision of Molecular Genetics, Shigei Medical Research Institute, 701-0202 Okayama, Japan; dCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; eDepartment of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030; and fThe Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan Contributed by Martin M. Matzuk, March 19, 2020 (sent for review December 27, 2019; reviewed by Matteo Avella and Andrea Pauli) Sperm−oocyte membrane fusion is one of the most important protein, JUNO (also known as IZUMO1 receptor [IZUMO1R] events for fertilization. So far, IZUMO1 and Fertilization Influenc- and folate receptor 4 [FOLR4]) as an IZUMO1 receptor on the ing Membrane Protein (FIMP) on the sperm membrane and CD9 oocyte plasma membrane. IZUMO1 and JUNO form a 1:1 and JUNO (IZUMO1R/FOLR4) on the oocyte membrane have been complex (12), and critical residues to form this interaction were identified as fusion-required proteins. However, the molecular identified by X-ray crystal structure analysis (13–15). However, mechanisms for sperm−oocyte fusion are still unclear. Here, we in vitro studies implied that IZUMO1 may be responsible for show that testis-enriched genes, sperm−oocyte fusion required 1 sperm−oocyte membrane adhesion instead of fusion (16, 17). -
Heredity in Sarcoidosis: a Registry-Based Twin Study Thorax: First Published As 10.1136/Thx.2007.094060 on 5 June 2008
Sarcoidosis Heredity in sarcoidosis: a registry-based twin study Thorax: first published as 10.1136/thx.2007.094060 on 5 June 2008. Downloaded from A Sverrild,1 V Backer,1 K O Kyvik,2 J Kaprio,3 N Milman,4 C B Svendsen,5 S F Thomsen1 1 Department of Respiratory ABSTRACT Prevalence and incidence are dependent on age, sex Medicine, Bispebjerg University Background: Sarcoidosis is a multiorgan granulomatous and ethnicity.1 2 8–10 Hospital, Copenhagen, Denmark; The present understanding of the pathogenesis 2 Institute of Regional Health inflammatory disease of unknown aetiology. Familial Research Services and The clustering of cases and ethnic variation in the epidemiol- of the disease is that sarcoidosis is triggered by an Danish Twin Registry, University ogy suggests a genetic influence on susceptibility to the abnormal immune response to an environmental of Southern Denmark, Odense, agent in a genetically predisposed individual.1 3 disease. This paper reports twin concordance and Denmark; The Finnish Twin heritability estimates of sarcoidosis in order to assess the Genetic factors are considered to contribute to Cohort Study, Department of Public Health, University of overall contribution of genetic factors to the disease the development of sarcoidosis for two main 12610 Helsinki, Helsinki, Finland and susceptibility. reasons ; (1) epidemiological studies have Department of Mental Health Methods: Monozygotic and dizygotic twins enrolled in identified ethnicity as an important risk factor; and Alcohol Research, National the Danish and the Finnish population-based national twin and (2) familial clustering of cases has been Public Health Institute, Helsinki, 4 observed frequently over the last decades. -
HUMAN GENE MAPPING WORKSHOPS C.1973–C.1991
HUMAN GENE MAPPING WORKSHOPS c.1973–c.1991 The transcript of a Witness Seminar held by the History of Modern Biomedicine Research Group, Queen Mary University of London, on 25 March 2014 Edited by E M Jones and E M Tansey Volume 54 2015 ©The Trustee of the Wellcome Trust, London, 2015 First published by Queen Mary University of London, 2015 The History of Modern Biomedicine Research Group is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 1 91019 5031 All volumes are freely available online at www.histmodbiomed.org Please cite as: Jones E M, Tansey E M. (eds) (2015) Human Gene Mapping Workshops c.1973–c.1991. Wellcome Witnesses to Contemporary Medicine, vol. 54. London: Queen Mary University of London. CONTENTS What is a Witness Seminar? v Acknowledgements E M Tansey and E M Jones vii Illustrations and credits ix Abbreviations and ancillary guides xi Introduction Professor Peter Goodfellow xiii Transcript Edited by E M Jones and E M Tansey 1 Appendix 1 Photographs of participants at HGM1, Yale; ‘New Haven Conference 1973: First International Workshop on Human Gene Mapping’ 90 Appendix 2 Photograph of (EMBO) workshop on ‘Cell Hybridization and Somatic Cell Genetics’, 1973 96 Biographical notes 99 References 109 Index 129 Witness Seminars: Meetings and publications 141 WHAT IS A WITNESS SEMINAR? The Witness Seminar is a specialized form of oral history, where several individuals associated with a particular set of circumstances or events are invited to meet together to discuss, debate, and agree or disagree about their memories. The meeting is recorded, transcribed, and edited for publication. -
National Longitudinal Study of Adolescent to Adult Health
Social, Behavioral, and Biological Linkages Across the Life Course Social, Behavioral, and Biological Linkages Across the Life Course School Sampling Frame = QED National Longitudinal Study of HS Adolescent to Adult Health HS HS HHS HS Feeder Feeder Feeder Feeder Feeder Sampling Frame of Adolescents and Parents N = 100,000+ (100 to 4,000 per pair of schools) Ethnic High Educ Samples National Academy of Sciences Workshop Black Disabled Sample February 10-11, 2014 Saturation Puerto Rican Samples from 16 Schools Chinese Guidelines for Returning Individual Results from Genome Research Using Population- Main Sample 200/Community Based Banked Specimens Genetic CubanCuban Samples Carolyn Tucker Halpern University of North Carolina at Chapel Hill Unrelated Pairs Identical Twins Fraternal Twins Full Sibs Half Sibs in Same HH Social, Behavioral, and Biological Linkages Across the Life Course Social, Behavioral, and Biological Linkages Across the Life Course In-School In-Home Administration Administration Race and Ethnic Diversity in Add Health Wave I School Adolescents Race/Ethnicity N Unwtd. % Students Parent 1994-1995 Admin in grades 7-12 90,118 17,670 Mexico 1,767 8.5 (79%) 144 20,745 Cuba 508 2.5 Wave II School Adolescents Central-South America 647 3.1 1996 Admin in grades 8-12 Puerto Rico 570 2.8 (88.6%) 128 14,738 China 341 1.7 Wave III Young Adults Philippines 643 3.1 Partners 2001-2002 Aged 18-26 1,507 Other Asia 601 2.9 (77.4%) 15,197 Black (Africa/Afro-Caribbean) 4,601 22.2 Wave IV Adults Non-Hispanic White (Eur/Canada) 10,760 52.0 IIV -
TMEM95 Is a Sperm Membrane Protein Essential for Mammalian
RESEARCH ARTICLE TMEM95 is a sperm membrane protein essential for mammalian fertilization Ismael Lamas-Toranzo1†, Julieta G Hamze2†, Enrica Bianchi3, Beatriz Ferna´ ndez-Fuertes4,5, Serafı´nPe´ rez-Cerezales1, Ricardo Laguna-Barraza1, Rau´l Ferna´ ndez-Gonza´ lez1, Pat Lonergan4, Alfonso Gutie´ rrez-Ada´ n1, Gavin J Wright3, Marı´aJime´ nez-Movilla2*, Pablo Bermejo-A´ lvarez1* 1Animal Reproduction Department, INIA, Madrid, Spain; 2Department of Cell Biology and Histology, Medical School, University of Murcia, IMIB-Arrixaca, Murcia, Spain; 3Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom; 4School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; 5Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain Abstract The fusion of gamete membranes during fertilization is an essential process for sexual reproduction. Despite its importance, only three proteins are known to be indispensable for sperm- egg membrane fusion: the sperm proteins IZUMO1 and SPACA6, and the egg protein JUNO. Here we demonstrate that another sperm protein, TMEM95, is necessary for sperm-egg interaction. TMEM95 ablation in mice caused complete male-specific infertility. Sperm lacking this protein were morphologically normal exhibited normal motility, and could penetrate the zona pellucida and bind to the oolemma. However, once bound to the oolemma, TMEM95-deficient sperm were unable to fuse with the egg membrane or penetrate into the ooplasm, and fertilization could only be achieved by mechanical injection of one sperm into the ooplasm, thereby bypassing membrane *For correspondence: fusion. These data demonstrate that TMEM95 is essential for mammalian fertilization. [email protected] (Mı´Je´-M); [email protected] (PB-A´ ) †These authors contributed equally to this work Introduction In sexually reproducing species, life begins with the fusion of two gametes during fertilization. -
Segregation Distortion and the Evolution of Sex-Determining Mechanisms
Heredity (2010) 104, 100–112 & 2010 Macmillan Publishers Limited All rights reserved 0018-067X/10 $32.00 www.nature.com/hdy ORIGINAL ARTICLE Segregation distortion and the evolution of sex-determining mechanisms M Kozielska1,2, FJ Weissing2, LW Beukeboom1 and I Pen2 1Evolutionary Genetics, University of Groningen, Haren, The Netherlands and 2Theoretical Biology, University of Groningen, Haren, The Netherlands Segregation distorters are alleles that distort normal segre- selection pressure, allowing novel sex-determining alleles to gation in their own favour. Sex chromosomal distorters lead spread. When distortion leads to female-biased sex ratios, a to biased sex ratios, and the presence of such distorters, new masculinizing gene can invade, leading to a new male therefore, may induce selection for a change in the heterogametic system. When distortion leads to male-biased mechanism of sex determination. The evolutionary dynamics sex ratios, a feminizing factor can invade and cause a switch of distorter-induced changes in sex determination has only to female heterogamety. In many cases, the distorter- been studied in some specific systems. Here, we present a induced change in the sex-determining system eventually generic model for this process. We consider three scenarios: leads to loss of the distorter from the population. Hence, the a driving X chromosome, a driving Y chromosome and a presence of sex chromosomal distorters will often only be driving autosome with a male-determining factor. We transient, and the distorters may remain unnoticed. The role investigate how the invasion prospects of a new sex- of segregation distortion in the evolution of sex determination determining factor are affected by the strength of distortion may, therefore, be underestimated. -
Binding of Sperm Protein Izumo1 and Its Egg Receptor Juno Drives Cd9
© 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 3732-3739 doi:10.1242/dev.111534 RESEARCH ARTICLE Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization Myriam Chalbi1, Virginie Barraud-Lange2, Benjamin Ravaux1, Kevin Howan1, Nicolas Rodriguez3, Pierre Soule3, Arnaud Ndzoudi2, Claude Boucheix4,5, Eric Rubinstein4,5, Jean Philippe Wolf2, Ahmed Ziyyat2, Eric Perez1, Frédéric Pincet1 and Christine Gourier1,* ABSTRACT 2006), have so far been shown to be essential. These three Little is known about the molecular mechanisms that induce gamete molecules are also present on human egg and sperm cells. Izumo1 fusion during mammalian fertilization. After initial contact, adhesion is a testis immunoglobulin superfamily type 1 (IgSF) protein, between gametes only leads to fusion in the presence of three expressed at the plasma membrane of acrosome-reacted sperm (Satouh et al., 2012), and is highly conserved in mammals (Grayson membrane proteins that are necessary, but insufficient, for fusion: Izumo1 Izumo1 on sperm, its receptor Juno on egg and Cd9 on egg. What and Civetta, 2012). Female mice deleted for the gene have happens during this adhesion phase is a crucial issue. Here, we normal fertility, but males are completely sterile despite normal mating behavior and normal sperm production (Inoue et al., 2005). demonstrate that the intercellular adhesion that Izumo1 creates with Cd9−/− Juno is conserved in mouse and human eggs. We show that, along Similar features are observed for Cd9 on egg cells. female are healthy but severely subfertile because of defective sperm-egg with Izumo1, egg Cd9 concomitantly accumulates in the adhesion in vivo area. -
Due to Broad-Sense Genetic Heritability
The Sociology of Heritability How (and Why) Sociologists Should Care About Heritability: Evidence from Misclassified Twins Dalton Conley* Emily Rauscher NYU & NBER NYU * To whom correspondence should be directed; 6 Washington Square North Room 20; New York, NY 10003. [email protected] The Sociology of Heritability Abstract We argue that despite many sociologists’ aversion to them, heritability estimates have critical policy relevance for a variety of social outcomes ranging from education to health to stratification. However, estimates have traditionally been plagued by genetic-environmental covariance, which is likely to be non-trivial and confound estimates of narrow-sense (additive) heritability for social and behavioral outcomes. Until recently, there has not been an effective way to address this concern and as a result, sociologists have largely dismissed the entire enterprise as methodologically flawed and ideologically-driven. Indeed, in a classic paper, Goldberger (1979) shows that by varying assumptions of the GE-covariance, a researcher can drive the estimated heritability of an outcome, such as IQ, down to zero or up close to one. Survey questions that attempt to measure directly the extent to which more genetically similar kin (such as monozygotic twins) also share more similar environmental conditions than, say, dizygotic twins, represent poor attempts to gauge a very complex underlying phenomenon of GE-covariance. Methods that rely on concordance between interviewer classification and self- report offer similar concerns about validity. In the present study, we take advantage of a natural experiment to address this issue from another angle: Misclassification of twin zygosity in the National Longitudinal Survey of Adolescent Health (Add Health). -
Mapping Genomes
472 Chapter 17 | Biotechnology and Genomics the bacterium Agrobacterium tumefaciens occur by DNA transfer from the bacterium to the plant. Although the tumors do not kill the plants, they stunt the plants and they become more susceptible to harsh environmental conditions. A. tumefaciens affects many plants such as walnuts, grapes, nut trees, and beets. Artificially introducing DNA into plant cells is more challenging than in animal cells because of the thick plant cell wall. Researchers used the natural transfer of DNA from Agrobacterium to a plant host to introduce DNA fragments of their choice into plant hosts. In nature, the disease-causing A. tumefaciens have a set of plasmids, Ti plasmids (tumor-inducing plasmids), that contain genes to produce tumors in plants. DNA from the Ti plasmid integrates into the infected plant cell’s genome. Researchers manipulate the Ti plasmids to remove the tumor-causing genes and insert the desired DNA fragment for transfer into the plant genome. The Ti plasmids carry antibiotic resistance genes to aid selection and researchers can propagate them in E. coli cells as well. The Organic Insecticide Bacillus thuringiensis Bacillus thuringiensis (Bt) is a bacterium that produces protein crystals during sporulation that are toxic to many insect species that affect plants. Insects need to ingest Bt toxin in order to activate the toxin. Insects that have eaten Bt toxin stop feeding on the plants within a few hours. After the toxin activates in the insects' intestines, they die within a couple of days. Modern biotechnology has allowed plants to encode their own crystal Bt toxin that acts against insects. -
Physical Mapping Technologies for the Identification and Characterization of Mutated Genes Contributing to Crop Quality
to Crop Quality for the Identification for the Identification and Characterization of Mutated Genes Contributing Physical Mapping Technologies Physical Mapping Technologies IAEA-TECDOC-1664 spine: 7,75 mm - 120 pages IAEA-TECDOC-1664 n PHYSICAL MAPPING TECHNOLOGIES FOR THE IDENTIFICATION AND CHARACTERIZATION OF MUTATED GENES CONTRIBUTING TO CROP QUALITY VIENNA ISSN 1011–4289 ISBN 978–92–0–119610–1 INTERNATIONAL ATOMIC AGENCY ENERGY ATOMIC INTERNATIONAL Physical Mapping Technologies for the Identification and Characterization of Mutated Genes Contributing to Crop Quality The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NORWAY ALBANIA GREECE OMAN ALGERIA GUATEMALA PAKISTAN ANGOLA HAITI PALAU ARGENTINA HOLY SEE PANAMA ARMENIA HONDURAS PARAGUAY AUSTRALIA HUNGARY PERU AUSTRIA ICELAND PHILIPPINES AZERBAIJAN INDIA POLAND BAHRAIN INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ REPUBLIC OF MOLDOVA BELGIUM IRELAND ROMANIA BELIZE ISRAEL RUSSIAN FEDERATION BENIN ITALY SAUDI ARABIA BOLIVIA JAMAICA BOSNIA AND HERZEGOVINA JAPAN SENEGAL BOTSWANA JORDAN SERBIA BRAZIL KAZAKHSTAN SEYCHELLES BULGARIA KENYA SIERRA LEONE BURKINA FASO KOREA, REPUBLIC OF SINGAPORE BURUNDI KUWAIT SLOVAKIA CAMBODIA KYRGYZSTAN SLOVENIA CAMEROON LATVIA SOUTH AFRICA CANADA LEBANON SPAIN CENTRAL AFRICAN LESOTHO SRI LANKA REPUBLIC LIBERIA SUDAN CHAD LIBYAN ARAB JAMAHIRIYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA SYRIAN ARAB REPUBLIC COLOMBIA LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA