Wireless Passive Surface Acoustic Wave (SAW) Sensing System

Total Page:16

File Type:pdf, Size:1020Kb

Wireless Passive Surface Acoustic Wave (SAW) Sensing System Western Michigan University ScholarWorks at WMU Dissertations Graduate College 8-2007 Wireless Passive Surface Acoustic Wave (SAW) Sensing System Sridevi Krishnamurthy Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Physics Commons Recommended Citation Krishnamurthy, Sridevi, "Wireless Passive Surface Acoustic Wave (SAW) Sensing System" (2007). Dissertations. 884. https://scholarworks.wmich.edu/dissertations/884 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. WIRELESS PASSIVE SURFACE ACOUSTIC WAVE (SAW) SENSING SYSTEM by Sridevi Krishnamurthy A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Electrical and Computer Engineering Dr. Massood Z. Atashbar, Advisor Western Michigan University Kalamazoo, Michigan August 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. WIRELESS PASSIVE SURFACE ACOUSTIC WAVE (SAW) SENSING SYSTEM Sridevi Krishnamurthy, Ph.D. Western Michigan University, 2007 Due to their small size and ruggedness, Surface Acoustic Wave (SAW) devices have been widely used as part of wireless sensing or identification system especially in inaccessible and inhospitable environments. In addition, SAW devices find widespread applications as filters in communication systems and also as physical, chemical and bio-sensors and ID tags. The passive wireless SAW sensing system mainly consists of a passive SAW sensor and an interrogation unit which sends a burst signal to the SAW sensor and processes the sensor response. The main objectives of this work were designing, prototyping and fabricating the interrogation unit on a PCB and also designing modeling, simulating and fabricating SAW devices. Significant results obtained from the burst transceiver and simulation as well as measurement results of SAW devices will be presented together with some of the challenges faced. The interrogation unit is a burst transceiver operating in the Industrial, Scientific and Medical (ISM) band at 433 MEIz. The prototype was built using connectorized modules and manufacturer demonstration boards. Once the prototype burst transceiver was tested for its functionality, a miniaturized version was designed and fabricated on a PCB. The PCB layout was prepared using FreePCB™ software Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and manufactured at Cirexx International, CA. Both the prototype and the PCB burst transceiver is characterized using a cascaded gain and noise figure analysis performed for both the transmit and the receive sections. SAW delay lines and resonators operating at 100 MHz were first designed and then fabricated at the University of Michigan’s Micro/Nano fabrication facility in Ann Arbor, MI. Simulation of the frequency response of SAW devices were performed in MATLAB™, PSpice Capture™ and CoventorWare™. The design aspects of SAW devices and details of modeling the SAW devices in each of the above software packages are presented. Simulation results obtained from all the three software packages are compared with measured responses and the relative merits and demerits of each method will be presented. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3275962 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3275962 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Copyright by Sridevi Krishnamurthy 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I would like to express my deepest appreciation and gratitude to my dissertation Committee Chair and advisor Dr. Massood Atashbar for his continuous guidance throughout my dissertation work and his constant support and encouragement. I would like to thank my advisor Dr. Bradley Bazuin for this invaluable guidance and persistent help every step of the way. I would like to thank Dr. John Gesink, ECE Chair for agreeing to be on my Committee and being kind enough to patiently read through my dissertation. Special thanks are due to Dr. Azim Houshyar for being on my Committee and reading through my dissertation. I would like to thank the Graduate College at Western Michigan University and the National Science Foundation for their financial support. In addition, I would like to thank Mr. David Florida of the Department of Electrical and Computer Engineering and Mr. Glenn Hall of the Department of Mechanical and Aeronautical Engineering for providing technical support throughout the course of this dissertation work. I would also like express my gratitude to Ms. Janet Liebendorfer and Ms. Sheryl Todd for their assistance with all the associated paper work. Special thanks to Dr. Karlis Kaugars and the CAE staff for being kind enough to let me run simulations on their computers night after night. I would like to thank my parents and sister for all the sacrifices they have made over the years in order to provide me the finest education possible. Without their support, this dissertation work would have been impossible. I also wish to thank my in-laws for their constant support and encouragement and for truly believing in me. I would like to thank my friend Mr. Srikanth Singamaneni for being a great source of inspiration and motivation throughout course of my dissertation. I would ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgements-Continued also like to thank my dear friend Ms. Aarthi Sridharan for always being there and encouraging me in all my endeavours. Last but not least, this section would be incomplete without expressing my heartfelt thanks and appreciation to my husband for all the sacrifices that he has made and for constantly encouraging me. Without his support, I would not have been able to complete this dissertation work. Sridevi Krishnamurthy iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ACKNOWLEDGEMENTS......................................................................................... ii LIST OF TABLES......................................................................................................... ix LIST OF FIGURES ..................................................................................................... x CHAPTER I. INTRODUCTION ....................................................................................... 1 1.1 Background ......................................................................................... 1 1.2 Motivation ........................................................................................ 4 1.3 Author’s contributions ....................................................................... 6 1.4 Organization of the dissertation ........................................................ 7 II. INTRODUCTION TO SURFACE ACOUSTIC WAVE (SAW) SENSORS .................................................................................. 8 2.1 Introduction ......................................................................................... 8 2.2 SAW device configurations .............................................................. 12 2.2.1 SAW delay line ...................................................................... 12 2.2.2 One-port SAW resonator ...................................................... 13 2.2.3 Two-port SAW resonator .................................................... 14 2.3 Acoustic wave sensors ....................................................................... 15 2.3.1 Thickness shear mode based sensor ...................................... 16 2.3.2 Rayleigh mode SAW based sensor ........ 17 2.3.3 Shear horizontal SAW based sensor ................................... 18 2.3.4 Shear horizontal acoustic plate mode based sensor .......... 19 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents-Continued CHAPTER 2.3.5 Lamb wave based sensor ...................................................... 20 2.3.6 Love wave based sensor ................................ 22 2.4 Summary of sensing mechanisms ................................................... 23 2.4.1 Temperature ..........................................................................
Recommended publications
  • Surface Acoustic Wave Driven Microfluidics – a Review
    Surface Acoustic Wave Driven Microfluidics – A Review Author Luong, TD, Nguyen, NT Published 2010 Journal Title Micro and Nanosystems DOI https://doi.org/10.2174/1876402911002030217 Copyright Statement © 2010 Bentham Science Publishers. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/62189 Griffith Research Online https://research-repository.griffith.edu.au Surface Acoustic Wave Driven Microfluidics Trung-Dung Luong and Nam-Trung Nguyen* School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 *Address correspondence to this author at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 E-mail: [email protected] Tel: (+65) 67904457 Fax: (+65) 67911859 Abstract: This paper presents a systematic overview on the recent works on surface acoustic wave (SAW) driven microfluidics. SAW microfluidics is based on acoustic streaming induced by leaky SAW radiation into a liquid. The development of this field attracts attention from microfluidic research community due to its rapid actuation, programmable capability, simple and yet efficient operation. In our paper, SAW microfluidic applications are categorized into droplet-based applications and continuous-flow applications. Droplet is actuated into unique behaviours depending on the applied SAW power. A wide range of droplet based applications have been employed utilizing these behaviours. In continuous-flow system, applications are further categorized based on the interaction of travelling SAW and standing SAW with the bulk liquid. Finally, future perspectives of SAW driven microfluidics are discussed.
    [Show full text]
  • Eel 4915 Senior Design Ii Department of Electrical & Computer
    EEL 4915 SENIOR DESIGN II DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING UNIVERSITY OF CENTRAL FLORIDA Senior Design II Term Paper ACDC – A Helping Hand – Group A Akash Jinandra – EE & CpE Carlos Cuesta – EE & CpE Devin Defond – EE Chang Ching Wu – EE Table of Contents 1. Executive Summary.................................................................................................................. 1 2. Project Description.................................................................................................................... 2 2.1. Motivation ........................................................................................................................... 2 2.2. Project Specifications........................................................................................................ 2 2.2.1. Overall Block Diagram ............................................................................................... 2 2.2.1.1. Hardware .............................................................................................................. 3 2.2.1.1.1. Hardware of Arm .......................................................................................... 3 2.2.1.1.2. Hardware of Sleeve ..................................................................................... 4 2.2.1.2. Software ............................................................................................................... 5 2.2.1.2.1. Software of Arm ..........................................................................................
    [Show full text]
  • Surface Acoustic Wave Optical Modulation by Stanley Seokjong Hong
    Surface Acoustic Wave Optical Modulation by Stanley Seokjong Hong Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2001 @ Stanley Seokjong Hong, MMI. All rights reserved. BARKER The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. 4~ ~ WUTE OF T 3CHNOL2GY rJUL 11 2 LIBRARIES A uthor ............................ .. .... Department of Electrical E ixiering and Computer Science February, 2 2001 C ertified by ..... ................. .. ....................... Dennis M. Freeman Associate Professor Thpsps Supervisor Accepted by........... .. Arthur C. Smith Chairman, Department Committee on Graduate Students Surface Acoustic Wave Optical Modulation by Stanley Seokjong Hong Submitted to the Department of Electrical Engineering and Computer Science on February, 2 2001, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract The lack of refractive optical elements at ultraviolet (UV) and X ray wavelengths has made the construction of high-performance optical systems such as microscopes and photolithography projectors difficult at wavelengths below 200 nm. Synthetic aper- ture optical systems potentially eliminate the need for refractive elements by using sets of electronically modulated laser beams to synthesize the front apertures of high- performance optical systems. However, the optical modulators typically used with synthetic aperture optics are themselves refractive elements. As a solution, this the- sis developed surface acoustic wave optical modulation, an all-reflective technique for optical modulation that in principle scales from visible to UV and X ray wavelengths and is suitable for use in synthetic aperture optical systems.
    [Show full text]
  • The 2019 Surface Acoustic Waves Roadmap
    Journal of Physics D: Applied Physics TOPICAL REVIEW • OPEN ACCESS The 2019 surface acoustic waves roadmap To cite this article: Per Delsing et al 2019 J. Phys. D: Appl. Phys. 52 353001 View the article online for updates and enhancements. This content was downloaded from IP address 130.183.90.175 on 21/08/2019 at 14:25 IOP Journal of Physics D: Applied Physics Journal of Physics D: Applied Physics J. Phys. D: Appl. Phys. J. Phys. D: Appl. Phys. 52 (2019) 353001 (40pp) https://doi.org/10.1088/1361-6463/ab1b04 52 Topical Review 2019 The 2019 surface acoustic waves roadmap © 2019 IOP Publishing Ltd Per Delsing1, Andrew N Cleland2, Martin J A Schuetz3, JPAPBE Johannes Knörzer4 , Géza Giedke5,6 , J Ignacio Cirac4 , Kartik Srinivasan7, Marcelo Wu7,8, Krishna Coimbatore Balram7,9, 10 10 11 353001 Christopher Bäuerle , Tristan Meunier , Christopher J B Ford , Paulo V Santos12 , Edgar Cerda-Méndez13 , Hailin Wang14 , Hubert J Krenner15,16,30 , Emeline D S Nysten15, P Delsing et al Matthias Weiß15, Geoff R Nash17 , Laura Thevenard18 , Catherine Gourdon18 , Pauline Rovillain18, Max Marangolo18 , Jean-Yves Duquesne18 , Gerhard Fischerauer19 , Werner Ruile20, Alexander Reiner15, Ben Paschke15, Dmytro Denysenko15,28, 15 15,16 21 Printed in the UK Dirk Volkmer , Achim Wixforth , Henrik Bruus , Martin Wiklund22, Julien Reboud23 , Jonathan M Cooper23 , YongQing Fu24 , Manuel S Brugger15, Florian Rehfeldt25 and JPD Christoph Westerhausen15,16,26,27,28 1 Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Göteborg, Sweden 10.1088/1361-6463/ab1b04
    [Show full text]
  • Experiences in Using Open Source Software for Teaching Electronic Engineering CAD
    Experiences in Using Open Source Software for Teaching Electronic Engineering CAD Dr Simon Busbridge1 & Dr Deshinder Singh Gill School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ [email protected] Abstract Embedded systems and simulation distinguish modern professional electronic engineering from that learnt at school. First year undergraduates typically have little appreciation of engineering software capabilities and file handling beyond elementary word processing. This year we expedited blended teaching through the experiential based learning process via open source engineering software. Students engaged with the entire electronic engineering product creation process from inception, performance simulation, printed circuit board design, manufacture and assembly, to cabinet design and complete finished product. Currently students learn software skills using a mixture of electronic and mechanical engineering software packages. Although these have professional capability they are not available off-campus and are sometimes surprisingly poor in simulating real world devices. In this paper we report use of LTspice, FreePCB and OpenSCAD for the learning and teaching of analogue electronics simulation and manufacture. Comparison of the software options, the type of tasks undertaken, examples of student assignments and outputs, and learning achieved are presented. Examples of assignment based learning, integration between the open source packages and difficulties encountered are discussed. Evaluation of student attitudes and responses to this method of learning and teaching are also discussed, and the educational advantages of using this approach compared to the use of commercial packages is highlighted. Introduction Most educational establishments use software for simulating or designing engineering. Most commercial packages come with an academic licence which restricts access to on-site computers.
    [Show full text]
  • Analysis and Design of Miniaturized Rf Saw Duplexer Package
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2005 Analysis And Design Of Miniaturized Rf Saw Duplexer Package Hao Dong University of Central Florida Part of the Electrical and Electronics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Dong, Hao, "Analysis And Design Of Miniaturized Rf Saw Duplexer Package" (2005). Electronic Theses and Dissertations, 2004-2019. 441. https://stars.library.ucf.edu/etd/441 ANALYSIS AND DESIGN OF MINIATURIZED RF SAW DUPLEXER PACKAGE by HAO DONG Eng.D. Zhejiang University, 1997 M.S. Northwestern Polytechnical University, 1994 B.S. Northwestern Polytechnical University, 1991 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2005 Major Professor: Thomas X. Wu © 2005 Hao Dong ii ABSTRACT This dissertation provides a comprehensive methodology for accurate analysis and design of miniaturized radio frequency (RF) surface acoustic wave (SAW) duplexer package. Full-wave analysis based on the three dimensional (3-D) finite element method (FEM) is successfully applied to model the package. The die model is obtained by combining the acoustics and die busbars parasitics models.
    [Show full text]
  • Tinycad Free Download
    Tinycad free download TinyCAD is a program for drawing electrical circuit diagrams commonly known as schematic drawings. It supports PCB layout programs with several netlist formats and can also produce SPICE simulation netlists. It is also often used to draw one-line diagrams, block diagrams, and. TinyCAD, free and safe download. TinyCAD latest version: Get help drawing professional-looking circuit diagrams. TinyCAD is a good, free software only. Download TinyCAD for Windows now from Softonic: % safe and virus free. More than downloads this month. Download TinyCAD latest version TinyCAD - TinyCAD is a program for drawing circuit diagrams commonly known as schematic drawings. It supports standard and custom symbol libraries. TinyCAD allows you to design basic or complex electrical or electronic circuit diagrams. It has symbols distributed in 42 libraries which. TinyCAD is fully open-source so you can use it for free and you can to put the original drawing on your web-site, with a link to TinyCAD for download, this isn't. 9/10 - Download TinyCAD Free. Download TinyCAD free and you will be able to design and develop printed circuit boards. TinyCAD can also be used to check. TinyCad is a software application that provides you tools and other features that helps you make circuit diagrams in just a matter of minutes. You could either add. Download TinyCAD for free. TinyCAD is an open source schematic capture program for MS Windows. Free Download TinyCAD Build - Create schematic drawings with the help of the extensive built-in library and check for design. Download TinyCAD Simple drafting device for multiple professional purposes.
    [Show full text]
  • Freepcb User Guide Version 1.4
    FreePCB User Guide Version 1.4 Allan Wright April 14, 2007 FreePCB User Guide - Ver 1.4 1 21 Apr 07 Table of Contents 1. Introduction...........................................................................3 5.15.1 Copper Area Cutouts.......................................... ........57 2. User Guide History................................................................4 5.16 Text...................................................................... ...............58 2.1 What's new in version 1.4................................... ....................4 5.17 Solder Mask Cutouts................................................. ..........59 2.2 What's new in version 1.2................................... ....................4 5.18 Groups.......................................................... ......................60 3. Installing FreePCB................................................................6 5.19 Design Rule Checking........................................................ .62 4. Overview of the PCB Design Process...................................7 5.20 Exporting Drill and Gerber Files................................ .........69 5.20.1 Creating Files...................................................... .......69 4.1 Schematic Diagram....................................................... ..........7 5.20.2 Viewing and Printing Files................................ .........72 4.2 Specifying Parts, Packages and Pin Names.............................7 5.20.3 Drill Sizes................................................. .................73
    [Show full text]
  • Multiplexed Photometry and Fluorimetry Using Multiple Frequency Channels Khaled M
    Wayne State University Wayne State University Dissertations 1-2-2013 Multiplexed Photometry And Fluorimetry Using Multiple Frequency Channels Khaled M. Dadesh Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Electrical and Computer Engineering Commons Recommended Citation Dadesh, Khaled M., "Multiplexed Photometry And Fluorimetry Using Multiple Frequency Channels" (2013). Wayne State University Dissertations. Paper 757. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. MULTIPLEXED PHOTOMETRY AND FLUORIMETRY USING MULTIPLE FREQUENCY CHANNELS by KHALED M. DADESH DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2013 MAJOR: ELECTRICAL ENGINEERING Approved by: ________________________________ Advisor Date ——————————————————— ——————————————————— ——————————————————— © COPYRIGHT BY KHALED M. DADESH 2013 All Rights Reserved DEDICATION I dedicate my humble work to the soul of my father who encouraged and supported me to be in the right path, my mother who raised me and still prays for me to be a successful person to people and community, my wife and kids, and all my family members and friends who gave me support and help to finish my dissertation. ii ACKNOWLEDGEMENTS I would like to express my sincere appreciation to Dr. Amar Basu, who contributed tremendous time and valuable support to my research. I also appreciate Dr. Yang Zhao, Dr. Mark Ming-Cheng, and Dr. Jessica Back for their constructive comments and precious suggestions and support.
    [Show full text]
  • Wireless and Batteryless Surface Acoustic Wave Sensors for High Temperature Environments
    WIRELESS AND BATTERYLESS SURFACE ACOUSTIC WAVE SENSORS FOR HIGH TEMPERATURE ENVIRONMENTS T. Aubert1, O. Elmazria1,2, M.B. Assouar1 1Institut Jean Lamour (IJL), UMR 7198 CNRS-Nancy University 54506 Vandoeuvre lès Nancy, France 2Ecole Supérieur des Sciences et Techniques d’Ingénieurs de Nancy, 54506 Vandœuvre-lès-Nancy, France e-mail : [email protected] Abstract I. INTRODUCTION Surface acoustic wave (SAW) devices are Surface acoustic wave (SAW) devices are used for widely used as filter, resonator or delay line in several years as components for signal processing in electronic systems in a wide range of applications: communication systems. SAW devices are for mobile communication, TVs, radar, stable resonator example widely used as bandpass filter and resonator for clock generation, etc. The resonance frequency and in mobile phones [1,2]. Far from being confined to the delay line of SAW devices are depending on the properties of materials forming the device and could be this single use, SAW are or may find applications in very sensitive to the physical parameters of the many other areas. The SAW can be used to generate environment. Since SAW devices are more and more movement in microfluidics leading to mixe move, and used as sensor for a large variety of area: gas, pressure, heat very low quantities of liquid in the range of force, temperature, strain, radiation, etc. The sensors nanoliter [3]. They can also be used in chemistry, based SAW present the advantage to be passive where some properties of the SAW in terms of (batteryless) and/or wireless. These interesting heterogeneous catalysis could be identified.
    [Show full text]
  • Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: a Review
    micromachines Review Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review Yan Liu, Yao Cai, Yi Zhang, Alexander Tovstopyat , Sheng Liu and Chengliang Sun * Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; [email protected] (Y.L.); [email protected] (Y.C.); [email protected] (Y.Z.); [email protected] (A.T.); [email protected] (S.L.) * Correspondence: [email protected]; Tel.: +86-027-68776588 Received: 17 May 2020; Accepted: 18 June 2020; Published: 28 June 2020 Abstract: With the rapid commercialization of fifth generation (5G) technology in the world, the market demand for radio frequency (RF) filters continues to grow. Acoustic wave technology has been attracting great attention as one of the effective solutions for achieving high-performance RF filter operations while offering low cost and small device size. Compared with surface acoustic wave (SAW) resonators, bulk acoustic wave (BAW) resonators have more potential in fabricating high- quality RF filters because of their lower insertion loss and better selectivity in the middle and high frequency bands above 2.5 GHz. Here, we provide a comprehensive review about BAW resonator researches, including materials, structure designs, and characteristics. The basic principles and details of recently proposed BAW resonators are carefully investigated. The materials of poly-crystalline aluminum nitride (AlN), single crystal AlN, doped AlN, and electrode are also analyzed and compared. Common approaches to enhance the performance of BAW resonators, suppression of spurious mode, low temperature sensitivity, and tuning ability are introduced with discussions and suggestions for further improvement. Finally, by looking into the challenges of high frequency, wide bandwidth, miniaturization, and high power level, we provide clues to specific materials, structure designs, and RF integration technologies for BAW resonators.
    [Show full text]
  • Flexible Strain Detection Using Surface Acoustic Waves: Fabrication and Tests
    PhD Dissertations and Master's Theses 12-2020 Flexible Strain Detection Using Surface Acoustic Waves: Fabrication and Tests Rishikesh Srinivasaraghavan Govindarajan Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Govindarajan, Rishikesh Srinivasaraghavan, "Flexible Strain Detection Using Surface Acoustic Waves: Fabrication and Tests" (2020). PhD Dissertations and Master's Theses. 557. https://commons.erau.edu/edt/557 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in PhD Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. FLEXIBLE STRAIN DETECTION USING SURFACE ACOUSTIC WAVES: FABRICATION AND TESTS By Rishikesh Srinivasaraghavan Govindarajan A Thesis Submitted to the Faculty of Embry-Riddle Aeronautical University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering December 2020 Embry-Riddle Aeronautical University Daytona Beach, Florida ii FLEXIBLE STRAIN DETECTION USING SURFACE ACOUSTIC WAVES: FABRICATION AND TESTS By Rishikesh Srinivasaraghavan Govindarajan This Thesis was prepared under the direction of the candidate’s Thesis Committee Chair, Dr. Daewon Kim, Department of Aerospace Engineering, and has been approved by the members of Thesis Committee. It was submitted to the Office of the Senior Vice President for Academic Affairs and Provost, and was accepted in the partial fulfillment of the requirements for the Degree of Master of Science in Aerospace Engineering. THESIS COMMITTEE Digitally signed by Daewon Kim Daewon Kim Date: 2020.12.03 11:46:45 -05'00' Chairman, Dr.
    [Show full text]