42916-014: Sarulla Geothermal Power

Total Page:16

File Type:pdf, Size:1020Kb

42916-014: Sarulla Geothermal Power Environmental and Social Monitoring Report Safeguard and Social Monitoring Report Appendix G – Biodiversity Monitoring 2016 (Monitoring period: July – December 2016) June 2018 INO: Sarulla Geothermal Power Prepared by Sarulla Operations Limited for the Asian Development Bank. This safeguard and social monitoring report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Biodiversity Monitoring 2016 SOL Geothermal Project Area, North Tapanuli, North Sumatra Camera trapping and Primate Surveys A picture of a female sambar deer (Rusa unicolor), listed as Vulnerable on the IUCN Red List and protected species under Indonesian law, but still heavily hunted throughout Sumatra, caught on camera trap at SOL. 27th of November 2016 by PanEco/Yayasan Ekosistem Lestari requested by Sarulla Operations Ltd. Executive Summary Biodiversity monitoring is an integral part of the Biodiversity Action Plan (BAP) that was developed as part of a large-scale geothermal development project in North Tapanuli, North Sumatra, Indonesia. Baseline surveys were carried out between November 2013-June 2014 by Yayasan Ekosistem Lestari [camera trapping, primate and wildlife surveys, reptile and amphibian surveys] and a team of experts looking at vegetation and bird diversity. This report discusses the results of repeat biodiversity surveys focusing on camera trapping [3rd March-14 August 2016] and specific primate surveys [25 July-16 August 2016] in the forest area where Sarulla Operations Limited (SOL) is developing a large-scale geothermal project in/adjacent to the protected Batang Toru forest complex. These repeat biodiversity surveys are intended as a monitoring tool to investigate temporal changes in wildlife populations in relation to human disturbance in the SOL project area. The aim is to balance SOL geothermal activities with minimal impact on wildlife populations and to provide recommendations what is needed to maintain healthy wildlife populations in the Batang Toru forest surrounding the SOL geothermal area. The biodiversity data compiled in 2016, through camera trapping and primate surveys, have been compared with baseline data that was collected in the SOL project area between November 2013-June 2014. A serious decline in species diversity as well as relative abundance of the more common species was encountered between the two sampling periods. Land clearing activities have proceeded at a serious pace, with very wide road construction through the forest to the WJP area, with large amount of traffic and infrastructure development, which have obviously had a negative effect on the wildlife living in the SOL area. Key findings ¡ A total of 17 mammal species were encountered during the biodiversity surveys [combined direct observations, camera trapping and sign] in 2016 compared to 27 mammal species during the surveys in 2014; ¡ 11 mammal species were recorded on camera trap in 2016 [664 trapnights, 117 events] compared to 19 species in 2014 [984 trapnights, 527 events]; ¡ Of the mammal species recorded in 2016, 8 mammal species are listed under the IUCN Red List as Critically Endangered, Endangered or Vulnerable, and 8 species are protected under Indonesian law; ¡ A significant reduction was found in the number of events/trapnights and the Relative Abundance Index (RAI) of species caught on camera trap between 2016 and 2014; ¡ Of the Critically Endangered species, only one pangolin (Manis javanica, CR) was caught on camera trap in 2016, compared to 3 independent events during the 2014 monitoring session; i ¡ No evidence was found of the other two species listed as Critically Endangered on the IUCN Red List, the Sumatran orangutans (Pongo abelii, CR) nor Sumatran tiger (Panthera tigris sumatrae, CR), evidence of both species still encountered during the 2014 surveys; ¡ Density of resident agile gibbon (Hylobates agilis, EN) groups was found to be 2.23 groups/km2 with no significant difference found between 2016 and 2014 density calculations; ¡ Density of resident Siamangs (Symphalangus syndactylus, EN) was found to be 0.7 groups/km2 with no significant difference found between 2016 and 2014 density calculations; ¡ Mitred leaf monkeys (Presbytis melalophos, EN) were directly observed once during the surveys; ¡ Pig-tailed macaques (Macaca nemestrina, VU) were the most common species caught on camera traps together with the Barking deer (Muntiacus muntjac) but their Relative Abundance Index was significantly reduced from 14.4 in 2014 to 4.5 in 2016; ¡ Sun bear (Helarctos malayanus, VU) sign (claw marks and feeding sign) were still encountered along 4 of the primate transects and a small sun bear cub [est. 3 months old] was encountered in a den site along one of the primate transects; ¡ Sambar deer (Rusa unicolor, VU) were caught on camera trap on 16 independent events, and although their Relative Abundance Index was reduced from 3.2 in 2014 to 2.4 in 2016, this was the least drastic reduction of the three most frequently camera trapped species; Recommendations Due to the high occurrence of a significant number of IUCN Red Listed species as well as wildlife protected under Indonesian law in the SOL project area, we provide the following recommendations: Connectivity: The new road constructed in the forested areas to WJP 1 is very wide [estimated 20 meters] and no arboreal connectivity has been maintained. This will seriously affect arboreal primates (gibbons, siamang, orangutans, mitred leaf monkeys) to continue to use their home ranges that have been dissected by this road development. A professional assessment is needed to evaluate and plan how to restore connectivity in the most likely places along this road to avoid further decline in movement patters of various arboreal and terrestrial species. Hunting: Hunting of wildlife was still found to occur in the SOL project area, with a fresh snare encountered along one of the transects. The following recommendations are made to halt illegal hunting in the SOL area: ii ¡ Develop conservation/hunting agreements focusing on protected species with the main villages/hamlets close to the project area, and in return provide support for developing small enterprises that will provide sustainable protein alternatives (such as fish ponds, chicken farming, pig farming); ¡ Strict 24-hour control on free access using project roads; ¡ Establish a SOL wildlife protection team with a clear mandate to patrol forest area surrounding the SOL project area. Illegal Logging: Illegal logging within the SOL project area was still encountered on several occasions with piles of sawn timber encountered on three occasions. General recommendations: ¡ Human disturbance (i.e. noise, motorbikes, music), as well as dogs, cats, and invasive species should be minimized as much as possible, as well as increased garbage management; ¡ Strict regulations should be put in place regarding the above, both for SOL workers, contractors, visitors and local communities passing through the area; Biodiversity monitoring: ¡ Relating to the steep decline in Relative Abundance Index of most of the more common species, and decline in species diversity observed between 2016 and 2014, we recommend more intensive camera trapping to be carried out with similar amount of trapnights [and time period] as in 2014 so that comparison of biodiversity data between years will be more solid; ¡ We recommend repeat bird and reptile/amphibians surveys as important indicators of ecological stability, as well as abundance measures regarding illegal hunting for song birds; General Comments: Because of its scale and importance to the local economy, SOL is perfectly placed to introduce improved environmental practices by implementing the above recommendations for reduced disturbance, reconstruction of connectivity, and prevention of hunting of protected wildlife, illegal logging, and garbage management. While the company may feel it maintains the support of local communities by bowing to pressure to allow open access to the forests surrounding its worksites, in the long term this policy can rebound on the company as its practices become more widely known. On the other hand, rigorously imposing best practices on its own workforce and dissemination of these amongst local communities will enhance the company's international reputation, provide a strong case study for other companies operating in Indonesia, and modify environmentally damaging practices by local communities that appear to currently be accelerating around the work sites. iii Furthermore, the company is building a relatively environmentally-friendly energy power plant that have local impacts on the highly biodiverse and unique Batang Toru forests. But it has the opportunity to play a very important role in the long-term conservation of the wider Batang Toru forest complex (both East and West blocks), thus further demonstrating a wider commitment to environmental best practices and conservation. iv Credits Report prepared by PanEco/Yayasan Ekosistem Lestari: • Gabriella M. Fredriksson, • Graham Usher, • Matthew G. Nowak; Field data collection & survey teams: • Eka Siswiyati (Primate surveys) •
Recommended publications
  • The Conservation Behaviorist
    The Conservation Behaviorist Heidi Fisher, student at Boston University, receives E. O. Wilson Conservation Award Animal Behavior Society ABS Conservation Committee The Conservation Behaviorist, an electronic biannual news-update, informs ABS members about the Conservation Committee’s activities, research trends in behavior and conservation, and relevant scientific news in conservation research where behavior plays an important role. The Conservation Behaviorist Vol. 3, No. 1, May 2005 ____________________________________________________________ In this issue The ABS Conservation Committee ..……………………….. 2 Encyclopedia of Animal Behavior........................................ 2 Elizabeth V. Lonsdorf and Mark L. Wildhaber join ABS Conservation Committee…………………………………….. 2 Perspectives: Animal Cognition and its Role in Conservation Behavior, by Guillermo Paz-y-Miño C.……………………... 3 Feature Article: Conservation Behavior in Borneo’s logged forests, by Jason Munshi-South….…………………..……….5 Animal Behavior Society Annual Meeting……………………7 Excerpts From Back Issues …………………...…………….10 © Photo Sherri Michaud Conservation Tips By Daniel T. Blumstein “…As a field biologist, it is difficult not to become a conservationist, particularly when Is there anything a behaviorist can you study animal behavior. An animal’s first do to help conservation? response to a stressor is often a change at Work in an endangered habitat. Even if you the behavioral level. Behavior is a reliable are not focusing on an endangered species, indicator of ecological disturbance…” says by working in an endangered habitat you will Fisher. Her proposal “Communication breakdown illustrate, by example, the value of the habitat and hybridization in Xiphophorus fishes” will be and you may be able to collect additional funded by the ABS Student Research Grant information that will be useful for endangered Program and she will receive the 2005 E.
    [Show full text]
  • Biogeography of Mammals in SE Asia: Estimates of Rates of Colonization, Extinction and Speciation
    Biological Journal oflhe Linnean Sociely (1986), 28, 127-165. With 8 figures Biogeography of mammals in SE Asia: estimates of rates of colonization, extinction and speciation LAWRENCE R. HEANEY Museum of <oology and Division of Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. Accepted for publication I4 February 1986 Four categories of islands in SE Asia may be identified on the basis of their histories of landbridge connections. Those islands on the shallow, continental Sunda Shelf were joined to the Asian mainland by a broad landbridge during the late Pleistocene; other islands were connected to the Sunda Shelf by a middle Pleistocene landbridge; some were parts of larger oceanic islands; and others remained as isolated oceanic islands. The limits of late Pleistocene islands, defined by the 120 ni bathymetric line, are highly concordant with the limits of faunal regions. Faunal variation among non-volant mammals is high between faunal regions and low within the faunal regions; endcmism of faunal regions characteristically exceeds 70%. Small and geologically young oceanic islands are depauperate; larger and older islands are more species-rich. The number of endemic species is correlated with island area; however, continental shelf islands less than 125000 km2 do not have endemic species, whereas isolated oceanic islands as small as 47 km2 often have endemic species. Geologirally old oceanic islands have many endemic species, whereas young oceanic islands have few endemic species. Colonization across sea channels that were 5-25 km wide during the Pleistocene has been low, with a rate of about 1-2/500000 years.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Endemism and Diversity of Small Mammals Along Two Neighboring Bornean Mountains
    Endemism and diversity of small mammals along two neighboring Bornean mountains Miguel Camacho-Sanchez1,2,*, Melissa T.R. Hawkins3,4,5,*, Fred Tuh Yit Yu6, Jesus E. Maldonado3 and Jennifer A. Leonard1 1 Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Sevilla, Spain 2 CiBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal 3 Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA 4 Department of Biological Sciences, Humboldt State University, Arcata, CA, USA 5 Division of Mammals, National Museum of Natural History, Washington, DC, USA 6 Sabah Parks, Kota Kinabalu, Sabah, Malaysia * These authors contributed equally to this work. ABSTRACT Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial Submitted 14 February 2018 Accepted 9 September 2019 factors (e.g., larger diversity in larger areas) are important.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Atoll Research Bulletin No. 182 the Murine Rodents
    ATOLL RESEARCH BULLETIN NO. 182 THE MURINE RODENTS RATTUS RATTUS, EXULANS, AND NORVEGICUS AS AVIAN PREDATORS by F. I. Norman Issued by THE SMITHSONIAN INSTITUTION Washington, D.C., U.S.A. January 15,1975 Contents Page Introduction 1 References to Predation by Rats 3 Apterygiformes 3 Procellariiformes 3 Pelicaniformes 4 Ciconiiformes 4 Ans eriformes Gallif ormes Charadriiformes Columbiformes Psittaciformes Passeriformes lliscussion References THE MURINE RODENTS RATTUS RATTUS, EXULANS, AND NORVEGICUS AS AVIAN PREDATORS by F. I. Norman-1 / INTRODUCTION Few mammals have adventitiously accompanied man around the world more than members of the Murinae and of these, the most ubiquitous must surely be the --Rattus group. Three species, R. rattus Linn., R. norvegicus Berkenhout, and R. exulans T~eale),have been h~storically associated with-man, and their present distribution reflects such associations. Thus although -R. exulans is generally distributed through the Pacific region, -R. rattus and norvegicus are almost worldwide in distribution, having originated presumably in Asia Minor, as did exulans (walker 1964.). All have invaded, with man's assistance, habitats which previously did not include them, and they have developed varying degrees of commensalism with man. Neither --rattus nor norvegicus has entered antarctic ecosystems, but Law and Burstall (1956) recorded their presence on subantarctic Macquarie Island. Kenyon (1961) and Schiller (1956), however, have shown that norvegicus has become established in the arctic where localised populations are dependent on refuse as a food source during the winter. More frequently, reports bave been made of the over-running of islands by these alien rats. Tristan da Cunha is one such example (Elliott 1957; Holdgate 1960), and Dampier found rattus to be common on Ascension Island in 1701 though presently -norvegicus is more widespread there (nuffey 1964).
    [Show full text]
  • First Record of Hose's Civet Diplogale Hosei from Indonesia
    First record of Hose’s Civet Diplogale hosei from Indonesia, and records of other carnivores in the Schwaner Mountains, Central Kalimantan, Indonesia Hiromitsu SAMEJIMA1 and Gono SEMIADI2 Abstract One of the least-recorded carnivores in Borneo, Hose’s Civet Diplogale hosei , was filmed twice in a logging concession, the Katingan–Seruyan Block of Sari Bumi Kusuma Corporation, in the Schwaner Mountains, upper Seruyan River catchment, Central Kalimantan. This, the first record of this species in Indonesia, is about 500 km southwest of its previously known distribution (northern Borneo: Sarawak, Sabah and Brunei). Filmed at 325The m a.s.l., IUCN these Red List records of Threatened are below Species the previously known altitudinal range (450–1,800Prionailurus m). This preliminary planiceps survey forPardofelis medium badia and large and Otter mammals, Civet Cynogalerunning 100bennettii camera-traps in 10 plots for one (Bandedyear, identified Civet Hemigalus in this concession derbyanus 17 carnivores, Arctictis including, binturong on Neofelis diardi, three Endangered Pardofe species- lis(Flat-headed marmorata Cat and Sun Bear Helarctos malayanus, Bay Cat . ) and six Vulnerable species , Binturong , Sunda Clouded Leopard , Marbled Cat Keywords Cynogale bennettii, as well, Pardofelis as Hose’s badia Civet), Prionailurus planiceps Catatan: PertamaBorneo, camera-trapping, mengenai Musang Gunung Diplogale hosei di Indonesia, serta, sustainable karnivora forest management lainnya di daerah Pegunungan Schwaner, Kalimantan Tengah Abstrak Diplogale hosei Salah satu jenis karnivora yang jarang dijumpai di Borneo, Musang Gunung, , telah terekam dua kali di daerah- konsesi hutan Blok Katingan–Seruyan- PT. Sari Bumi Kusuma, Pegunungan Schwaner, di sekitar hulu Sungai Seruya, Kalimantan Tengah. Ini merupakan catatan pertama spesies tersebut terdapat di Indonesia, sekitar 500 km dari batas sebaran yang diketa hui saat ini (Sarawak, Sabah, Brunei).
    [Show full text]
  • Phylogeny, Biogeography and Systematic Revision of Plain Long-Nosed Squirrels (Genus Dremomys, Nannosciurinae) Q ⇑ Melissa T.R
    Molecular Phylogenetics and Evolution 94 (2016) 752–764 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny, biogeography and systematic revision of plain long-nosed squirrels (genus Dremomys, Nannosciurinae) q ⇑ Melissa T.R. Hawkins a,b,c,d, , Kristofer M. Helgen b, Jesus E. Maldonado a,b, Larry L. Rockwood e, Mirian T.N. Tsuchiya a,b,d, Jennifer A. Leonard c a Smithsonian Conservation Biology Institute, Center for Conservation and Evolutionary Genetics, National Zoological Park, Washington DC 20008, USA b Division of Mammals, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington DC 20013-7012, USA c Estación Biológica de Doñana (EBD-CSIC), Conservation and Evolutionary Genetics Group, Avda. Americo Vespucio s/n, Sevilla 41092, Spain d George Mason University, Department of Environmental Science and Policy, 4400 University Drive, Fairfax, VA 20030, USA e George Mason University, Department of Biology, 4400 University Drive, Fairfax, VA 20030, USA article info abstract Article history: The plain long-nosed squirrels, genus Dremomys, are high elevation species in East and Southeast Asia. Received 25 March 2015 Here we present a complete molecular phylogeny for the genus based on nuclear and mitochondrial Revised 19 October 2015 DNA sequences. Concatenated mitochondrial and nuclear gene trees were constructed to determine Accepted 20 October 2015 the tree topology, and date the tree. All speciation events within the plain-long nosed squirrels (genus Available online 31 October 2015 Dremomys) were ancient (dated to the Pliocene or Miocene), and averaged older than many speciation events in the related Sunda squirrels, genus Sundasciurus.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Ancestral Mitogenome Capture of the Southeast Asian Banded Linsang
    Mathematisch-Naturwissenschaftliche Fakultät Johanna L. A. Paijmans | Axel Barlow | Kirstin Henneberger | Jörns Fickel | Michael Hofreiter | Daniel W. G. Foerste Ancestral mitogenome capture of the Southeast Asian banded linsang Suggested citation referring to the original publication: PLoS ONE 15 (2020) 6, Art. e0234385 DOI https://doi.org/10.1371/journal.pone.0234385 ISSN 1932-6203 Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe 972 ISSN: 1866-8372 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-474441 DOI: https://doi.org/10.25932/publishup-47444 PLOS ONE RESEARCH ARTICLE Ancestral mitogenome capture of the Southeast Asian banded linsang 1,2¤ 1,3 1 1,2 Johanna L. A. PaijmansID *, Axel Barlow *, Kirstin Henneberger , Joerns Fickel , Michael Hofreiter1, Daniel W. G. Foerster2* 1 Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany, 2 Leibniz Institute for Zoo- and Wildlife Research, Berlin, Germany, 3 School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom ¤ Current address: Department of Genetics & Genome Biology, University of Leicester, Leicester, United a1111111111 Kingdom [email protected] (JLAP); [email protected] (AB); [email protected] (DWGF) a1111111111 * a1111111111 a1111111111 a1111111111 Abstract Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close OPEN ACCESS relatives, as is often the case for rare or extinct species, and is a viable approach for the Citation: Paijmans JLA, Barlow A, Henneberger K, analysis of historical museum specimens.
    [Show full text]
  • Borneo, Malaysia) 2019 October 7Th-31St Lennart Verheuvel
    Tripreport Sabah (Borneo, Malaysia) 2019 October 7th-31st Lennart Verheuvel www.shutterednature.com Sabah October 7th till October 31st. This was the second part of the trip I had planned to do after my studies were finished. Initially the plan was to go to Borneo for three months, I actually have asked for advice on the forum of Mammalwatching.com for that. Later I decided to change my mind and go for South-America, even later I decided to go for a combo: first three months South-America and then three weeks in Borneo. The road to Borneo was a long and bumpy one and I also ran into some difficulties during the trip, but in the end it was all worth it. The funny thing was that literally a week before my plane left, I still wasn’t sure if I could go, so looking back I’m really glad it all worked out. I travelled by myself but I did the first thirteen days of the trip together with Duncan McNiven and Debbie Pain from England and later we did our first five nights in Deramakot with Stuart Chapman and Nick Cox. It was nice searching for mammals (and birds) with these guys and it was really cool that the four of use managed to see Clouded Leopard together on one of the last nights of Stuart and Nick. I did fly on Tawau, which is not the nearest airport if you want to go to Danum but that was because I was first supposed to go with someone else, who backed out last minute and it was too expensive to change the destination.
    [Show full text]
  • Changing Invaders: Trends of Gigantism in Insular Introduced Rats
    Environmental Conservation (2018) 45 (3): 203–211 C Foundation for Environmental Conservation 2018 doi:10.1017/S0376892918000085 Changing invaders: trends of gigantism in insular THEMATIC SECTION Humans and Island introduced rats Environments ALEXANDRA A.E. VAN DER GEER∗ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Date submitted: 7 November 2017; Date accepted: 20 January 2018; First published online 14 March 2018 SUMMARY within short historical periods (Rowe-Rowe & Crafford 1992; Michaux et al. 2007;Renaudet al. 2013; Lister & Hall 2014). The degree and direction of morphological change in Additionally, invasive species may also alter the evolutionary invasive species with a long history of introduction pathway of native species by mechanisms such as niche are insufficiently known for a larger scale than the displacement, hybridization, introgression and predation (e.g. archipelago or island group. Here, I analyse data for 105 Mooney & Cleland 2001; Stuart 2014; van der Geer et al. island populations of Polynesian rats, Rattus exulans, 2013). The timescale and direction of evolution of invasive covering the entirety of Oceania and Wallacea to test rodents are, however, insufficiently known. Data on how whether body size differs in insular populations and, they evolve in interaction with native species are urgently if so, what biotic and abiotic features are correlated needed with the increasing pace of introductions today due to with it. All insular populations of this rat, except globalized transport: invasive rodent species are estimated to one, exhibit body sizes up to twice the size of their have already colonized more than 80% of the world’s island mainland conspecifics.
    [Show full text]