VYTAUTAS MAGNUS UNIVERSITY Saradha Ramesh
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A New Species of Supramontana Carbayo & Leal
Zootaxa 3753 (2): 177–186 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3753.2.7 http://zoobank.org/urn:lsid:zoobank.org:pub:74D353B7-4D92-4674-938C-B7A46BD5E831 A new species of Supramontana Carbayo & Leal-Zanchet (Platyhelminthes, Continenticola, Geoplanidae) from the Interior Atlantic Forest LISANDRO NEGRETE1, 2, ANA MARIA LEAL-ZANCHET3 & FRANCISCO BRUSA1,2,4 1División Zoología Invertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, La Plata, Argentina 2CONICET 3Instituto de Pesquisas de Planárias, Universidade do Vale do Rio dos Sinos, 93022-000 São Leopoldo, Rio Grande do Sul, Brazil 4Corresponding author. E-mail: [email protected] Abstract Supramontana argentina sp. nov. (Platyhelminthes, Continenticola, Geoplanidae) from north-eastern Argentina is herein described. The new species differs from Supramontana irritata Carbayo & Leal-Zanchet, 2003 from Brazil, the only spe- cies of this genus so far described, by external and internal morphological characters. Supramontana argentina sp. nov. is characterized by having a colour pattern with a yellowish median band, thin para-median black stripes, and two dark grey lateral bands on the dorsal surface. The most outstanding features of the internal morphology are a ventral cephalic retractor muscle almost circular in cross section, prostatic vesicle extrabulbar, tubular and very long, and penis papilla con- ical and blunt with a sinuous ejaculatory duct. Key words: triclads, land planarian, Geoplaninae, Argentina, Neotropical Region Introduction The taxonomy of land planarians (Geoplanidae) is mainly based on a combination of external morphological features and internal anatomical characters, mostly of the copulatory apparatus, which are revealed by histological techniques (Winsor 1998). -
Metabarcoding in the Abyss: Uncovering Deep-Sea Biodiversity Through Environmental
Metabarcoding in the abyss : uncovering deep-sea biodiversity through environmental DNA Miriam Isabelle Brandt To cite this version: Miriam Isabelle Brandt. Metabarcoding in the abyss : uncovering deep-sea biodiversity through environmental DNA. Agricultural sciences. Université Montpellier, 2020. English. NNT : 2020MONTG033. tel-03197842 HAL Id: tel-03197842 https://tel.archives-ouvertes.fr/tel-03197842 Submitted on 14 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En Sciences de l'Évolution et de la Biodiversité École doctorale GAIA Unité mixte de recherche MARBEC Pourquoi Pas les Abysses ? L’ADN environnemental pour l’étude de la biodiversité des grands fonds marins Metabarcoding in the abyss: uncovering deep - sea biodiversity through environmental DNA Présentée par Miriam Isabelle BRANDT Le 10 juillet 2020 Sous la direction de Sophie ARNAUD-HAOND et Daniela ZEPPILLI Devant le jury composé de Sofie DERYCKE, Senior researcher/Professeur rang A, ILVO, Belgique Rapporteur -
The Genome of Schmidtea Mediterranea and the Evolution Of
OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5. -
Download Curriculum Vitae
Mattia Menchetti Personal information: Contacts: Nationality: Italian Email: [email protected] Date of birth: 25/04/1990 Website: www.mattiamenchetti.com Place of birth: Castiglion Fiorentino (Arezzo), Italy ORCID ID: 0000-0002-0707-7495 ——————————————————————— Short Bio ——————————————————————— After a Bachelor thesis on the personality of the paper wasp Polistes dominula and a few years studying behavioural ecology of a various number of taxa (mostly porcupines and owls), I moved my research activities to alien species (mainly squirrels, parrots and land planarians), reporting new occurrences, impacts and getting insights into impact assessments. During my Master thesis and my stay as a Research Assistant at the Butterfly Diversity and Evolution Lab (Barcelona), I worked on the migration of the Painted Lady butterfly (Vanessa cardui) with Gerard Talavera and Roger Vila, focusing on Citizen Science and collection creation and management. I also worked on phylogeography and barcoding of Mediterranean butterflies in the Zen Lab lead by Leonardo Dapporto (University of Florence). I am now a PhD student at the Institute of Evolutionary Biology in Barcelona and I am studying the diversity and evolution of European ants. I published 64 articles in scientific journals (51 with I.F.) and in 25 of them I am the first or the senior author. ————————————————————— Current occupation ————————————————————— Oct 2020 PhD student at the Institute of Evolutionary Biology (CSIC-UPF) (Barcelona, Spain) with a “la Caixa” Doctoral Fellowship - ongoing INPhINIT Retaining. ———————————————————— Selected publications ———————————————————— Menchetti M., Talavera G., Cini A., Salvati V., Dincă V., Platania L., Bonelli S. Balletto E., Vila R., Dapporto L. (in press) Two ways to be endemic. -
Planarians (Platyhelminthes, Tricladida, Terricola) from the Family Rhynchodemidae, Microplana Species
Contributions to Zoology, 67 (4) 267-276 (1998) SPB Academic Publishing bv, Amsterdam Terrestrial planarians (Platyhelminthes, Tricladida, Terricola) from the Iberian first peninsula: records of the family Rhynchodemidae, with the description of a new Microplana species ¹ Eduardo Mateos Gonzalo Giribet¹,² & Salvador Carranza³ 'Departament de Universitat de Biologia Animal, Barcelona, Avinguda Diagonal 645, 08071 Barcelona, 2 Spain; Present address: American Department ofInvertebrates, Museum of Natural History, Central Park West 79th New New 3 at Street, York, York 10024-5192, USA; Departament de Genetica, Universitat de 08071 Barcelona, Avinguda Diagonal 645, Barcelona, Spain (corresponding author: S. Carranza, [email protected]) Keywords: Microplana, Rhynchodemidae, Terricola, new species, ITS-1, molecular markers, Iberian peninsula Abstract have been reported (see Minelli, 1974; 1977; Ball & Reynoldson, 1981). A review of the American The first records of terrestrial planarians belonging to the species of the family can be found in Ball & family Rhynchodemidae are reported for the Iberian Peninsula. Sluys (1990). A new endemic species from the Spanish Pyrenees, Microplana Data from terrestrial of the Iberian The planarians nana sp. nov., is described. characteristic features of this Peninsula small size in adult are and to our the species are: i) (8-10 mm) individuals, ii) very scarce, knowledge long conical penis papilla and iii) absence of seminal vesicle, introduced bipaliid Bipalium kewense Moseley, bursa copulatrix, genito-intestinal duct, and 1878 is well-developed the only species reported so far (Filella- bulb. the penial Moreover, widespread common land European Subirà, In 1983). contrast, the rhynchodemid Mi- planarian Microplana terrestris (Müller, 1774) is reported for croplana terrestris F. -
Platyhelminthes: Tricladida: Terricola) of the Australian Region
ResearchOnline@JCU This file is part of the following reference: Winsor, Leigh (2003) Studies on the systematics and biogeography of terrestrial flatworms (Platyhelminthes: Tricladida: Terricola) of the Australian region. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24134/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24134/ Studies on the Systematics and Biogeography of Terrestrial Flatworms (Platyhelminthes: Tricladida: Terricola) of the Australian Region. Thesis submitted by LEIGH WINSOR MSc JCU, Dip.MLT, FAIMS, MSIA in March 2003 for the degree of Doctor of Philosophy in the Discipline of Zoology and Tropical Ecology within the School of Tropical Biology at James Cook University Frontispiece Platydemus manokwari Beauchamp, 1962 (Rhynchodemidae: Rhynchodeminae), 40 mm long, urban habitat, Townsville, north Queensland dry tropics, Australia. A molluscivorous species originally from Papua New Guinea which has been introduced to several countries in the Pacific region. Common. (photo L. Winsor). Bipalium kewense Moseley,1878 (Bipaliidae), 140mm long, Lissner Park, Charters Towers, north Queensland dry tropics, Australia. A cosmopolitan vermivorous species originally from Vietnam. Common. (photo L. Winsor). Fletchamia quinquelineata (Fletcher & Hamilton, 1888) (Geoplanidae: Caenoplaninae), 60 mm long, dry Ironbark forest, Maryborough, Victoria. Common. (photo L. Winsor). Tasmanoplana tasmaniana (Darwin, 1844) (Geoplanidae: Caenoplaninae), 35 mm long, tall open sclerophyll forest, Kamona, north eastern Tasmania, Australia. -
Revision of Indian Bipaliid Species with Description of a New Species, Bipalium Bengalensis from West Bengal, India (Platyhelminthes: Tricladida: Terricola)
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373076; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Revision of Indian Bipaliid species with description of a new species, Bipalium bengalensis from West Bengal, India (Platyhelminthes: Tricladida: Terricola) Somnath Bhakat Department of Zoology, Rampurhat College, Rampurhat- 731224, West Bengal, India E-mail: [email protected] ORCID: 0000-0002-4926-2496 Abstract A new species of Bipaliid land planarian, Bipalium bengalensis is described from Suri, West Bengal, India. The species is jet black in colour without any band or line but with a thin indistinct mid-dorsal groove. Semilunar head margin is pinkish in live condition with numerous eyes on its margin. Body length (BL) ranged from 19.00 to 45.00mm and width varied from 9.59 to 13.16% BL. Position of mouth and gonopore from anterior end ranged from 51.47 to 60.00% BL and 67.40 to 75.00 % BL respectively. Comparisons were made with its Indian as well as Bengal congeners. Salient features, distribution and biometric data of all the 29 species of Indian Bipaliid land planarians are revised thoroughly. Genus controversy in Bipaliid taxonomy is critically discussed and a proposal of only two genera Bipalium and Humbertium is suggested. Key words: Mid-dorsal groove, black, pink head margin, eyes on head rim, dumbbell sole, 29 species, Bipalium and Humbertium bioRxiv preprint doi: https://doi.org/10.1101/2020.11.08.373076; this version posted November 9, 2020. -
R E S E a R C H / M a N a G E M E N T Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea)
RESEARCH/MANAGEMENT FINDINGSFINDINGS “Put a piece of raw meat into a small stream or spring and after a few hours you may find it covered with hundreds of black worms... When not attracted into the open by food, they live inconspicuously under stones and on vegetation.” – BUCHSBAUM, et al. 1987 Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea) Records from Wisconsin Dreux J. Watermolen D WATERMOLEN Bureau of Integrated Science Services INTRODUCTION The phylum Platyhelminthes encompasses three distinct Nemerteans resemble turbellarians and possess many groups of flatworms: the entirely parasitic tapeworms flatworm features1. About 900 (mostly marine) species (Cestoidea) and flukes (Trematoda) and the free-living and comprise this phylum, which is represented in North commensal turbellarians (Turbellaria). Aquatic turbellari- American freshwaters by three species of benthic, preda- ans occur commonly in freshwater habitats, often in tory worms measuring 10-40 mm in length (Kolasa 2001). exceedingly large numbers and rather high densities. Their These ribbon worms occur in both lakes and streams. ecology and systematics, however, have been less studied Although flatworms show up commonly in invertebrate than those of many other common aquatic invertebrates samples, few biologists have studied the Wisconsin fauna. (Kolasa 2001). Terrestrial turbellarians inhabit soil and Published records for turbellarians and ribbon worms in leaf litter and can be found resting under stones, logs, and the state remain limited, with most being recorded under refuse. Like their freshwater relatives, terrestrial species generic rubric such as “flatworms,” “planarians,” or “other suffer from a lack of scientific attention. worms.” Surprisingly few Wisconsin specimens can be Most texts divide turbellarians into microturbellarians found in museum collections and a specialist has yet to (those generally < 1 mm in length) and macroturbellari- examine those that are available. -
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers .................................................................................. -
A Comprehensive Comparison of Sex-Inducing Activity in Asexual
Nakagawa et al. Zoological Letters (2018) 4:14 https://doi.org/10.1186/s40851-018-0096-9 RESEARCH ARTICLE Open Access A comprehensive comparison of sex-inducing activity in asexual worms of the planarian Dugesia ryukyuensis: the crucial sex-inducing substance appears to be present in yolk glands in Tricladida Haruka Nakagawa1†, Kiyono Sekii1†, Takanobu Maezawa2, Makoto Kitamura3, Soichiro Miyashita1, Marina Abukawa1, Midori Matsumoto4 and Kazuya Kobayashi1* Abstract Background: Turbellarian species can post-embryonically produce germ line cells from pluripotent stem cells called neoblasts, which enables some of them to switch between an asexual and a sexual state in response to environmental changes. Certain low-molecular-weight compounds contained in sexually mature animals act as sex-inducing substances that trigger post-embryonic germ cell development in asexual worms of the freshwater planarian Dugesia ryukyuensis (Tricladida). These sex-inducing substances may provide clues to the molecular mechanism of this reproductive switch. However, limited information about these sex-inducing substances is available. Results: Our assay system based on feeding sex-inducing substances to asexual worms of D. ryukyuensis is useful for evaluating sex-inducing activity. We used the freshwater planarians D. ryukyuensis and Bdellocephala brunnea (Tricladida), land planarian Bipalium nobile (Tricladida), and marine flatworm Thysanozoon brocchii (Polycladida) as sources of the sex-inducing substances. Using an assay system, we showed that the three Tricladida species had sufficient sex-inducing activity to fully induce hermaphroditic reproductive organs in asexual worms of D. ryukyuensis. However, the sex-inducing activity of T. brocchii was sufficient only to induce a pair of ovaries. We found that yolk glands, which are found in Tricladida but not Polycladida, may contain the sex-inducing substance that can fully sexualize asexual worms of D. -
Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms
RESEARCH ARTICLE Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms Eduard Solà1☯, Marta Álvarez-Presas1☯, Cristina Frías-López1, D. Timothy J. Littlewood2, Julio Rozas1, Marta Riutort1* 1 Institut de Recerca de la Biodiversitat and Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain, 2 Department of Life Sciences, Natural History Museum, Cromwell Road, London, United Kingdom ☯ These authors contributed equally to this work. * [email protected] (MR) Abstract Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of mo- lecular data to explore and understand the evolutionary history and relationships of eukary- OPEN ACCESS otic organisms across diverse taxonomic levels. The availability of complete mitogenomes Citation: Solà E, Álvarez-Presas M, Frías-López C, from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms Littlewood DTJ, Rozas J, Riutort M (2015) (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): Evolutionary Analysis of Mitogenomes from Parasitic and Free-Living Flatworms. PLoS ONE 10(3): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly e0120081. doi:10.1371/journal.pone.0120081 complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have rea- Academic Editor: Hector Escriva, Laboratoire notated the published mitogenome of the species Dugesia japonica (Dugesiidae). This con- Arago, FRANCE tribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich Received: September 18, 2014 group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living Accepted: January 19, 2015 and selected parasitic flatworms in order to gain insights into the putative effect of life cycle Published: March 20, 2015 on nucleotide composition through mutation and natural selection. -
A New Species of Freshwater Flatworm (Platyhelminthes, Tricladida, Dendrocoelidae) Inhabiting a Chemoautotrophic Groundwater Ecosystem in Romania
European Journal of Taxonomy 342: 1–21 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.342 www.europeanjournaloftaxonomy.eu 2017 · Stocchino G.A. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:038D2DD8-9088-4755-8347-EC979D58DBE7 A new species of freshwater flatworm (Platyhelminthes, Tricladida, Dendrocoelidae) inhabiting a chemoautotrophic groundwater ecosystem in Romania Giacinta Angela STOCCHINO 1,*, Ronald SLUYS 2, Mahasaru KAWAKATSU 3, Serban Mircea SARBU 4 & Renata MANCONI 5 1,5 Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Muroni 25, I-07100, Sassari, Italy. 2 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. 3 9-jo 9-chome 1-8, Shinkotoni, Kita-ku, Sapporo, Hokkaido, Japan. 4 Department of Biological Sciences, California State University Chico, Holt Hall Room 205, Chico CA 95929-515, USA. * corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:A23390B1-5513-4F7B-90CC-8A3D8F6B428C 2 urn:lsid:zoobank.org:author:8C0B31AE-5E12-4289-91D4-FF0081E39389 3 urn:lsid:zoobank.org:author:56C77BF2-E91F-4C6F-8289-D8672948784E 4 urn:lsid:zoobank.org:author:3A7EFBE9-5004-4BFE-A36A-8F54D6E65E74 5 urn:lsid:zoobank.org:author:ED7D6AA5-D345-4B06-8376-48F858B7D9E3 Abstract. We report the description of a new species of freshwater flatworm of the genus Dendrocoelum inhabiting the chemoautotrophic ecosystem of Movile Cave as well as several sulfidic wells in the nearby town of Mangalia, thus representing the first planarian species fully described from this extreme biotope.