1 Basic Properties in Euclidean Spaces

Total Page:16

File Type:pdf, Size:1020Kb

1 Basic Properties in Euclidean Spaces Convex Functions: Theory, Examples and Applications Contents with Comments/Questions 1. Start to build interface/database for convex functions. I. BASIC THEORY 1 Basic properties in Euclidean Spaces 1.1 Basic Continuity & Differentiability properties Definition, sublinearity implies positively homogeneous. One-sided derivatives, sublinearity of right- hand derivative. Three slope inequality for convex functions on R; increasing derivative for convex n functions on R, 2nd derivative nonnegative. Hessian matrix for convex functions on R . Continuity, Lipschitzness and local boundedness properties. Convex function on simplex implies continuity on interior of simplex. Separation/Hahn Banach theorems will be stated in various forms with proofs relegated to references and guided exercises. Gateaux and Fr´echet derivatives. 2 Example 1.1. There exists f : R → R such that f is Gateaux differentiable everywhere, but f is not continuous at (0, 0). x4y ∞ Proof. Let f(x, y) = x8+y2 if (x, y) 6= (0, 0) and let f(x, y) = (0, 0) otherwise. Then f is C -smooth if (x, y) 6= (0, 0), one can check that the Gateaux derivative of f is 0 at (0, 0), but f is not continuous at (0, 0). Fr´echet differentiability implies continuity for general functions. Gateaux differentiability implies Fr´echet differentiability for locally Lipschitz functions. If f is convex and Gateaux differentiable at n n x0 ∈ R , then f is continuous and Fr´echet differentiable at x0. If f : R → R is convex and ∂f(x0) is a singleton, then f is Fr´echet differentiable at x0. 1.2 Conjugate properties and duality • A tighter but trimmed down version of infinite dimensional case that is currently under construction. 1.3 Differentiability (generic, porous & measure theoretic) • Will be built after the infinite dimensional chapter. 1.4 Semi-definite matrices and eigenvalue functions • Borwein-Lewis and Borwein-Zhu have some hints. Zipped versions follow 1.5 Support and extremal structure • Borwein-Lewis have a good treatment of Krein-Mil’man, and of polyhedral issues. • Material on exposing and strongly exposing faces of sets and cones needs to be added (Borwein- Wolkowicz and more recent semi-definite work). • Zalinescu’s recent book may help. I’ll send a PDF copy. 1.6 Higher order properties • Proof of Alexandrov’s theorem, coincidence of various second order notions (see Borwein-Noll) 2 Basic properties in Hilbert and Banach spaces 2.1 Basic Continuity and Differentiability properties • Local boundedness above and Lipschitzian properties Proposition 2.1. A lsc convex function is continuous at all points of the interior of its domain. Note, lsc is needed in infinite dimensions. For example discontinuous linear functional. • definitions of different types of differentiability; symmetric definitions of differentiability; one-sided derivatives. Gateaux Differentiability Proposition 2.2. Suppose f is lsc convex and Gateaux differentiable at x, the f is continuous at x. Example 2.3. Let X be a separable Banach space, then there is an lsc convex function on X such that ∂f(0) is a singleton, but f is not Gateaux differentiable at 0. Note to JMB, what is the proof for this in general nonseparable Banach spaces as alluded to in the Borwein-Lewis book? Got me! I think an example exists iff there is a closed densely spanning convex set without interior, hence in WCG spaces, spaces with such quasi-complements etc Example 2.4. On any infinite dimensional Banach space there is a convex function that is Gateaux differentiable at 0, lsc at 0, but discontinuous at 0. Proof. Let φ be a discontinuous linear functional on X. Define f(x) = φ2(x). Then f is discontinuous, f is Gateaux differentiable at 0 with f 0(0) = 0. The following for β-differentiability: • Smulyan’sˇ criterion From Smulyan’s theorem can have definition/exercises concerning various topological upper semicon- tinuity notions of ∂f as a set valued map related to appropriate differentiability. Explicitly state continuity properties for the Gateaux/Frechet differentiability cases. • implicit derivatives for gauges created from level sets of convex functions 2.2 Conjugate properties and duality • definitions and characterizations of various types of extreme points for convex functions; do this very carefully and clearly. Will be useful later for compare and contrast with essential smoothness and essential strict convexity. • Fenchel conjugates; bi-conjugates. H¨ormander’s theorem Conjugates of infimal convolutions; duality between extreme points and smooth points, between continuity and compactness (Moreau). • Strictly convex, locally uniformly convex and uniformly convex functions, duality with smoothness. β-versions can be stated as exercises. Differentiability properties of distance functions when dual norm has appropriate rotundity properties. At least state and outline proofs as guided exercises via various approaches (i.e. conjugates as infimal convolutions, via Smulyan’s criterion directly as can be found in DGZ). Refer perhaps forward to examples where smoothness of norm alone doesn’t imply smoothness of distance function. In this section, we won’t prove or even state existence results for certain norms. We may simply suggest the definitions (a norm is locally uniformly convex if f(x) = kxk2 is a locally uniformly convex function (as we’ve defined), then say i.e.... and leave it at that). 2.3 Differentiability theory (β-differentiability, generic, porous & measure theo- retic) • Sizes of sets of differentiability: see e.g. Phelps; Benyamini and Lindenstrauss. This is a place to point to the literature rather than tell and prove the complete picture. We should paraphrase Benyamini and Lindenstrauss, and add some nice examples. Warren Moors can assist. 2.4 Renorming theory, an introduction • smooth and rotund norms; duality, types of spaces and survey of key existence results (classical spaces, wcg/reflexive spaces). Existence of rotund/smooth norms and coercive convex functions with same smoothness property. Notes on C(K) spaces, especially, when K scattered. A few proofs in separable spaces should be relatively completely sketched Note: we will have developed most of the tools to outline how uniformly (Gateaux) smooth norms can be constructed from uniformly (Gateaux) smooth bumps as perhaps guided exercises with references to appropriate literature such as papers by Fabian-Zizler, McLaughlin-V, Tang. 2.5 Integral functionals • Sketch basic theory of normal convex integrands (Rockafellar, Ioffe, Balder). Main conditions ensuring that ∗ ∗ If = (If ) R and consequences for ∂If , where If (x) = T f(x(t), t) µ(dt). 2.6 Support structure • Relation between RNP, Asplund and Krein-Milman properties and how they are expressed for convex functions. James, theorem and consequences. 2.7 Weak vs norm convergence ∗ • LUR, Kadec-Klee, Borwein-Lewis L1 results (If is strongly rotund iff f is smooth and everywhere defined) and Theorem 2.5. Suppose fn(t) ∈ Ω(t) a.e and fn + f ∈ extΩ(t) a.e. Then fn →L1 f. 2.8 Monotone operators and convex functions • begin with material in B-Z and B-L. State Mignot’s result, see B-Noll. JMB to add new results later. 2.9 Higher order properties • Update of material in Borwein-Noll, failure of Alexandrov except possibly in separable `2. • Outline such as Azagra & Ferrera, and their, or a similar, approach to C∞-smooth approximations (finite dimensions) but I’m not sure what is core. State Deville/Fonf/Hajek; Cepadello/Hajek and Fry approximation results, and Frontisi’s result that convex approximation implies smooth partitions. II. MORE ADVANCED THEMATIC CHAPTERS 3 Essential Smoothness and Essential Strict Convexity in Banach space • Ask Heinz for his latest work here. Two crucial things to accomplish here. Have enough for examples and applications (we may refer forward to Part III). Highlight the niceness/tightness of duality in contrast to the failure of such for smoothness and strict convexity. 4 Dual Topologies in Banach Spaces and Properties of Convex Functions • Write survey paper to get idea for contents of this chapter. This should be our next task after signing off on this outline. 5 Approximation Results and Inverse Problems • The relevant sections in Borwein-Zhu and Borwein-Lewis are a good starting point. See also Boyd’s new book on Convex Programming (it is on the web). III. APPLICATIONS AND EXAMPLES Fields from which examples will be categorized include: 1. Statistics and Design 2. Optimization and Approximation 3. Engineering and Control 4. Economics and Information Theory 5. Classical Analysis 6. Inequalities and Functional Equations 7. Discrete Mathematics and Combinatorics 8. Computer Science and Information Technology 9. Other: Social, Physical, Biological Sciences 2. Euclidean space constructions 1. Geometric characterizations 2. Barrier Functions and Entropies 3. Spectral and Eigenvalue Functions 4. Bregman/Legendre Functions 5. Symbolic and Numeric Convex Analysis 6. Other 3. Banach space constructions 1. Geometric characterizations 2. Barrier Functions and Entropies 3. Integral Functionals 4. Legendre Functions 5. Other.
Recommended publications
  • Math 346 Lecture #3 6.3 the General Fréchet Derivative
    Math 346 Lecture #3 6.3 The General Fr´echet Derivative We now extend the notion of the Fr´echet derivative to the Banach space setting. Throughout let (X; k · kX ) and (Y; k · kY ) be Banach spaces, and U an open set in X. 6.3.1 The Fr´echet Derivative Definition 6.3.1. A function f : U ! Y is Fr´echet differentiable at x 2 U if there exists A 2 B(X; Y ) such that kf(x + h) − f(x) − A(h)k lim Y = 0; h!0 khkX and we write Df(x) = A. We say f is Fr´echet differentiable on U if f is Fr´echet differ- entiable at each x 2 U. We often refer to Fr´echet differentiable simply as differentiable. Note. When f is Fr´echet differentiable at x 2 U, the derivative Df(x) is unique. This follows from Proposition 6.2.10 (uniqueness of the derivative for finite dimensional X and Y ) whose proof carries over without change to the general Banach space setting (see Remark 6.3.9). Remark 6.3.2. The existence of the Fr´echet derivative does not change when the norm on X is replace by a topologically equivalent one and/or the norm on Y is replaced by a topologically equivalent one. Example 6.3.3. Any L 2 B(X; Y ) is Fr´echet differentiable with DL(x)(v) = L(v) for all x 2 X and all v 2 X. The proof of this is exactly the same as that given in Example 6.2.5 for finite-dimensional Banach spaces.
    [Show full text]
  • FROM CLASSICAL MECHANICS to QUANTUM FIELD THEORY, a TUTORIAL Copyright © 2020 by World Scientific Publishing Co
    FROM CLASSICAL MECHANICS TO QUANTUM FIELD THEORY A TUTORIAL 11556_9789811210488_TP.indd 1 29/11/19 2:30 PM This page intentionally left blank FROM CLASSICAL MECHANICS TO QUANTUM FIELD THEORY A TUTORIAL Manuel Asorey Universidad de Zaragoza, Spain Elisa Ercolessi University of Bologna & INFN-Sezione di Bologna, Italy Valter Moretti University of Trento & INFN-TIFPA, Italy World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO 11556_9789811210488_TP.indd 2 29/11/19 2:30 PM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FROM CLASSICAL MECHANICS TO QUANTUM FIELD THEORY, A TUTORIAL Copyright © 2020 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-121-048-8 For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/11556#t=suppl Desk Editor: Nur Syarfeena Binte Mohd Fauzi Typeset by Stallion Press Email: [email protected] Printed in Singapore Syarfeena - 11556 - From Classical Mechanics.indd 1 02-12-19 3:03:23 PM January 3, 2020 9:10 From Classical Mechanics to Quantum Field Theory 9in x 6in b3742-main page v Preface This book grew out of the mini courses delivered at the Fall Workshop on Geometry and Physics, in Granada, Zaragoza and Madrid.
    [Show full text]
  • Differentiability Problems in Banach Spaces
    Derivatives Differentiability problems in Banach spaces For vector valued functions there are two main version of derivatives: Gâteaux (or weak) derivatives and Fréchet (or strong) derivatives. For a function f from a Banach space X 1 David Preiss into a Banach space Y the Gâteaux derivative at a point x0 2 X is by definition a bounded linear operator T : X −! Y so that Expanded notes of a talk based on a nearly finished research monograph “Fréchet differentiability of Lipschitz functions and porous sets in Banach for every u 2 X, spaces” f (x + tu) − f (x ) written jointly with lim 0 0 = Tu t!0 t Joram Lindenstrauss2 and Jaroslav Tišer3 The operator T is called the Fréchet derivative of f at x if it is a with some results coming from a joint work with 0 4 5 Gâteaux derivative of f at x0 and the limit above holds uniformly Giovanni Alberti and Marianna Csörnyei in u in the unit ball (or unit sphere) in X. So T is the Fréchet derivative of f at x0 if 1Warwick 2Jerusalem 3Prague 4Pisa 5London f (x0 + u) = f (x0) + Tu + o(kuk) as kuk ! 0: 1 / 24 2 / 24 Existence of derivatives Sharpness of Lebesgue’s result The first continuous nowhere differentiable f : R ! R was constructed by Bolzano about 1820 (unpublished), who Lebesgue’s result is sharp in the sense that for every A ⊂ of however did not give a full proof. Around 1850, Riemann R measure zero there is a Lipschitz (and monotone) function mentioned such an example, which was later found slightly f : ! which fails to have a derivative at any point of A.
    [Show full text]
  • Value Functions and Optimality Conditions for Nonconvex
    Value Functions and Optimality Conditions for Nonconvex Variational Problems with an Infinite Horizon in Banach Spaces∗ H´el`ene Frankowska† CNRS Institut de Math´ematiques de Jussieu – Paris Rive Gauche Sorbonne Universit´e, Campus Pierre et Marie Curie Case 247, 4 Place Jussieu, 75252 Paris, France e-mail: [email protected] Nobusumi Sagara‡ Department of Economics, Hosei University 4342, Aihara, Machida, Tokyo, 194–0298, Japan e-mail: [email protected] February 11, 2020 arXiv:1801.00400v3 [math.OC] 10 Feb 2020 ∗The authors are grateful to the two anonymous referees for their helpful comments and suggestions on the earlier version of this manuscript. †The research of this author was supported by the Air Force Office of Scientific Re- search, USA under award number FA9550-18-1-0254. It also partially benefited from the FJMH Program PGMO and from the support to this program from EDF-THALES- ORANGE-CRITEO under grant PGMO 2018-0047H. ‡The research of this author benefited from the support of JSPS KAKENHI Grant Number JP18K01518 from the Ministry of Education, Culture, Sports, Science and Tech- nology, Japan. Abstract We investigate the value function of an infinite horizon variational problem in the infinite-dimensional setting. Firstly, we provide an upper estimate of its Dini–Hadamard subdifferential in terms of the Clarke subdifferential of the Lipschitz continuous integrand and the Clarke normal cone to the graph of the set-valued mapping describing dynamics. Secondly, we derive a necessary condition for optimality in the form of an adjoint inclusion that grasps a connection between the Euler–Lagrange condition and the maximum principle.
    [Show full text]
  • On Fréchet Differentiability of Lipschitz Maps
    Annals of Mathematics, 157 (2003), 257–288 On Fr´echet differentiability of Lipschitz maps between Banach spaces By Joram Lindenstrauss and David Preiss Abstract Awell-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point ofFr´echet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is known to be affirmative in full generality). Our aims are achieved by introducing a new class of null sets in Banach spaces (called Γ-null sets), whose definition involves both the notions of category and mea- sure, and showing that the required differentiability holds almost everywhere with respect to it. We even obtain existence of Fr´echet derivatives of Lipschitz functions between certain infinite-dimensional Banach spaces; no such results have been known previously. Our main result states that a Lipschitz map between separable Banach spaces is Fr´echet differentiable Γ-almost everywhere provided that it is reg- ularly Gˆateaux differentiable Γ-almost everywhere and the Gˆateaux deriva- tives stay within a norm separable space of operators. It is easy to see that Lipschitz maps of X to spaces with the Radon-Nikod´ym property are Gˆateaux differentiable Γ-almost everywhere. Moreover, Gˆateaux differentiability im- plies regular Gˆateaux differentiability with exception of another kind of neg- ligible sets, so-called σ-porous sets. The answer to the question is therefore positive in every space in which every σ-porous set is Γ-null.
    [Show full text]
  • Gateaux Differentiability Revisited Malek Abbasi, Alexander Kruger, Michel Théra
    Gateaux differentiability revisited Malek Abbasi, Alexander Kruger, Michel Théra To cite this version: Malek Abbasi, Alexander Kruger, Michel Théra. Gateaux differentiability revisited. 2020. hal- 02963967 HAL Id: hal-02963967 https://hal.archives-ouvertes.fr/hal-02963967 Preprint submitted on 12 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) Gateaux differentiability revisited Malek Abbasi · Alexander Y. Kruger · Michel Thera´ Received: date / Accepted: date Abstract We revisit some basic concepts and ideas of the classical differential calculus and convex analysis extending them to a broader frame. We reformulate and generalize the notion of Gateaux differentiability and propose new notions of generalized derivative and general- ized subdifferential in an arbitrary topological vector space. Meaningful examples preserving the key properties of the original notion of derivative are provided. Keywords Gateaux differentiability · Moreau–Rockafellar subdifferential · Convex function · Directional derivative. Mathematics Subject Classification (2000) 49J52 · 49J53 · 90C30 1 Introduction Gateaux derivatives are widely used in the calculus of variations, optimization and physics. According to Laurent Mazliak [7,8], Gateaux differentiability first appeared in Gateaux’s notes [3,4] under the name variation premiere` .
    [Show full text]
  • ECE 821 Optimal Control and Variational Methods Lecture Notes
    ECE 821 Optimal Control and Variational Methods Lecture Notes Prof. Dan Cobb Contents 1 Introduction 3 2 Finite-Dimensional Optimization 5 2.1 Background ........................................ 5 2.1.1 EuclideanSpaces ................................. 5 2.1.2 Norms....................................... 6 2.1.3 MatrixNorms................................... 8 2.2 Unconstrained Optimization in Rn ........................... 9 2.2.1 Extrema...................................... 9 2.2.2 Jacobians ..................................... 9 2.2.3 CriticalPoints................................... 10 2.2.4 Hessians...................................... 11 2.2.5 Definite Matrices . 11 2.2.6 Continuity and Continuous Differentiability . 14 2.2.7 Second Derivative Conditions . 15 2.3 Constrained Optimization in Rn ............................. 16 2.3.1 Constrained Extrema . 16 2.3.2 OpenSets..................................... 17 2.3.3 Strict Inequality Constraints . 18 2.3.4 Equality Constraints and Lagrange Multipliers . 19 2.3.5 Second Derivative Conditions . 21 2.3.6 Non-Strict Inequality Constraints . 23 2.3.7 Mixed Constraints . 27 3 Calculus of Variations 27 3.1 Background ........................................ 27 3.1.1 VectorSpaces ................................... 27 3.1.2 Norms....................................... 28 3.1.3 Functionals .................................... 30 3.2 Unconstrained Optimization in X ............................ 32 3.2.1 Extrema...................................... 32 3.2.2 Differentiation of Functionals .
    [Show full text]
  • An Inverse Function Theorem Converse
    AN INVERSE FUNCTION THEOREM CONVERSE JIMMIE LAWSON Abstract. We establish the following converse of the well-known inverse function theorem. Let g : U → V and f : V → U be inverse homeomorphisms between open subsets of Banach spaces. If g is differentiable of class Cp and f if locally Lipschitz, then the Fr´echet derivative of g at each point of U is invertible and f must be differentiable of class Cp. Primary 58C20; Secondary 46B07, 46T20, 46G05, 58C25 Key words and phrases. Inverse function theorem, Lipschitz map, Banach space, chain rule 1. Introduction A general form of the well-known inverse function theorem asserts that if g is a differentiable function of class Cp, p ≥ 1, between two open subsets of Banach spaces and if the Fr´echet derivative of g at some point x is invertible, then locally around x, there exists a differentiable inverse map f of g that is also of class Cp. But in various settings, one may have the inverse function f readily at hand and want to know about the invertibility of the Fr´echet derivative of g at x and whether f is of class Cp. Our purpose in this paper is to present a relatively elementary proof of this arXiv:1812.03561v1 [math.FA] 9 Dec 2018 converse result under the general hypothesis that the inverse f is (locally) Lipschitz. Simple examples like g(x)= x3 at x = 0 on the real line show that the assumption of continuity alone is not enough. Thus it is a bit surprising that the mild strengthening to the assumption that the inverse is locally Lipschitz suffices.
    [Show full text]
  • A Generalization of the Implicit Function Theorem
    Applied Mathematical Sciences, Vol. 4, 2010, no. 26, 1289 - 1298 A Generalization of the Implicit Function Theorem Elvio Accinelli Facultad de Economia de la UASLP Av. Pintores S/N, Fraccionamiento Burocratas del Estado CP 78263 San Luis Potosi, SLP Mexico [email protected] Abstract In this work, we generalize the classical theorem of the implicit func- tion, for functions whose domains are open subset of Banach spaces in to a Banach space, to the case of functions whose domains are convex subset, not necessarily open, of Banach spaces in to a Banach space. We apply this theorem to show that the excess utility function of an economy with infinitely many commodities, is a differentiable mapping. Keywords: Implicit Function Theorem, convex subsets, Banach spaces 1 Introduction The purpose of this work is to show that the implicit function theorem can be generalized to the case of functions whose domains are defined as a cartesian product of two convex subsets S, and W not necessarily open, of a cartesian product X × Y of Banach spaces, in to a Banach space Z. To prove our main theorem we introduce the concept of Gateaux derivative. However, it is enough the existence of the Gateaux derivatives of a given function, only in admissible directions. Let S ⊂ X be a subset of a Banach space X, and x ∈ S. So, we will say that the vector h ∈ X is admissible for x ∈ S if and only if x + h ∈ S. In order to define the Gateaux derivative of a function in admissible directions in a point x, the only necessary condition is the convexity of the domain of the function.
    [Show full text]
  • DIFFERENTIABILITY PROPERTIES of UTILITY FUNCTIONS Freddy
    DIFFERENTIABILITY PROPERTIES OF UTILITY FUNCTIONS Freddy Delbaen Department of Mathematics, ETH Z¨urich Abstract. We investigate differentiability properties of monetary utility functions. At the same time we give a counter-example – important in finance – to automatic continuity for concave functions. Notation and Preliminaries We use standard notation. The triple (Ω, F, P) denotes an atomless probability space. In practice this is not a restriction since the property of being atomless is equivalent to the fact that on (Ω, F, P), we can define a random variable that has a continuous distribution function. We use the usual – unacceptable – convention to identify a random variable with its class (defined by a.s. equality). By Lp we denote the standard spaces, i.e. for 0 <p<∞, X ∈ Lp if and only if E[|X|p] < ∞. L0 stands for the space of all random variables and L∞ is the space of bounded random variables. The topological dual of L∞ is denoted by ba, the space of bounded finitely additive measures µ defined on F with the property that P[A]=0 implies µ(A)=0. The subset of normalised non-negative finitely additive measures – the so called finitely additive probability measures – is denoted by Pba. The subset of countably additive elements of Pba (a subset of L1)isdenoted by P. Definition. A function u: L∞ → R is called a monetary utility function if (1) ξ ∈ L∞ and ξ ≥ 0 implies u(ξ) ≥ 0, (2) u is concave, (3) for a ∈ R and ξ ∈ L∞ we have u(ξ + a)=u(ξ)+a. If u moreover satisfies u(λξ)=λu(ξ) for λ ≥ 0 (positive homogeniety), we say that u is coherent.
    [Show full text]
  • Computation of a Bouligand Generalized Derivative for the Solution Operator of the Obstacle Problem∗
    COMPUTATION OF A BOULIGAND GENERALIZED DERIVATIVE FOR THE SOLUTION OPERATOR OF THE OBSTACLE PROBLEM∗ ANNE-THERESE RAULSy AND STEFAN ULBRICHy Abstract. The non-differentiability of the solution operator of the obstacle problem is the main challenge in tackling optimization problems with an obstacle problem as a constraint. Therefore, the structure of the Bouligand generalized differential of this operator is interesting from a theoretical and from a numerical point of view. The goal of this article is to characterize and compute a specific element of the Bouligand generalized differential for a wide class of obstacle problems. We allow right-hand sides that can be relatively sparse in H−1(Ω) and do not need to be distributed among all of H−1(Ω). Under assumptions on the involved order structures, we investigate the relevant set-valued maps and characterize the limit of a sequence of G^ateauxderivatives. With the help of generalizations of Rademacher's theorem, this limit is shown to be in the considered Bouligand generalized differential. The resulting generalized derivative is the solution operator of a Dirichlet problem on a quasi-open domain. Key words. optimal control, non-smooth optimization, Bouligand generalized differential, gen- eralized derivatives, obstacle problem, variational inequalities, Mosco convergence AMS subject classifications. 49J40, 35J86, 47H04, 49J52, 58C06, 58E35 1. Introduction. This article is concerned with the derivation of a generalized gradient for the reduced objective associated with the optimal control of an obstacle problem min J (y; u) y;u subject to y 2 K ; (1.1) hLy − f(u); z − yi −1 1 ≥ 0 for all z 2 K : H (Ω);H0 (Ω) d 1 Here, Ω ⊂ R is open and bounded, J : H0 (Ω)×U ! R is a continuously differentiable 1 −1 objective function and L 2 L H0 (Ω);H (Ω) is a coercive and strictly T-monotone operator.
    [Show full text]
  • Arxiv:1802.07633V1 [Math.FA]
    GATEAUX-DIFFERENTIABILITYˆ OF CONVEX FUNCTIONS IN INFINITE DIMENSION. MOHAMMED BACHIR AND ADRIEN FABRE Abstract. It is well known that in Rn, Gˆateaux (hence Fr´echet) differ- entiability of a convex continuous function at some point is equivalent to the existence of the partial derivatives at this point. We prove that this result extends naturally to certain infinite dimensional vector spaces, in particular to Banach spaces having a Schauder basis. 1. Introduction Recall that if E is a topological vector space and E∗ its topological dual, the subdifferential of a function f : E −→ R at some point x∗ ∈ E is the following subset of E∗: ∂f(x∗) := {p ∈ E∗ : hp, x − x∗i≤ f(x) − f(x∗); ∀x ∈ E}. Let U be an open subset of E and f : E −→ R a function. We say that f is differentiable at x∗ ∈ U in the direction of h ∈ E if the following limit exists 1 f ′(x∗; h) := lim f(x∗ + th) − f(x∗) . t→0 t6=0 t We say that f is Gˆateaux-differentiable at x∗ ∈ U, if there exists F ∈ E∗ (called the Gˆateaux-derivative of f at x∗ and generally denoted by df(x∗)) such that f ′(x∗; h)= F (h), for all h ∈ E. It is well known that if E is a Hausdorff locally convex topological vector space and f is a convex continuous function then, f is Gˆateaux-differentiable at x∗ ∈ E if and only if, ∂f(x∗) is a singleton (see [3, Corollary 10.g, p. 66]). arXiv:1802.07633v1 [math.FA] 21 Feb 2018 In this case ∂f(x∗) = {df(x∗)}, where df(x∗) is the Gˆateaux-derivative of f at x∗.
    [Show full text]