C0-Semigroup, 114, 163 L1 Norm, 4 L∞ Norm, 5 Lp Spaces, 351 Local
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contact Lax Pairs and Associated (3+ 1)-Dimensional Integrable Dispersionless Systems
Contact Lax pairs and associated (3+1)-dimensional integrable dispersionless systems Maciej B laszak a and Artur Sergyeyev b a Faculty of Physics, Division of Mathematical Physics, A. Mickiewicz University Umultowska 85, 61-614 Pozna´n, Poland E-mail [email protected] b Mathematical Institute, Silesian University in Opava, Na Rybn´ıˇcku 1, 74601 Opava, Czech Republic E-mail [email protected] January 17, 2019 Abstract We review the recent approach to the construction of (3+1)-dimensional integrable dispersionless partial differential systems based on their contact Lax pairs and the related R-matrix theory for the Lie algebra of functions with respect to the contact bracket. We discuss various kinds of Lax representations for such systems, in particular, linear nonisospectral contact Lax pairs and nonlinear contact Lax pairs as well as the relations among the two. Finally, we present a large number of examples with finite and infinite number of dependent variables, as well as the reductions of these examples to lower-dimensional integrable dispersionless systems. 1 Introduction Integrable systems play an important role in modern mathematics and theoretical and mathematical arXiv:1901.05181v1 [nlin.SI] 16 Jan 2019 physics, cf. e.g. [15, 34], and, since according to general relativity our spacetime is four-dimensional, integrable systems in four independent variables ((3+1)D for short; likewise (n+1)D is shorthand for n + 1 independent variables) are particularly interesting. For a long time it appeared that such systems were very difficult to find but in a recent paper by one of us [39] a novel systematic and effective construction for a large new class of integrable (3+1)D systems was introduced. -
Math 346 Lecture #3 6.3 the General Fréchet Derivative
Math 346 Lecture #3 6.3 The General Fr´echet Derivative We now extend the notion of the Fr´echet derivative to the Banach space setting. Throughout let (X; k · kX ) and (Y; k · kY ) be Banach spaces, and U an open set in X. 6.3.1 The Fr´echet Derivative Definition 6.3.1. A function f : U ! Y is Fr´echet differentiable at x 2 U if there exists A 2 B(X; Y ) such that kf(x + h) − f(x) − A(h)k lim Y = 0; h!0 khkX and we write Df(x) = A. We say f is Fr´echet differentiable on U if f is Fr´echet differ- entiable at each x 2 U. We often refer to Fr´echet differentiable simply as differentiable. Note. When f is Fr´echet differentiable at x 2 U, the derivative Df(x) is unique. This follows from Proposition 6.2.10 (uniqueness of the derivative for finite dimensional X and Y ) whose proof carries over without change to the general Banach space setting (see Remark 6.3.9). Remark 6.3.2. The existence of the Fr´echet derivative does not change when the norm on X is replace by a topologically equivalent one and/or the norm on Y is replaced by a topologically equivalent one. Example 6.3.3. Any L 2 B(X; Y ) is Fr´echet differentiable with DL(x)(v) = L(v) for all x 2 X and all v 2 X. The proof of this is exactly the same as that given in Example 6.2.5 for finite-dimensional Banach spaces. -
Arxiv:2012.03456V1 [Nlin.SI] 7 Dec 2020 Emphasis on the Kdv Equation
Integrable systems: From the inverse spectral transform to zero curvature condition Basir Ahamed Khan,1, ∗ Supriya Chatterjee,2 Sekh Golam Ali,3 and Benoy Talukdar4 1Department of Physics, Krishnath College, Berhampore, Murshidabad 742101, India 2Department of Physics, Bidhannagar College, EB-2, Sector-1, Salt Lake, Kolkata 700064, India 3Department of Physics, Kazi Nazrul University, Asansol 713303, India 4Department of Physics, Visva-Bharati University, Santiniketan 731235, India This `research-survey' is meant for beginners in the studies of integrable systems. Here we outline some analytical methods for dealing with a class of nonlinear partial differential equations. We pay special attention to `inverse spectral transform', `Lax pair representation', and `zero-curvature condition' as applied to these equations. We provide a number of interesting exmples to gain some physico-mathematical feeling for the methods presented. PACS numbers: Keywords: Nonlinear Partial Differential Equations, Integrable Systems, Inverse Spectral Method, Lax Pairs, Zero Curvature Condition 1. Introduction Integrable systems are represented by nonlinear partial differential equations (NLPDEs) which, in principle, can be solved by analytic methods. This necessarily implies that the solution of such equations can be constructed using a finite number of algebraic operations and integrations. The inverse scattering method as discovered by Gardner, Greene, Kruskal and Miura [1] represents a very useful tool to analytically solve a class of nonlinear differential equa- tions which support soliton solutions. Solitons are localized waves that propagate without change in their properties (shape, velocity etc.). These waves are stable against mutual collision and retain their identities except for some trivial phase change. Mechanistically, the linear and nonlinear terms in NLPDEs have opposite effects on the wave propagation. -
The Idea of a Lax Pair–Part II∗ Continuum Wave Equations
GENERAL ARTICLE The Idea of a Lax Pair–Part II∗ Continuum Wave Equations Govind S. Krishnaswami and T R Vishnu In Part I [1], we introduced the idea of a Lax pair and ex- plained how it could be used to obtain conserved quantities for systems of particles. Here, we extend these ideas to con- tinuum mechanical systems of fields such as the linear wave equation for vibrations of a stretched string and the Korteweg- de Vries (KdV) equation for water waves. Unlike the Lax ma- trices for systems of particles, here Lax pairs are differential operators. A key idea is to view the Lax equation as a com- Govind Krishnaswami is on the faculty of the Chennai patibility condition between a pair of linear equations. This is Mathematical Institute. He used to obtain a geometric reformulation of the Lax equation works on various problems in as the condition for a certain curvature to vanish. This ‘zero theoretical and mathematical curvature representation’ then leads to a recipe for finding physics. (typically an infinite sequence of) conserved quantities. 1. Introduction In the first part of this article [1], we introduced the idea of a dy- namical system: one whose variables evolve in time, typically via T R Vishnu is a PhD student at the Chennai Mathematical differential equations. It was pointed out that conserved quanti- Institute. He has been ties, which are dynamical variables that are constant along trajec- working on integrable tories help in simplifying the dynamics and solving the equations systems. of motion (EOM) both in the classical and quantum settings. -
FROM CLASSICAL MECHANICS to QUANTUM FIELD THEORY, a TUTORIAL Copyright © 2020 by World Scientific Publishing Co
FROM CLASSICAL MECHANICS TO QUANTUM FIELD THEORY A TUTORIAL 11556_9789811210488_TP.indd 1 29/11/19 2:30 PM This page intentionally left blank FROM CLASSICAL MECHANICS TO QUANTUM FIELD THEORY A TUTORIAL Manuel Asorey Universidad de Zaragoza, Spain Elisa Ercolessi University of Bologna & INFN-Sezione di Bologna, Italy Valter Moretti University of Trento & INFN-TIFPA, Italy World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO 11556_9789811210488_TP.indd 2 29/11/19 2:30 PM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FROM CLASSICAL MECHANICS TO QUANTUM FIELD THEORY, A TUTORIAL Copyright © 2020 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-121-048-8 For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/11556#t=suppl Desk Editor: Nur Syarfeena Binte Mohd Fauzi Typeset by Stallion Press Email: [email protected] Printed in Singapore Syarfeena - 11556 - From Classical Mechanics.indd 1 02-12-19 3:03:23 PM January 3, 2020 9:10 From Classical Mechanics to Quantum Field Theory 9in x 6in b3742-main page v Preface This book grew out of the mini courses delivered at the Fall Workshop on Geometry and Physics, in Granada, Zaragoza and Madrid. -
Differentiability Problems in Banach Spaces
Derivatives Differentiability problems in Banach spaces For vector valued functions there are two main version of derivatives: Gâteaux (or weak) derivatives and Fréchet (or strong) derivatives. For a function f from a Banach space X 1 David Preiss into a Banach space Y the Gâteaux derivative at a point x0 2 X is by definition a bounded linear operator T : X −! Y so that Expanded notes of a talk based on a nearly finished research monograph “Fréchet differentiability of Lipschitz functions and porous sets in Banach for every u 2 X, spaces” f (x + tu) − f (x ) written jointly with lim 0 0 = Tu t!0 t Joram Lindenstrauss2 and Jaroslav Tišer3 The operator T is called the Fréchet derivative of f at x if it is a with some results coming from a joint work with 0 4 5 Gâteaux derivative of f at x0 and the limit above holds uniformly Giovanni Alberti and Marianna Csörnyei in u in the unit ball (or unit sphere) in X. So T is the Fréchet derivative of f at x0 if 1Warwick 2Jerusalem 3Prague 4Pisa 5London f (x0 + u) = f (x0) + Tu + o(kuk) as kuk ! 0: 1 / 24 2 / 24 Existence of derivatives Sharpness of Lebesgue’s result The first continuous nowhere differentiable f : R ! R was constructed by Bolzano about 1820 (unpublished), who Lebesgue’s result is sharp in the sense that for every A ⊂ of however did not give a full proof. Around 1850, Riemann R measure zero there is a Lipschitz (and monotone) function mentioned such an example, which was later found slightly f : ! which fails to have a derivative at any point of A. -
Value Functions and Optimality Conditions for Nonconvex
Value Functions and Optimality Conditions for Nonconvex Variational Problems with an Infinite Horizon in Banach Spaces∗ H´el`ene Frankowska† CNRS Institut de Math´ematiques de Jussieu – Paris Rive Gauche Sorbonne Universit´e, Campus Pierre et Marie Curie Case 247, 4 Place Jussieu, 75252 Paris, France e-mail: [email protected] Nobusumi Sagara‡ Department of Economics, Hosei University 4342, Aihara, Machida, Tokyo, 194–0298, Japan e-mail: [email protected] February 11, 2020 arXiv:1801.00400v3 [math.OC] 10 Feb 2020 ∗The authors are grateful to the two anonymous referees for their helpful comments and suggestions on the earlier version of this manuscript. †The research of this author was supported by the Air Force Office of Scientific Re- search, USA under award number FA9550-18-1-0254. It also partially benefited from the FJMH Program PGMO and from the support to this program from EDF-THALES- ORANGE-CRITEO under grant PGMO 2018-0047H. ‡The research of this author benefited from the support of JSPS KAKENHI Grant Number JP18K01518 from the Ministry of Education, Culture, Sports, Science and Tech- nology, Japan. Abstract We investigate the value function of an infinite horizon variational problem in the infinite-dimensional setting. Firstly, we provide an upper estimate of its Dini–Hadamard subdifferential in terms of the Clarke subdifferential of the Lipschitz continuous integrand and the Clarke normal cone to the graph of the set-valued mapping describing dynamics. Secondly, we derive a necessary condition for optimality in the form of an adjoint inclusion that grasps a connection between the Euler–Lagrange condition and the maximum principle. -
On Fréchet Differentiability of Lipschitz Maps
Annals of Mathematics, 157 (2003), 257–288 On Fr´echet differentiability of Lipschitz maps between Banach spaces By Joram Lindenstrauss and David Preiss Abstract Awell-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point ofFr´echet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is known to be affirmative in full generality). Our aims are achieved by introducing a new class of null sets in Banach spaces (called Γ-null sets), whose definition involves both the notions of category and mea- sure, and showing that the required differentiability holds almost everywhere with respect to it. We even obtain existence of Fr´echet derivatives of Lipschitz functions between certain infinite-dimensional Banach spaces; no such results have been known previously. Our main result states that a Lipschitz map between separable Banach spaces is Fr´echet differentiable Γ-almost everywhere provided that it is reg- ularly Gˆateaux differentiable Γ-almost everywhere and the Gˆateaux deriva- tives stay within a norm separable space of operators. It is easy to see that Lipschitz maps of X to spaces with the Radon-Nikod´ym property are Gˆateaux differentiable Γ-almost everywhere. Moreover, Gˆateaux differentiability im- plies regular Gˆateaux differentiability with exception of another kind of neg- ligible sets, so-called σ-porous sets. The answer to the question is therefore positive in every space in which every σ-porous set is Γ-null. -
Gateaux Differentiability Revisited Malek Abbasi, Alexander Kruger, Michel Théra
Gateaux differentiability revisited Malek Abbasi, Alexander Kruger, Michel Théra To cite this version: Malek Abbasi, Alexander Kruger, Michel Théra. Gateaux differentiability revisited. 2020. hal- 02963967 HAL Id: hal-02963967 https://hal.archives-ouvertes.fr/hal-02963967 Preprint submitted on 12 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) Gateaux differentiability revisited Malek Abbasi · Alexander Y. Kruger · Michel Thera´ Received: date / Accepted: date Abstract We revisit some basic concepts and ideas of the classical differential calculus and convex analysis extending them to a broader frame. We reformulate and generalize the notion of Gateaux differentiability and propose new notions of generalized derivative and general- ized subdifferential in an arbitrary topological vector space. Meaningful examples preserving the key properties of the original notion of derivative are provided. Keywords Gateaux differentiability · Moreau–Rockafellar subdifferential · Convex function · Directional derivative. Mathematics Subject Classification (2000) 49J52 · 49J53 · 90C30 1 Introduction Gateaux derivatives are widely used in the calculus of variations, optimization and physics. According to Laurent Mazliak [7,8], Gateaux differentiability first appeared in Gateaux’s notes [3,4] under the name variation premiere` . -
ECE 821 Optimal Control and Variational Methods Lecture Notes
ECE 821 Optimal Control and Variational Methods Lecture Notes Prof. Dan Cobb Contents 1 Introduction 3 2 Finite-Dimensional Optimization 5 2.1 Background ........................................ 5 2.1.1 EuclideanSpaces ................................. 5 2.1.2 Norms....................................... 6 2.1.3 MatrixNorms................................... 8 2.2 Unconstrained Optimization in Rn ........................... 9 2.2.1 Extrema...................................... 9 2.2.2 Jacobians ..................................... 9 2.2.3 CriticalPoints................................... 10 2.2.4 Hessians...................................... 11 2.2.5 Definite Matrices . 11 2.2.6 Continuity and Continuous Differentiability . 14 2.2.7 Second Derivative Conditions . 15 2.3 Constrained Optimization in Rn ............................. 16 2.3.1 Constrained Extrema . 16 2.3.2 OpenSets..................................... 17 2.3.3 Strict Inequality Constraints . 18 2.3.4 Equality Constraints and Lagrange Multipliers . 19 2.3.5 Second Derivative Conditions . 21 2.3.6 Non-Strict Inequality Constraints . 23 2.3.7 Mixed Constraints . 27 3 Calculus of Variations 27 3.1 Background ........................................ 27 3.1.1 VectorSpaces ................................... 27 3.1.2 Norms....................................... 28 3.1.3 Functionals .................................... 30 3.2 Unconstrained Optimization in X ............................ 32 3.2.1 Extrema...................................... 32 3.2.2 Differentiation of Functionals . -
An Inverse Function Theorem Converse
AN INVERSE FUNCTION THEOREM CONVERSE JIMMIE LAWSON Abstract. We establish the following converse of the well-known inverse function theorem. Let g : U → V and f : V → U be inverse homeomorphisms between open subsets of Banach spaces. If g is differentiable of class Cp and f if locally Lipschitz, then the Fr´echet derivative of g at each point of U is invertible and f must be differentiable of class Cp. Primary 58C20; Secondary 46B07, 46T20, 46G05, 58C25 Key words and phrases. Inverse function theorem, Lipschitz map, Banach space, chain rule 1. Introduction A general form of the well-known inverse function theorem asserts that if g is a differentiable function of class Cp, p ≥ 1, between two open subsets of Banach spaces and if the Fr´echet derivative of g at some point x is invertible, then locally around x, there exists a differentiable inverse map f of g that is also of class Cp. But in various settings, one may have the inverse function f readily at hand and want to know about the invertibility of the Fr´echet derivative of g at x and whether f is of class Cp. Our purpose in this paper is to present a relatively elementary proof of this arXiv:1812.03561v1 [math.FA] 9 Dec 2018 converse result under the general hypothesis that the inverse f is (locally) Lipschitz. Simple examples like g(x)= x3 at x = 0 on the real line show that the assumption of continuity alone is not enough. Thus it is a bit surprising that the mild strengthening to the assumption that the inverse is locally Lipschitz suffices. -
A Generalization of the Implicit Function Theorem
Applied Mathematical Sciences, Vol. 4, 2010, no. 26, 1289 - 1298 A Generalization of the Implicit Function Theorem Elvio Accinelli Facultad de Economia de la UASLP Av. Pintores S/N, Fraccionamiento Burocratas del Estado CP 78263 San Luis Potosi, SLP Mexico [email protected] Abstract In this work, we generalize the classical theorem of the implicit func- tion, for functions whose domains are open subset of Banach spaces in to a Banach space, to the case of functions whose domains are convex subset, not necessarily open, of Banach spaces in to a Banach space. We apply this theorem to show that the excess utility function of an economy with infinitely many commodities, is a differentiable mapping. Keywords: Implicit Function Theorem, convex subsets, Banach spaces 1 Introduction The purpose of this work is to show that the implicit function theorem can be generalized to the case of functions whose domains are defined as a cartesian product of two convex subsets S, and W not necessarily open, of a cartesian product X × Y of Banach spaces, in to a Banach space Z. To prove our main theorem we introduce the concept of Gateaux derivative. However, it is enough the existence of the Gateaux derivatives of a given function, only in admissible directions. Let S ⊂ X be a subset of a Banach space X, and x ∈ S. So, we will say that the vector h ∈ X is admissible for x ∈ S if and only if x + h ∈ S. In order to define the Gateaux derivative of a function in admissible directions in a point x, the only necessary condition is the convexity of the domain of the function.