Tucson Arundo Removal Project

Total Page:16

File Type:pdf, Size:1020Kb

Tucson Arundo Removal Project Tucson Arundo Removal Project Jim Washburne, SAHRA/AZrivers & Candice Rupprecht, Master Watershed Stewards Washburne/Rupprecht Arundo Removal Project Tucson Arundo Removal Mission: • To coordinate and facilitate the removal of Arundo donax in the Tucson area Goals: • Supervise removal activities • Educate the public about this threat • Protect the Sabino Creek riparian system • Encourage public participation Washburne/Rupprecht Arundo Removal Project Arundo donax L Giant Cane, Elephant Grass, Spanish Cane, Carrizo Cane • Monocot, Poaceae • Stalk and leaves resemble corn and is sometimes confused with Bamboo • Rapidly grows to 20 feet (3-4 in/day) The danger: • Giant reed can completely overwhelm native ChrisJames Evans, H. Miller, River USDA to River vegetation, which reduces wildlife habitat , increases fire risks and interferes with flood Washburne/Rupprecht control Arundo Removal Project Arundo donax L Washburne/Rupprecht Arundo Removal Project USDA – NRCS Characteristics • Moisture Use High => Precipitation, 35-65 in • Drought Tolerance Low • Temperature, Minimum (°F) 7 • Frost Free Days, Minimum 220 • Fire Tolerance High • Salinity Tolerance None • AbiTlMdiAnaerobic Tolerance Medium •CaCO3 Tolerance Low • Planting Density per Acre, Maximum 7200 • Shade Tolerance Intermediate • Root Depth, Minimum (inches) 24 • Cold Stratification Required No plants.usda.gov/java/charProfile?symbol=ARDO4 Washburne/Rupprecht Water Use Fast growing Î thirsty Plant Water use Ratio [af/ac/yr] Arundo / Plant Aru ndo donax1 20 1 Tamarisk2 4-6 ~4 Alfalfa 5 ~4 Cottonwood3 ~2 ~10 Mesquite4 1-4 5-20 Washburne/Rupprecht Arundo Removal Project Invasive & Noxious Introduced/Exotic • non-native species (most) Invasive & Noxious Weeds • A non-indigenous species that adversely affect the habitats they invade economically, environmentally or ecologically Characteristics • Hardy, drought tolerant, rapidly re-colonize disturbed areas, spreads readily, out competes native plants Washburne/Rupprecht Arundo Removal Project Other Local Invasive Grasses Buffelgrass – Pennisetum ciliare Fountain grass – Pennisetum setaceum Washburne/Rupprecht Cheatgrass – Bromus tectorum Arundo Removal Project RANGE AND USES Washburne/Rupprecht Arundo Removal Project Historical Range • Mediterranean – Coastal areas • Tigris & Euphrates – Marsh lands • India – Himalayan foothills plantsforuse.com Washburne/Rupprecht Arundo Removal Project Current Range Discover Life: pick4.pick.uga.edu/ Washburne/Rupprecht Arundo Removal Project Historical uses • Erosion control • Reed instruments • Paper •Basketry • Structures – wind/sun • Fishing rods • Arrow shafts • Ornamental Marsh Arab hut iraqupdate.wordpress.com/2007/07/31/ Ref: plantsforuse.com Washburne/Rupprecht Arundo Removal Project Uses: Musical Instruments "Canne de Provence“ • marshlands of Villepey , on the St Tropez peninsula, near Hyères. www.azuralive.com/by_hyeres/ Washburne/Rupprecht Arundo Removal Project Uses: Bio fuel www.progress-energy.com/a bou tus /news/ arti cl e.asp?id =14062 Proposed: $7500/ac bond ~$60 Million Washburne/Rupprecht Arundo Removal Project Uses: Medicinal Bufotenine • A poisonous hallucinogenic alkaloid obtained from toads and some plants (answers.com) DMT - Dimethyltyrptamine • … allows you to break into another universe – known as hyperspace – that will be an experience that will change your life … Contact Dermatitis? • Washburne/Rupprecht Arundo Removal Project Southwestern & MX Infestations Rio Grande – Big Bend to Del Rio ~60,000 acres Texas? LClRiLower Colo.River Cuatro Cienegas ~5,000 acres ~275 acres Washburne/Rupprecht Arundo Removal Project California Experience San Joaquin & Sacramento San Luis Rey Each watershed ~10,000 acres Washburne/Rupprecht Arundo Removal Project Tucson Infestations UA area Sabino Canyon Dr & Rillito Rillito River W. Ina & Silverbell Santa Cruz River Washburne/Rupprecht Arundo Removal Project WHY NOW? Washburne/Rupprecht Arundo Removal Project June 2003 Aspen Fire Washburne/Rupprecht Arundo Removal Project July 2006 Debris Flows Washburne/Rupprecht Arundo Removal Project Sabino Creek flow Washburne/Rupprecht Arundo Removal Project Washburne/Rupprecht Arundo Removal Project 2006 2008 Washburne/Rupprecht Arundo Removal Project wwwpaztcn.wr.usgs.gov/rsch_highlight/articles/200611.html Washburne/Rupprecht Arundo Removal Project REMOVAL STRATEGIES Washburne/Rupprecht Arundo Removal Project Mechanical Control Hammer/flail mower $1700/day Washburne/Rupprecht Arundo Removal Project Chemical Control • Rodeo® (54% Glyphosate) – Cut – stump (Oct) (-76%) (-99%) – 100% applied to stem soon after cutting – Cut – spray (Sept) (-82%) (-50%var) – 1.5-2% foliar application – No cut - spray (-33%) – Con tro l (+21%) Washburne/Rupprecht Arundo Removal Project More about Glyphosate • Best applied just after flowering Toxiiicity: • Rana frogs & flathead minnow (Gly) – 96-hr LC50 ~1200 mg/L – Actual values after 1hr ~ 0.1 mg/L • Bluegill sunfi sh & R ai nb ow t rout (R -11) – 96-hr LC50 ~4.0 mg/L – Actual values after 1 hr ~ . 013 mg/L • “poses no significant toxicity hazard to non-target fish and frog species” Teamarundo.org/control_manage/DFG-EPAreport.html Washburne/Rupprecht Arundo Removal Project Biological Control Arundo wasp • TtTetramesa romana litithlays its eggs in the cane stem, where the larva cause galls to form in the stem and kill the cane. Arundo fly • Cryptonevra sp . larva kill new plant shoots. Arundo scale • Rhizaspidiotus donacis feeds on the plant rhizomes. Un-intended consequences?? Washburne/Rupprecht www.homelandsecurity.org/journal/Default.aspx?oid=154&ocat=1Arundo Removal Project Tools of the Trade Washburne/Rupprecht Arundo Removal Project EXPERIENCE IN SABINO CANYON Washburne/Rupprecht Arundo Removal Project Z 5 Z 4 AhAdkAreas where Arundo work was done 2007-2008 Hill Sabino Canyon, AZ Z 3 Dam Bridge Z2Z 2 Bear Bridge Visitor Z 1 Center Washburne/Rupprecht Arundo Removal Project Your mission … Washburne/Rupprecht Arundo Removal Project Before After Washburne/Rupprecht Arundo Removal Project Before After Washburne/Rupprecht Arundo Removal Project Before After During Washburne/Rupprecht Arundo Removal Project Teamwork is required! Washburne/Rupprecht Arundo Removal Project Cut to 10’, bundle, & remove Cache stalks above high water level Washburne/Rupprecht Arundo Removal Project CURRENT STATUS Washburne/Rupprecht Arundo Removal Project Current Activities • Finishing 2008-2009 action plan with USFS • Preparing/Buying field equipment • Spreading the word – groups, press • Training group leaders – again Sunday! • Promoting our first big public days on Sunday Nov. 2 & 9, and following first Sunday each month Washburne/Rupprecht Arundo Removal Project Future Activities • Lookingggp for other groups to work with around town • Assess effectiveness of removal efforts Washburne/Rupprecht Arundo Removal Project Student Research projects •How large a rhizome is viable? • Will a cut stalk regrow? • Does freezing a rhizome for 4 hrs affect its viability? • What percent of seed s germi nat e? • What percent of seeds become juveniles? • How effective is Rodeo? Washburne/Rupprecht Arundo Removal Project Web site:www.sahra.arizona.edu/education2/arundo Web site used to: • Inform public • Coordinate volunteers • Share best practices • Report progress • Provide additional information Washburne/Rupprecht Arundo Removal Project www.sahra.arizona.edu/education2/arundo Washburne/Rupprecht Arundo Removal Project Thank you! Washburne/Rupprecht Arundo Removal Project Approximate locations of Arundo stands Zone 4 Removed Remaining Washburne/Rupprecht Arundo Removal Project Approximate locations of Arundo stands Zone 1 Removed Remaining Washburne/Rupprecht Arundo Removal Project Approximate locations of Arundo stands Zone 2 Removed Remaining Washburne/Rupprecht Arundo Removal Project.
Recommended publications
  • Biomass Basics: the Facts About Bioenergy 1 We Rely on Energy Every Day
    Biomass Basics: The Facts About Bioenergy 1 We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our businesses. Most of our energy comes from burning fossil fuels like petroleum, coal, and natural gas. These fuels provide the energy that we need today, but there are several reasons why we are developing sustainable alternatives. 2 We are running out of fossil fuels Fossil fuels take millions of years to form within the Earth. Once we use up our reserves of fossil fuels, we will be out in the cold - literally - unless we find other fuel sources. Bioenergy, or energy derived from biomass, is a sustainable alternative to fossil fuels because it can be produced from renewable sources, such as plants and waste, that can be continuously replenished. Fossil fuels, such as petroleum, need to be imported from other countries Some fossil fuels are found in the United States but not enough to meet all of our energy needs. In 2014, 27% of the petroleum consumed in the United States was imported from other countries, leaving the nation’s supply of oil vulnerable to global trends. When it is hard to buy enough oil, the price can increase significantly and reduce our supply of gasoline – affecting our national security. Because energy is extremely important to our economy, it is better to produce energy in the United States so that it will always be available when we need it. Use of fossil fuels can be harmful to humans and the environment When fossil fuels are burned, they release carbon dioxide and other gases into the atmosphere.
    [Show full text]
  • Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis
    Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis Caley Johnson, Anelia Milbrandt, Yimin Zhang, Rob Hardison, and Austen Sharpe National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-76011 Operated by the Alliance for Sustainable Energy, LLC May 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis Caley Johnson, Anelia Milbrandt, Yimin Zhang, Rob Hardison, and Austen Sharpe National Renewable Energy Laboratory Suggested Citation Johnson, Caley, Anelia Milbrandt, and Yimin Zhang, Rob Hardison, and Austen Sharpe. 2020. Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-76011. https://www.nrel.gov/docs/fy20osti/76011.pdf NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-76011 Operated by the Alliance for Sustainable Energy, LLC May 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Contract No. DE-AC36-08GO28308 Golden, CO 80401 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the U.S. Department of State.
    [Show full text]
  • Where Does Sugar Come From?
    Where does sugar come from? This is Joe and Jana. They’re here to tell you all about the journey of the jellybean. Sugar, which is the main ingredient in jellybeans, is produced in more than 100 countries around the world. In Australia, sugar is made from a tall tropical grass called sugarcane. Joe grows sugarcane so he knows all about it. What is sugarcane? Where is sugarcane grown? Why is sugarcane important for Australia? Sugarcane is a tall tropical plant In Australia, sugarcane can be seen that is similar to bamboo. To growing along 2,100 kilometers Sugarcane is one of Australia’s most grow successfully, sugarcane of coastline between Mossman in important rural industries, worth needs strong sunlight, fertile far north Queensland and Grafton around $1.5 - $2.5 billion to the soil and lots of water. It needs in northern New South Wales. Australian economy. Approximately 70% of the world’s sugar is produced at least 1.5 m of rainfall each Sugarcane growers manage from sugarcane; the remaining year or access to irrigation. some unique and spectacular 30% is made from sugarbeet. vegetation, animal life and Sugar is made in the leaves of the waterways. Many cane growers Cane growing and sugar production sugarcane plant through a natural live close to rainforests and the has been around for over a process called photosynthesis. Great Barrier Reef. Because of their hundred years in Australia. The Photosynthesis occurs when a proximity, many cane growing sugarcane industry has helped plant, using energy from the sun, families spend their weekends build many coastal towns and transforms carbon dioxide (CO2) and outdoors swimming and fishing.
    [Show full text]
  • Pastry Ingredients
    Pastry Ingredients All Grand Central Pastries and desserts are baked from scratch using real butter and natural fruits and flavorings. There are absolutely no artificial sweeteners, flavorings or preservatives Breakfast Pastries Croissant- Shepherd's Grain unbleached white flour (wheat flour, malted barley flour, niacin, reduced iron, thiamine mononitrate, riboflavin, folic acid), water, whole milk, Larsen's Cremerie Classique unsalted butter, granulated cane white sugar, fresh and dry instant yeast, sea salt, ascorbic acid, egg wash. Contains: Wheat, Milk, Eggs Almond Croissant- Shepherd's Grain unbleached white flour (wheat flour, malted barley flour, niacin, reduced iron, thiamine mononitrate, riboflavin, folic acid), water, whole milk, Larsen's Cremerie Classique unsalted butter, granulated cane white sugar, fresh and dry instant yeast, sea salt, ascorbic acid, egg wash, almond meal, almond extract (alcohol, oil of bitter almond, water), vanilla, cage-free liquid eggs, almonds, cornstarch, powdered sugar (sugar, cornstarch) Contains: Wheat, Milk, Nuts, Eggs Chocolate Croissant- Shepherd's Grain unbleached white flour (wheat flour, malted barley flour, niacin, reduced iron, thiamine mononitrate, riboflavin, folic acid), water, whole milk, Larsen's Cremerie Classique unsalted butter, granulated cane white sugar, fresh and dry instant yeast, sea salt, ascorbic acid, egg wash, Valhrona chocolate batons (sugar, cocoa paste, cocoa butter, soy lecithin, vanilla), powdered sugar (sugar, cornstarch) Contains: Wheat, Soy, Milk, Eggs Latte Dunkers:
    [Show full text]
  • Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? a Reasoned Overview of Potentials and Limits
    Sustainability 2015, 7, 8491-8521; doi:10.3390/su7078491 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits Tiziano Gomiero Independent Consultant and Researcher on Multi-Criteria Farming and Food System Analysis, Agro-Energies, Environmental Issues, Treviso 30121, Italy; E-Mail: [email protected]; Tel.: +39-32-0464-3496 Academic Editor: Andrew Kusiak Received: 7 April 2015 / Accepted: 26 June 2015 / Published: 30 June 2015 Abstract: In this paper, I analyze the constraints that limit biomass from becoming an alternative, sustainable and efficient energy source, at least in relation to the current metabolism of developed countries. In order to be termed sustainable, the use of an energy source should be technically feasible, economically affordable and environmentally and socially viable, considering society as a whole. Above all, it should meet society’s “metabolic needs,” a fundamental issue that is overlooked in the mainstream biofuels narrative. The EROI (Energy Return on Investment) of biofuels reaches a few units, while the EROI of fossil fuels is 20–30 or higher and has a power density (W/m2) thousands of times higher than the best biofuels, such as sugarcane in Brazil. When metabolic approaches are used it becomes clear that biomass cannot represent an energy carrier able to meet the metabolism of industrialized societies. For our industrial society to rely on “sustainable biofuels” for an important fraction of its energy, most of the agricultural and non-agricultural land would need to be used for crops, and at the same time a radical cut to our pattern of energy consumption would need to be implemented, whilst also achieving a significant population reduction.
    [Show full text]
  • Analysis of Thailand Biomass Resources and Biomass Pellet Market
    Azeus Machinery Co.ltd Email: [email protected] Website: www.biopelletmachine.com Add: SOKEYUFA Building, NO.26 Jingliu Road,Zhengzhou,CHINA Analysis of Thailand Biomass Resources and Biomass Pellet Market Catalogue I. General Situation of Thailand Energy Sources ---Sugarcane ---Cassava ---Rise Husks and Rice Straws ---Giant king grass II. Varieties of Thailand Biomass Resources III. Production of Thailand Biomass Pellet IV. Market and Prospect of Thailand Biomass Pellet ---Global wood pellet consumption forecast ---Adequate raw materials supply ---National policies support V. Summary General Situation of Thailand Energy Sources Thailand has abundant forest resources and crop resources, which is an advantage for Thailand to produce and use wood pellet as a kind of green energy, and makes it possible to develop Thailand as the biomass pellet trade center in ASEAN. Varieties of Thailand Biomass Resources Thailand is a major country of agricultural products producing and exporting, and the government attaches great importance to bio-industry. By setting senior management institutions, presenting preferential policies, enacting development projects, Thailand has achieved good progress in bio- agriculture, bio-pharmaceutical, bio-energy, etc. The main raw materials for making bio-pellets in Thailand are sugarcane, cassava and rice. Thailand is cultivating the giant king grass as a new material for bio-energy. Abundant natural resources, cheap labor cost and wide domestic-foreign market, all these factors make it possible for developing pellet fuel. --Sugarcane Thailand is the main sugarcane producer and cane-sugar exporter country in the world, locating in the moist tropical-region of Southeast Asia. In 2013, Thailand cane-sugar exports ranked 2nd in the world, following Brazil.
    [Show full text]
  • Starbucks Partnership Handbook 23 Confidential for Internal Use Only B
    b. Ingredient Master Grid Chilled, (Breakfast Sandwiches, Frozen Panini) INGREDIENTS: CROISSANT ROLL (ENRICHED WHEAT FLOUR [WHEAT FLOUR, MALTED BARLEY FLOUR, NIACIN, REDUCED IRON, THIAMIN MONONITRATE, Double Smoked Bacon RIBOFLAVIN, FOLIC ACID], WATER, BUTTER [CREAM {MILK}, NATURAL FLAVOR], Breakfast Sandwich SUGAR, YEAST, SALT, EGGS, DOUGH CONDITIONER [WHEAT GLUTEN, XANTHAN 11048710 GUM, ASCORBIC ACID, ENZYMES]), FRIED EGG PATTY (EGG WHITES, EGG YOLKS, INGREDIENTS: HEARTY BLUEBERRY OATMEAL (WATER, WHOLE GRAIN OATMEAL [WHOLE GRAIN ROLLED OATS, WHOLE GRAIN STEEL CUT OATS, WHOLE GRAIN Blueberry Steel Cut OAT FLOUR, SALT, CALCIUM CARBONATE, GUAR GUM], FRUIT, NUT AND SEED Oatmeal MEDLEY [DRIED FIGS (FIGS, RICE FLOUR), PEPITAS, DRIED CRANBERRIES 11027789 (CRANBERRIES, SUGAR, SUNFLOWER OIL), ALMONDS], FRESH BLUEBERRIES, Blueberry Oatmeal Topping 11027788 INGREDIENTS: BLUEBERRIES. Original english muffin (unbleached enriched wheat flour [flour, malted barley flour, reduced iron, niacin, thiamin mononitrate (vitamin b1), riboflavin (vitamin b2), folic acid], Sausage Egg Breakfast water, farina, yeast, sugar, salt, soybean oil, preservatives [calcium propionate, sorbic Sandwich acid], grain vinegar, monoglycerides, skim milk, soy flour, whey),puffed scrambled egg 11005929 patty (whole eggs, whey, skim milk, soybean oil, modified food starch, contains less than ARTISAN ROLL (FLOUR [WHEAT FLOUR, MALTED BARLEY FLOUR], WATER, SOUR CULTURE, CANOLA OIL, WHITE DEGERMINATED CORN MEAL, CONTAINS LESS Bacon Gouda Artisan THAN 2% OF THE FOLLOWING: SALT, SUGAR,
    [Show full text]
  • Project Impact Sheet
    PROJECT IMPACT SHEET OILCANE: AN IDEAL BIOENERGY FEEDSTOCK UPDATED: FEBRUARY 6, 2017 PROJECT TITLE: Engineering Hydrocarbon Biosynthesis and Storage Together with Increased Photosynthetic Efficiency into the Saccharinae PROGRAM: Plants Engineered to Replace Oil (PETRO) AWARD: $6,479,275 PROJECT TEAM: University of Illinois at Urbana-Champaign (Illinois) (Lead), the Universities of Nebraska and Florida, and Brookhaven National Laboratory PROJECT TERM: February 2012 – March 2017 PRINCIPAL INVESTIGATOR (PI): Steven Long TECHNICAL CHALLENGE Plant lipids offer a renewable alternative to fossil liquid fuels, providing an inexhaustible and sustainable source within the U.S. while reducing net greenhouse gas (GHG) emissions. However, there are concerns about land use and the agronomic inputs needed to harvest large quantities of biomass sustainably. Increasing the yield of bioenergy crops, and their energy density, addresses both economic and sustainability concerns, especially if the feedstock needs limited processing. Developing oil-rich crops that can yield economically viable drop-in fuels is of particular interest, but traditional breeding approaches, which in the major row crops produce 1-2% increases in yield annually, are insufficient to produce the gains needed. TECHNICAL OPPORTUNITY Hybridization provides an opportunity to combine promising plant characteristics to create improved crops. Sugarcane is one of the most photosynthetically productive crops in the world and ethanol produced from cane sugar is cost competitive with gasoline. The yield of ethanol from sugarcane is almost twice that of corn grain on a per acre basis; however, sugarcane is a tropical plant and is not grown commercially in the United States outside the southern areas of Florida, Texas, and Louisiana.
    [Show full text]
  • RECLAMATION of MINED LAND with SWITCHGRASS, MISCANTHUS, and ARUNDO for BIOFUEL PRODUCTION1 Jeff Skousen,2 Travis Keene, Mike Marra, and Brady Gutta
    RECLAMATION OF MINED LAND WITH SWITCHGRASS, MISCANTHUS, AND ARUNDO FOR BIOFUEL PRODUCTION1 Jeff Skousen,2 Travis Keene, Mike Marra, and Brady Gutta Abstract: Use of biomass to supplement the nation’s energy needs for ethanol production and green fuel for power plants has created a demand for growing reliable feedstocks. Switchgrass (Panicum virgatum L.), miscanthus (Miscanthus x giganteus), and giant cane (Arundo donax L.) are possible biofuel crops because they produce large amounts of biomass over a wide range of growing conditions, including marginal and reclaimed land. West Virginia’s climate and large acreage of available reclaimed mine land provide a land base to generate high amounts of biomass for a biofuel industry. The purpose of this study was to determine the yield of three biomass crops on reclaimed mined land in central West Virginia. A 25-year-old reclaimed site near Alton, WV, was prepared using herbicides to eliminate all existing cool-season vegetation on a 5-ha area. Twenty-three plots of 0.4-ha each were established. Mine soil samples showed an average pH of 7.5 and adequate supplies of plant nutrients. Two switchgrass varieties (Kanlow and BoMaster) were randomly assigned to 10 plots (five replications) and seeds were drilled into the killed sod at a rate of 11 kg ha-1. Two types of miscanthus (sterile public and private varieties) were randomly assigned to 10 plots and planted with seedling plugs on 0.8-m centers. Giant cane was assigned to three plots and rhizomes were planted on 1.5-m centers. Yield measurements were taken in September the second and third years after planting.
    [Show full text]
  • The Demand and Welfare Analysis of Vegetable Oils, Biofuel, Sugar Cane, and Ethanol in Europe, Brazil and the U.S
    Texas Tech University, Turker Dogruer, March 2016 The demand and welfare analysis of Vegetable oils, biofuel, Sugar cane, and ethanol in Europe, Brazil and the U.S. By Turker Dogruer A Thesis In Agricultural and Applied Economics Submitted to the Graduate Faculty Of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of Masters Approved Dr. Darren Hudson (chair) Dr. Eduardo Segarra Dr. Murova Olga March 24, 2016 Texas Tech University, Turker Dogruer, March 2016 Copyright 2016, Turker Dogruer Texas Tech University, Turker Dogruer, March 2016 Table of Contents CHAPTER 1 .................................................................................................................................... 1 INTRODUCTION ....................................................................................................................... 1 1.1 Problem Statement ..................................................................................................... 1 1.2 Objectives............................................................................................................................ 2 CHAPTER 2 .................................................................................................................................... 4 LITERATURE REVIEW ................................................................................................................ 4 2.1 Biofuel Production and Food Prices ....................................................................................... 4 2.2 Demand Estimation
    [Show full text]
  • First and Second Generation Biofuels: What's the Diference
    WORKING PAPER (UNDER REVIEW) FIRST and SECOND GENERATION Biofuels WHAT’S THE DIFFERENCE? Authors: Amy Nagler & Selena Gerace Biofuels are renewable fuels made from recently living organic materials (called “biomass”, such as agricultural crops, forest residue, by-products, or waste. They can be used as alternatives to non-renewable fossil fuels, such as oil or natural gas, which were formed geologically from or- ganic material over millions of years. Common types of biofuel are ethanol and biodiesel. First-Generation Biofuels Second-Generation Biofuels (also referred to as ‘conventional’ biofuels) (also referred to as ‘next-generation’ biofuels) First-generation biofuels are produced Second-generation biofuels are produced from from types of biomass that are often used non-food biomass, such as perennial grass and for food, such as corn, soy, and sugar- fast-growing trees. The processes to make them cane. These biofuels are made through are more complex and less well developed than fermentation or chemical processes that those for first-generation biofuels and often convert the oils, sugars, and starches in involve converting fibrous non-edible material the biomass into liquid fuels. First-genera- called “cellulose” into fuel. Currently, there is no tion biofuel markets and technologies are commercial-scale second-generation biofuel pro- well-established, the most common in the duction in the U.S., but there has been extensive U.S. being corn ethanol which is blended research on their potential economic and environ- into most gasoline sold domestically. mental advantages over first-generation biofuels. 1ST GEN 2ND GEN BIOMASS BIOMASS SOURCES SOURCES PERENNIAL GRASSES GRAINS AND STARCH CROPS Switchgrass · Miscanthus Corn · Sugar Cane · Sugar Beets FAST- GROWING TREES Hybrid Poplar · Willow VEGETABLE OILS Soy · Canola · Palm BY- PRODUCTS & WASTE Corn Stover · Wheat Straw · Forest Residue Municipal Waste · Used Cooking Oil The Rise of First-Generation Production of first-generation biofuels greatly expanded after the adoption the U.S.
    [Show full text]
  • Field Guide for Managing Giant Reed in the Southwest
    United States Department of Agriculture Field Guide for Managing Giant Reed in the Southwest Forest Southwestern Service Region TP-R3-16-11 September 2014 Cover Photos Left: James H. Miller, USDA Forest Service, Bugwood.org Right: James H. Miller, USDA Forest Service, Bugwood.org Bottom: David J. Moorhead, University of Georgia, Bugwood.org The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Printed on recycled paper Giant reed (Arundo donax L.) Grass family (Poaceae), Arundineae tribe Giant reed is an invasive grass common to riparian areas • Flowers June through November, depending on throughout the Southwest. This field guide serves as the location. Inflorescence is a dense, plume-like panicle, U.S. Forest Service’s recommendations for management of 1 to 2 feet long. Seed viability is very low, and giant reed in riparian areas and waterways associated with seedling establishment from germinated seed is quite its Southwestern Region.
    [Show full text]