Field Guide for Managing Giant Reed in the Southwest

Total Page:16

File Type:pdf, Size:1020Kb

Field Guide for Managing Giant Reed in the Southwest United States Department of Agriculture Field Guide for Managing Giant Reed in the Southwest Forest Southwestern Service Region TP-R3-16-11 September 2014 Cover Photos Left: James H. Miller, USDA Forest Service, Bugwood.org Right: James H. Miller, USDA Forest Service, Bugwood.org Bottom: David J. Moorhead, University of Georgia, Bugwood.org The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Printed on recycled paper Giant reed (Arundo donax L.) Grass family (Poaceae), Arundineae tribe Giant reed is an invasive grass common to riparian areas • Flowers June through November, depending on throughout the Southwest. This field guide serves as the location. Inflorescence is a dense, plume-like panicle, U.S. Forest Service’s recommendations for management of 1 to 2 feet long. Seed viability is very low, and giant reed in riparian areas and waterways associated with seedling establishment from germinated seed is quite its Southwestern Region. The Southwestern Region covers rare. Arizona and New Mexico, which together have 11 national forests. The Region also includes four national grasslands Ecology located in northeastern New Mexico, western Oklahoma, Impacts/threats and the Texas panhandle. Giant reed forms dense, monocultural stands and often crowds out native vegetation for soil moisture, nutrients, and space. When dry, it is highly flammable and becomes a Description fire danger in riparian habitats unaccustomed to sustaining Giant reed (synonyms: phragmites, carrizo, giant reed, fire. It uses far more water than native vegetation, thus arundo grass, donax, elephant grass, Spanish cane, wild disturbing the natural flood regime. One study showed cane, oboe cane) is a bamboo-like grass with stems that giant reed to transpire 56,200 acre-feet of water over the grow over 20 feet tall. It is an Asian native and was course of a year, whereas native species only transpired cultivated for thousands of years in southern Europe, 18,700 acre-feet. Giant reed provides limited shade along northern Africa, and the Middle East. It was introduced bank edges as compared to native willow or cottonwood, into southern California as an ornamental, and was used as resulting in warmer stream temperatures and increased an erosion control species along drainage ditches. From a algae photosynthesis. Water quality in a waterway may be distance, giant reed looks like a corn plant and is similar in impacted when nontoxic ammonium (NH4+) from decaying appearance to common reed (Phragmites australis L.), a reed materials is transformed into toxic ammonia (NH3). native grass found widely across the United States. There is a sharp decline in the number and variety of wildlife associated with dense giant reed stands, which is likely due Growth Characteristics to lack of food and acceptable cover. Giant reed also has • Introduced perennial grass, 20 to 30 feet tall. high levels of chemical defense compounds in its stems and • Root system consists of tough, fibrous, lateral leaves that can inhibit other vegetation. rhizomes, and deep roots. Location • Primary reproduction is vegetative; sprouts from Giant reed is a common hydrophytic plant found along disturbed stems or rhizomes, even those buried 3 to disturbed and undisturbed streambanks, desert springs, flood 10 feet deep. plains, drainages, and irrigation waterways. It thrives in • Robust, hollow, stems up to 2 inches in diameter with moist soils (moderately saline or freshwater), on sand dunes, knotty nodes. and in wetland or riparian areas. It occurs with saltcedar and • Pale green to blue-green, alternate leaves 1 to 2 Russian olive in many southwestern riparian communities. It inches wide and 1 to 2 feet long that grow at 180 is usually limited to areas under 5,000 feet in elevation. angles from one another. Lower part of leaf is yellow, Spread has fine hairs, and clasps the stem in a distinctive “S” Giant reed spreads with or without flooding. Stem or root wave. parts smaller than 2.5 inches in size have the potential to resprout if a node is present. Grading and construction 1 accelerates spread due to soil disturbance. Rhizomes buried giant reed, always evaluate how the plant community is 3 to 10 feet under soil will produce surface shoots. likely to respond once the grass is removed. A contingency plan should be in place to monitor and treat invasive weeds Invasive Features after treatment. In many instances, treated areas will return Shoots and stems grow rapidly (as much as 4 inches per naturally to the desirable riparian community without day during spring) outpacing native plant growth. Shallow revegetation. However, artificial plantings or seeding may be parts of the root system along stream edges are susceptible necessary for complete restoration in other situations. to undercutting which contributes to bank collapse and spreading of reproductive parts downstream. Giant reed Physical Control grows back quickly following fire, thereby increasing its Manual Methods dominance over native riparian species. Hand removal is very difficult, but digging can be used to target individual plants (usually < 6 feet tall). To improve handling, first cut the canopy near the surface by using a Management chain saw, machete, or pruning shears before pulling up Giant reed is not easily managed. Mechanical control the remaining portions of reed stems, rhizomes, and roots. options for giant reed are limited, and there are no classical Shovels, mattocks, or pick-ax are the most commonly biological control agents (insects, pathogens, etc.) currently used tools. The root mass and associated rhizomes must available. In general, the most effective treatment to control be entirely removed from the soil. Loose, rain-moistened giant reed is to spray a foliar systemic herbicide when soils are most conducive to hand pulling. Uprooted material plants are green and actively growing. Table 1 summarizes should be removed or burned onsite to prevent rerooting. For management options for some common situations recommendations on handling giant reed debris, see table 2. involving giant reed. Control efforts will usually require 3 to 5 years of persistent, repeated treatment. Mechanical Methods Mechanical methods used to remove giant reed range in When implementing giant reed control, priority should be scale from individual plant treatment (digging out with given to the following: a hand tool, backhoe, excavator, etc.) to broad scale • Choose a control approach that is most likely to clearing with hammer-flail mowers, root plows, rakes, etc. complement future restoration efforts. Mechanical control of areas with giant reed is usually more effective when used in combination with chemical control • Address giant reed populations near waterways and and the planting and/or seeding of desired native species as wherever the likelihood is high for plant parts to be followup. Large-scale mechanical control usually causes spread via flowing water. Then address populations major soil disturbance and interferes with native plant that would only be affected by high water or by establishment. In some cases, there may be an increase 100-year-flood events. invasion from other noxious weeds on cleared sites that will • Remove giant reed from high quality areas first. require additional later management. For recommendations These areas are likely to respond favorably to on handling giant reed debris, see table 2. restoration activities. Then work toward controlling dense, accessible stands that are most easily Excavating using a backhoe or excavator and grapple can be managed. used to remove small, dense stands of giant reed. Precutting is not necessary since the long stems may be an aid to pull Without special planning and care, treated areas may up roots. Excavating is not recommended in the streambed rapidly be invaded by other invasive plants. Before treating or edge because root material may be washed downstream. 2 Table 1. Management options* Site Physical Methods Cultural Methods Biological Methods Chemical Methods Dense, nearly pure Complete root removal Coordinate control Consider grazing Targeted broadcast or stand of giant reed is necessary for effective efforts with other with goats to suppress individual plant treatment located along a control but this is extremely landowners. sprouting. (IPT) application with a lethal waterway; goal difficult to accomplish using herbicide approved for use in A scale insect is to suppress only physical methods. aquatic or riparian areas. (Rhizaspidiotus donacis) or provide high Mowing or burning followed may be available as a Methods include foliar mortality. later by spraying regrowth biological control agent in application; cut–resprout–spray is usually the most practical the future (see “Biological and cut-stump; and aerial approach. Control” section). application by helicopter. Site with a uniform Cut dormant top growth Same as above. Same as above. Same as above. older dense stand using a hammer-flail mower of giant reed on in fall-winter, followed by accessible level application of herbicide to terrain (< 30% resprouts the following year; slope) such as and again in summer of the open areas on a third year. Can also cut with flood plain. a rotary brush cutter, chain saw, or tractor mounted mower. Site is difficult to Remove localized Same as above.
Recommended publications
  • Evaluation of the Combustion Characteristics of Four Perennial Energy Crops (Arundo Donax, Cynara Cardunculus, Miscanthus X Giganteus and Panicum Virgatum)
    2nd World Conference on Biomass for Energy, Industry and Climate Protection, 10-14 May 2004, Rome, Italy EVALUATION OF THE COMBUSTION CHARACTERISTICS OF FOUR PERENNIAL ENERGY CROPS (ARUNDO DONAX, CYNARA CARDUNCULUS, MISCANTHUS X GIGANTEUS AND PANICUM VIRGATUM) Jonas Dahl & Ingwald Obernberger Institute of Resource Efficient and Sustainable Systems, Graz University of Technology, Inffeldgasse 25, A - 8010 Graz, Austria, Tel.: +43 (0)316 481300, Fax: +43 (0)316 481300 4; E-mail: [email protected] ABSTRACT: The perennial crops giant reed, switchgrass, miscanthus and cardoon were investigated in laboratory- scale and pilot-scale combustion test runs. Laboratory-scale test runs were conducted in a fixed bed pot reactor monitoring the temperature in the fuel bed and the release of gaseous components while pilot-scale test runs where conducted in a 150 kWth rotating grate fired combustion plant measuring formed emissions of CO, NOX, SO2, HCl, and particulates as well as performing deposit probe measurements. The results revealed that the high concentration of ash and slag forming elements such as Si, K and Ca cause severe problems regarding slagging if not specially considered during combustion. Moreover, high concentrations of N are another challenge regarding measures in order to avoid high emissions of NOx. Moreover, also HCl and SO2 emissions are considerably higher compared to wood fuels due to the higher concentrations of Cl and S in these fuels. Keywords: biomass characteristics, biomass conversion, cynara cardonculus, giant reed, switchgrass, miscanthus 1 INTRODUCTION combustion unit (nominal boiler capacity 150 kWth) were carried out with larger amounts (2-4 tons) of Due to the limited availability of wood fuels, in pelletised switch grass and chopped giant reed and southern Europe, high yield energy crops could give an chopped miscanthus (MI).
    [Show full text]
  • Advanced Biofuel Policies in Select Eu Member States: 2018 Update
    © INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION POLICY UPDATE NOVEMBER 2018 ADVANCED BIOFUEL POLICIES IN SELECT EU MEMBER STATES: 2018 UPDATE This policy update provides details on the latest measures that select European ICCT POLICY UPDATES Union (EU) member states, namely Denmark, Germany, Italy, the Netherlands, SUMMARIZE Sweden, and the United Kingdom, are taking to support advanced alternative fuels. REGULATORY AND OTHER EU POLICY BACKGROUND DEVELOPMENTS In 2018, the European Union (EU) set its climate and energy objectives for 2030. RELATED TO CLEAN They included a greenhouse gas (GHG) reduction of at least 40% and a minimum of a TRANSPORTATION 32% share of renewable energy consumption across all sectors.1 GHG emissions in the WORLDWIDE. European transportation sector have declined by only 3.8% since 2008, compared to an 18% decrease, or more, in all other sectors, indicating that the decarbonization of transportation should be a priority for the future.2 Biofuels are one of the options considered to increase renewable energy and decrease the carbon intensity of the transportation sector. Through the use of directives and national legislation, the EU has incentivized both the adoption of conventional food-based biofuels and advanced biofuels, which are made from non-food feedstocks. Such incentives date to 2009, when the EU Renewable Energy Directive (RED) mandated that by 2020, 10% of energy used in the transportation sector should come from renewable energy sources (RES).3 In 2015, the RED was 1 Jacopo Giuntoli, Final recast Renewable Energy Directive for 2021-2030 in the European Union, (ICCT: Washington, DC, 2018), https://www.theicct.org/publications/final-recast-renewable-energy-directive- 2021-2030-european-union 2 EUROSTAT (Greenhouse gas emissions by source sector (env_air_gge), accessed November 2018), https://ec.europa.eu/eurostat.
    [Show full text]
  • Arundo Donax
    FLORIDA NATIVE PLANT SOCIETY POLICY STATEMENT ON ARUNDO DONAX The Florida Native Plant Society opposes the agricultural production of Arundo donax (giant reed, e- grass, bamboo reed, arundo grass, giant bamboo reed, etc.) as a biofuel in Florida due to its invasive characteristics and empirical evidence of impact on native plant communities. The Society further encourages the eradication of existing stands of this species and the banning of its sale as an ornamental to prevent invasion of native plant habitats in Florida. ---Approved by the Board of Directors of the Florida Native Plant Society on October 28, 2006. BACKGROUND Arundo donax is a large, clumping grass species native to the Indian subcontinent and possibly to adjacent areas of Asia and eastern Europe. It has been spread across most tropical to warm-temperate regions of the globe for various reasons including but not limited to ornamental horticulture, erosion control, reed production for musical instruments, thatch, biomass production (biofuel), and building materials. Outside its native range, Arundo donax is believed to be sterile or nearly sterile and most if not all reproduction is by fragmentation of rhizomes and production of new roots from stems at nodes (Dudley, in press). It is found primarily in riverine habitats where it is broken up and spread during high water events (Else, 1996 as cited in Dudley, in press) and where, once introduced, it spreads vegetatively forming large, dense masses. A single clone can cover hundreds of acres (Pacific Island Ecosystems at Risk, 2005). Spread between riverine systems is rarely addressed in the literature with 1) rare viable seed, 2) movement on equipment, 3) deliberate introduction by humans, 4) and occasional movement of plant fragments by animals or humans being known or hypothesized.
    [Show full text]
  • Comparison of Swamp Forest and Phragmites Australis
    COMPARISON OF SWAMP FOREST AND PHRAGMITES AUSTRALIS COMMUNITIES AT MENTOR MARSH, MENTOR, OHIO A Thesis Presented in Partial Fulfillment of the Requirements for The Degree Master of Science in the Graduate School of the Ohio State University By Jenica Poznik, B. S. ***** The Ohio State University 2003 Master's Examination Committee: Approved by Dr. Craig Davis, Advisor Dr. Peter Curtis Dr. Jeffery Reutter School of Natural Resources ABSTRACT Two intermixed plant communities within a single wetland were studied. The plant community of Mentor Marsh changed over a period of years beginning in the late 1950’s from an ash-elm-maple swamp forest to a wetland dominated by Phragmites australis (Cav.) Trin. ex Steudel. Causes cited for the dieback of the forest include salt intrusion from a salt fill near the marsh, influence of nutrient runoff from the upland community, and initially higher water levels in the marsh. The area studied contains a mixture of swamp forest and P. australis-dominated communities. Canopy cover was examined as a factor limiting the dominance of P. australis within the marsh. It was found that canopy openness below 7% posed a limitation to the dominance of P. australis where a continuous tree canopy was present. P. australis was also shown to reduce diversity at sites were it dominated, and canopy openness did not fully explain this reduction in diversity. Canopy cover, disturbance history, and other environmental factors play a role in the community composition and diversity. Possible factors to consider in restoring the marsh are discussed. KEYWORDS: Phragmites australis, invasive species, canopy cover, Mentor Marsh ACKNOWLEDGEMENTS A project like this is only possible in a community, and more people have contributed to me than I can remember.
    [Show full text]
  • Molecular Identification of Commercialized Medicinal Plants in Southern Morocco
    Molecular Identification of Commercialized Medicinal Plants in Southern Morocco Anneleen Kool1*., Hugo J. de Boer1.,A˚ sa Kru¨ ger2, Anders Rydberg1, Abdelaziz Abbad3, Lars Bjo¨ rk1, Gary Martin4 1 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Department of Botany, Stockholm University, Stockholm, Sweden, 3 Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 4 Global Diversity Foundation, Dar Ylane, Marrakech, Morocco Abstract Background: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level.
    [Show full text]
  • Common Reed Phragmites Australis (Cav.) Trin. Ex Steud. Grass Family (Poaceae)
    FACT SHEET: GIANT REED Common Reed Phragmites australis (Cav.) Trin. ex Steud. Grass family (Poaceae) NATIVE RANGE Eurasia DESCRIPTION Common reed, or Phragmites, is a tall, perennial grass that can grow to over 15 feet in height. In North America, both native phragmites (Phragmites australis ssp. americanus Saltonstall, P.M. Peterson & Soreng) and introduced subspecies are found. Introduced Phragmites forms dense stands which include both live stems and standing dead stems from previous year’s growth. Leaves are elongate and typically 1-1.5 inches wide at their widest point. Flowers form bushy panicles in late July and August and are usually purple or golden in color. As seeds mature, the panicles begin to look “fluffy” due to the hairs on the seeds and they take on a grey sheen. Below ground, Phragmites forms a dense network of roots and rhizomes which can go down several feet in depth. The plant spreads horizontally by sending out rhizome runners which can grow 10 or more feet in a single growing season if conditions are optimal. Please see the table below for information on distinguishing betweeen native and introduced Phragmites. ECOLOGICAL THREAT Once introduced Phragmites invades a site it quickly can take over a marsh community, crowding out native plants, changing marsh hydrology, altering wildlife habitat, and increasing fire potential. Its high biomass blocks light to other plants and occupies all the growing space belowground so plant communities can turn into a Phragmites monoculture very quickly. Phragmites can spread both by seed dispersal and by vegetative spread via fragments of rhizomes that break off and are transported elsewhere.
    [Show full text]
  • Biomass Basics: the Facts About Bioenergy 1 We Rely on Energy Every Day
    Biomass Basics: The Facts About Bioenergy 1 We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our businesses. Most of our energy comes from burning fossil fuels like petroleum, coal, and natural gas. These fuels provide the energy that we need today, but there are several reasons why we are developing sustainable alternatives. 2 We are running out of fossil fuels Fossil fuels take millions of years to form within the Earth. Once we use up our reserves of fossil fuels, we will be out in the cold - literally - unless we find other fuel sources. Bioenergy, or energy derived from biomass, is a sustainable alternative to fossil fuels because it can be produced from renewable sources, such as plants and waste, that can be continuously replenished. Fossil fuels, such as petroleum, need to be imported from other countries Some fossil fuels are found in the United States but not enough to meet all of our energy needs. In 2014, 27% of the petroleum consumed in the United States was imported from other countries, leaving the nation’s supply of oil vulnerable to global trends. When it is hard to buy enough oil, the price can increase significantly and reduce our supply of gasoline – affecting our national security. Because energy is extremely important to our economy, it is better to produce energy in the United States so that it will always be available when we need it. Use of fossil fuels can be harmful to humans and the environment When fossil fuels are burned, they release carbon dioxide and other gases into the atmosphere.
    [Show full text]
  • Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis
    Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis Caley Johnson, Anelia Milbrandt, Yimin Zhang, Rob Hardison, and Austen Sharpe National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-76011 Operated by the Alliance for Sustainable Energy, LLC May 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis Caley Johnson, Anelia Milbrandt, Yimin Zhang, Rob Hardison, and Austen Sharpe National Renewable Energy Laboratory Suggested Citation Johnson, Caley, Anelia Milbrandt, and Yimin Zhang, Rob Hardison, and Austen Sharpe. 2020. Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-76011. https://www.nrel.gov/docs/fy20osti/76011.pdf NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-76011 Operated by the Alliance for Sustainable Energy, LLC May 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Contract No. DE-AC36-08GO28308 Golden, CO 80401 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the U.S. Department of State.
    [Show full text]
  • Alhagi Maurorum
    Prepared By Jacob Higgs and Tim Higgs Class 1A EDRR- Early Detection Rapid Response Watch List Common crupina Crupina vulgaris African rue Peganum harmala Small bugloss Anchusa arvensis Mediterranean sage Salvia aethiopis Spring millet Milium vernale Syrian beancaper Zygophyllum fabago North Africa grass Ventenata dubia Plumeless thistle Carduus acanthiodes Malta thistle Centaurea melitensis Common Crupina Crupina vulgaris African rue Peganum harmala Small bugloss Anchusa arvensis Mediterranean sage Salvia aethiopis Spring millet Milium vernale Syrian beancaper Zygophyllum fabago North Africa grass Ventenata dubia Plumeless thistle Carduus acanthiodes Malta thistle Centaurea melitensis m Class 1B Early Detection Camelthorn Alhagi maurorum Garlic mustard Alliaria petiolata Purple starthistle Cantaurea calcitrapa Goatsrue Galega officinalis African mustard Brassica tournefortii Giant Reed Arundo donax Japanese Knotweed Polygonum cuspidatum Vipers bugloss Echium vulgare Elongated mustard Brassica elongate Common St. Johnswort Hypericum perforatum L. Oxeye daisy Leucanthemum vulgare Cutleaf vipergrass Scorzonera laciniata Camelthorn Alhagi maurorum Garlic mustard Alliaria petiolata Purple starthistle Cantaurea calcitrapa Goatsrue Galega officinalis African mustard Brassica tournefortii Giant Reed Arundo donax Japanese Knotweed Polygonum cuspidatum Vipers bugloss Echium vulgare Elongated mustard Brassica elongate Common St. Johnswort Hypericum perforatum L. Oxeye daisy Leucanthemum vulgare Cutleaf vipergrass Scorzonera laciniata Class 2 Control
    [Show full text]
  • Where Does Sugar Come From?
    Where does sugar come from? This is Joe and Jana. They’re here to tell you all about the journey of the jellybean. Sugar, which is the main ingredient in jellybeans, is produced in more than 100 countries around the world. In Australia, sugar is made from a tall tropical grass called sugarcane. Joe grows sugarcane so he knows all about it. What is sugarcane? Where is sugarcane grown? Why is sugarcane important for Australia? Sugarcane is a tall tropical plant In Australia, sugarcane can be seen that is similar to bamboo. To growing along 2,100 kilometers Sugarcane is one of Australia’s most grow successfully, sugarcane of coastline between Mossman in important rural industries, worth needs strong sunlight, fertile far north Queensland and Grafton around $1.5 - $2.5 billion to the soil and lots of water. It needs in northern New South Wales. Australian economy. Approximately 70% of the world’s sugar is produced at least 1.5 m of rainfall each Sugarcane growers manage from sugarcane; the remaining year or access to irrigation. some unique and spectacular 30% is made from sugarbeet. vegetation, animal life and Sugar is made in the leaves of the waterways. Many cane growers Cane growing and sugar production sugarcane plant through a natural live close to rainforests and the has been around for over a process called photosynthesis. Great Barrier Reef. Because of their hundred years in Australia. The Photosynthesis occurs when a proximity, many cane growing sugarcane industry has helped plant, using energy from the sun, families spend their weekends build many coastal towns and transforms carbon dioxide (CO2) and outdoors swimming and fishing.
    [Show full text]
  • Ecology and Management of Arundo Donax, and Approaches to Riparian Habitat Restoration in Southern California
    ECOLOGY AND MANAGEMENT OF ARUNDO DONAX, AND APPROACHES TO RIPARIAN HABITAT RESTORATION IN SOUTHERN CALIFORNIA. Gary P. Bell The Nature Conservancy of New Mexico, 212 E. Marcy Street, Suite 200, Santa Fe, NM 87501 USA Abstract By far the greatest threat to the dwindling riparian resources of coastal southern California is the alien grass species known as Arundo donax. Over the last 25 years the riparian forests of coastal southern California have become infested with A. donax which has spread by flood-fragmentation and dispersal of vegetative propagules. Arundo donax dramatically alters the ecological/successional processes in riparian systems and ultimately moves most riparian habitats towards pure stands of this alien grass. By current estimates there are tens of thousands of acres of A. donax along the major coastal drainage systems of southern California, including the Santa Ana, Santa Margarita, Ventura, Santa Clara, San Diego, and San Luis Rey rivers. The removal of A. donax from these systems provides numerous downstream benefits in terms of native species habitat, wildfire protection, water quantity and water quality. Introduction Arundo L. is a genus of tall perennial reed-like grasses (Poaceae) with six species native to warmer parts of the Old World. Arundo donax L. (giant reed, bamboo reed, giant reed grass, arundo grass, donax cane, giant cane, river cane, bamboo cane, canne de Provence), is the largest member of the genus and is among the largest of the grasses, growing to a height of 8 m (Fig. 1). This species is believed to be native to freshwaters of eastern Asia (Polunin and Huxley 1987), but has been cultivated throughout Asia, southern Europe, north Africa, and the Middle East for thousands of years and has been planted widely in North and South America and Australasia in the past century (Perdue 1958, Zohary 1962).
    [Show full text]
  • MANAGING the TOP FIVE INVASIVE PLANTS in CALVERT COUNTY 1. What Are the Top 5 Invasive Plants in Calvert County? Phragmites
    MANAGING THE TOP FIVE INVASIVE PLANTS IN CALVERT COUNTY 1. What are the top 5 invasive plants in Calvert County? Phragmites, English Ivy, Kudzu, Bamboo and Autumn Olive. Phragmites common reed (Phragmites australis) Accidentally imported in ship ballast, European phragmites has spread up and down the East Coast for centuries, displacing millions of acres of wetland plants, including native phragmites. The Maryland Eastern Shore may harbor our only remaining native phragmites (Phragmites australis ssp. americanus.) Whereas native phragmites grows in sparse clumps and decomposes readily, European phragmites forms impenetrable monocultures more than 15-feet tall composed of both old and new canes. Subsequently, infested wetlands become dry land, wildlife habitat is destroyed, and a fire hazard created. Roots penetrate several feet deep and extend out 10 feet a season. Wind and water, carrying seed and rhizome/root fragments, have spread phragmites to tidal and nontidal wetland and dry lands, including ditches. It is extremely difficult to combat. English ivy (Hedera helix) Eurasian, not English, in origin, this evergreen vine threatens habitats at all heights. At ground level, its leaves shade out seedlings and herbs, forming acres of monoculture and attracting rodents. In trees, it engulfs branches, shading and slowly killing them. Its weight topples trees in wind, snow or icy conditions. It serves as a reservoir for bacterial leaf scorch, a serious disease of trees including maples, oaks and elms. Vines mature in trees, then flower and bear toxic berries which induce birds to vomit them out, ensuring spread. Any rooted piece can resprout. Kudzu (Pueraria montana var. lobata) “The vine that ate the South” was promoted as livestock forage, an ornamental, and for erosion control until the 1950s.
    [Show full text]