(Transient Receptor Potential) Channels in Insulin Secretion

Total Page:16

File Type:pdf, Size:1020Kb

(Transient Receptor Potential) Channels in Insulin Secretion Endocrine Journal 2011, 58 (12), 1021-1028 REVIEW The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion Kunitoshi Uchida1) and Makoto Tominaga1, 2) 1) Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi 444-8787 Japan 2) Department of Physiological Sciences, The University of Advanced Studies, Aichi 444-8585, Japan Abstract. Insulin secretion from pancreatic β-cells is the only efficient means to decrease blood glucose concentrations. Glucose is the principal stimulator of insulin secretion with the ATP-sensitive K+ channel-voltage-gated Ca2+ channel- mediated pathway being the primary one involved in glucose-stimulated insulin secretion. Recently, several reports demonstrated that some transient receptor potential (TRP) channels are expressed in pancreatic β-cells and contribute to pancreatic β-cell functions. Interestingly, six of them (TRPM2, TRPM4, TRPM5, TRPV1, TRPV2 and TRPV4) are thermosensitive TRP channels. Thermosensitive TRP channels in pancreatic β-cells can function as multimodal receptors and cause Ca2+ influx and membrane depolarization at physiological body temperature. TRPM channels (TRPM2, TRPM4 and TRPM5) control insulin secretion levels by sensing intracellular Ca2+ increase, NAD metabolites, or hormone receptor activation. TRPV2 is involved not only in insulin secretion but also cell proliferation, and is regulated by the autocrine effects of insulin. TRPV1 expressed in sensory neurons is involved in β-cell stress and islet inflammation by controlling neuropeptide release levels. It is thus clear that thermosensitive TRP channels play important roles in pancreatic β-cell functions, and future analyses of TRP channel function will lead to better understanding of the complicated mechanisms involved in insulin secretion and diabetes pathogenesis. Key words: Thermosensitive TRP channel, Insulin secretion, Pancreatic β-cell, Glucose tolerance, Intracellular Ca2+ MOST transient receptor potential (TRP) channels are is now called TRPV1, was isolated from a rodent sen- non-selective cation channels. The name TRP comes sory neuron cDNA library in 1997 and was considered from the prototypical member in Drosophila, where to be a breakthrough for research concerning temper- a mutation resulted in abnormally transient receptor ature sensing [3]. Since then, several TRP channels potential to continuous light [1]. TRP channels are having thermosensitive ability have been identified in now divided into seven subfamilies: TRPC, TRPV, mammals, with nine thermosensitive TRP channels TRPM, TRPML, TRPN, TRPP, TRPA, with six sub- reported in mammals to date (Table 1). These chan- families (all except for TRPN) and 27 channels pres- nels belong to the TRPV, TRPM, and TRPA subfami- ent in humans. TRP channels are expressed in many lies, and their temperature thresholds for activation are tissues and have a wide variety of physiological func- in the range of physiological temperatures, which we tions, including detection of various physical and can discriminate. TRPV1 and TRPV2 are activated chemical stimuli in vision, taste, olfaction, hearing, by elevated temperatures, while TRPM8 and TRPA1 touch, and thermosensation [2]. The gene encoding are activated by cool and cold temperatures. TRPV3, the capsaicin receptor as a noxious heat sensor, which TRPV4, TRPM2, TRPM4 and TRPM5 are activated by warm temperatures. Thermosensitive TRP channels Submitted Jul. 10, 2011; Accepted Jul. 12, 2011 as EJ11-0130 usually function as ‘multimodal receptors’ that respond Released online in J-STAGE as advance publication Jul. 23, 2011 to various chemical and physical stimuli. For example, Correspondence to: Kunitoshi Uchida and Makoto Tominaga, TRPV1, activated by noxious heat (> 42 oC), is also a Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama receptor for capsaicin, an active ingredient of chili pep- 5-1, Myodaiji, Okazaki, Aichi 444-8787 Japan. pers, and low pH. Activation of these channels could E-mail: [email protected] (KU) and [email protected] (MT) contribute to changes in intracellular Ca2+ concentra- ©The Japan Endocrine Society 1022 Uchida et al. Table 1 Properties of thermosensitive TRP channels and their expression in pancreatic β-cells temperature tissue distribution other stimuli β-cells expression threshold capsaicin, proton, shanshool, allicin, camphor, sensory neuron, resiniferatoxin, vanillotoxin, 2-APB, propofol, TRPV1 > 42°C brain, skin anandamide, arachidonic acid metabolic products RINm5F, INS-1, rat islets (by lipoxygenases), NO, extracellular cation sensory neuron, brain, spinal cord, lung, probenecid, 2-APB, cannabidiol, mechanical TRPV2 > 52°C liver, spleen, colon, stimulation MIN6, mouse β-cells heart, immunocyte skin, sensory neuron, TRPV3 > 32°C brain, spinal cord, camphor, carvacrol, menthol, eugenol, thymol, ─ stomach, colon 2-APB skin, sensory neuron, 4α-PDD, bisandrographolide, citric acid, arachidonic TRPV4 > 27-41°C brain, kidney, lung, acid metabolic products (by epoxygenases), MIN6 inner ear, bladder anandamide, hypoosmolality, mechanical stimulation INS-1, human istets, brain, immunocyte 2+ TRPM2 > 36°C (cyclic) ADPribose, β-NAD, H2O2, intracellular Ca RIN-5F, MIN6, rat etc β-cells,mouse β-cells heart, liver, 2+ INS-1, RINm-5F, Human TRPM4 warm immunocyte etc intracellular Ca β-cells, β-TC3, ENG1G9 TRPM5 warm taste cell intracellular Ca2+ MIN-6, INS-1, mouse β-cells, human pancreas TRPM8 < 27°C sensory neuron menthol, icilin, eucalyptol ─ allyl isothiocyanate, carvacrol, cinnamaldehyde, sensory neuron, allicin, acrolein, icilin, tetrahydrocannabinol, TRPA1 < 17°C inner cell menthol (10-100 μM), formalin, H2O2, alkalization, ─ intracellular Ca2+, NSAIDs, propofol/ isoflurane/ desflurane/ etomidate/ octanol/ hexanol Capsaicin (in capsicum), shanshool (in Zanthoxylum peperitum, Japanese pepper), allicin (in garlic), camphor (in wood of the camphor laurel), resiniferatoxin (in cactus), vanillotoxin (in tarantula toxin), 2-APB (2-aminomethoxydiphenyl borate), probenecid (an anion transporter inhibitor), carvacrol (in oregano), menthol (in mint), eugenol (in savory), thymol (in thyme), 4α-PDD (4α-phorbol 12,13-didecanoate), bisandrographolide (in andrographis), ADP-ribose (adenosine di-phosphoribose), β-NAD (β-nicotinamide dinucleotide), icilin (a super cooling agent), eucalyptol (in eucalyptus), allyl isothiocyanate (in wasabi), cinnamaldehyde (in cinnamon), acrolein (in tear gas), tetrahydrocannabinol (in cannabis plant), NSAIDs (non-steroidal anti- inflammatory drugs), isoflurane/ desflurane/ etomidate/ octanol/ hexanol (all analgesia). 2+ 2+ 2+ tions ([Ca ]i) and control of membrane potentials in for the increase in [Ca ]i is Ca influx through L-type many cell types. VGCCs, but recent electrophysiological studies indi- Insulin secretion from pancreatic β-cells is the only cated that many ion channels can contribute to Ca2+ sig- efficient means to decrease blood glucose concentra- naling and changes in membrane potentials, and their tions. Accordingly, insulin secretion is strictly con- relative importance has been examined [4, 5]. Thus, trolled by glucose, hormones, and autonomic nervous insulin secretion mechanisms are very complicated. system activity. The trigger pathway for glucose-stimu- Several reports showed that TRPC1, TRPC2, TRPC4, lated insulin secretion is generally described as involv- TRPC6, TRPV1, TRPV2, TRPV4, TRPV5, TRPM2, + ing an ATP-sensitive K (KATP) channel-voltage-gated TRPM3, TRPM4, and TRPM5 channels are expressed Ca2+ channel (VGCC)-mediated pathway. In the first in pancreatic β-cells [6-12], and that six (TRPM2, step, glucose is transported into β-cells through glucose TRPM4, TRPM5, TRPV1, TRPV2 and TRPV4) are transporter 2 (GLUT2) to produce a change in the ATP/ thermosensitive TRP channels. Interestingly, among ADP ratio, which in turn generates membrane depolar- the thermosensitive TRP channels expressed in pan- ization through a direct block of KATP channels. VGCCs creas, four channels are warm temperature-sensitive 2+ open upon depolarization, leading to [Ca ]i increase channels (activated around body temperature) (Table 1), 2+ whereupon oscillations of [Ca ]i and membrane poten- indicating that these channels have functions at physi- tials drive pulsatile insulin secretion. The main source ological body temperature conditions that differ from TRP channels and insulin secretion 1023 environmental temperature sensing. In this review, we Glucose and incretin stimulate TRPM2 activation but focus on the involvement of thermosensitive TRP chan- the precise mechanism for modulation of TRPM2 activ- nels (TRPM2, TRPM4, TRPM5, TRPV1, TRPV2 and ity remains unclear. cADPR, reported to be involved TRPV4) in pancreatic β-cell functions, especially in in glucose-stimulated insulin secretion [22], is a candi- insulin secretion, development of type-1 diabetes, and date TRPM2 activator (Fig. 1). Furthermore, the fact the autocrine effects of insulin. that NAD also activates TRPM2 indicates that NAD and its metabolites in concert may activate TRPM2 at TRPM2 body temperature. Protein kinase A (PKA), which is involved in insulin secretion downstream of incretin TRPM2 is a highly Ca2+-permeable cation chan- receptors, potentiates TRPM2 activity [17], suggesting nel that is activated by nicotinamide adenine dinucle- that PKA acts as a modulator of TRPM2 activity,
Recommended publications
  • The Structural Basis for an On–Off Switch Controlling Gβγ-Mediated Inhibition of TRPM3 Channels
    The structural basis for an on–off switch controlling Gβγ-mediated inhibition of TRPM3 channels Marc Behrendta,b,1,2, Fabian Grussc,1,3, Raissa Enzerotha,b, Sandeep Demblaa,b, Siyuan Zhaod, Pierre-Antoine Crassousd, Florian Mohra, Mieke Nysc, Nikolaos Lourose, Rodrigo Gallardoe,4, Valentina Zorzinif,5, Doris Wagnera, Anastassios Economou (Αναστάσιoς Οικoνόμoυ)f, Frederic Rousseaue, Joost Schymkowitze, Stephan E. Philippg, Tibor Rohacsd, Chris Ulensc,6, and Johannes Oberwinklera,b,6 aInstitut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany;bCenter for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35032 Marburg, Germany; cLaboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; dDepartment of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103; eSwitch Laboratory, VIB Center for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; fLaboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; and gExperimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany Edited by László Csanády, Semmelweis University, Budapest, Hungary, and accepted by Editorial Board Member David E. Clapham August 27, 2020 (received for review February 13, 2020) TRPM3 channels play important roles in the detection of noxious also subject to inhibition by activated μORsorotherGPCRs(6, heat and in inflammatory thermal hyperalgesia. The activity of 24–28), a process that has been shown to take place in peripheral these ion channels in somatosensory neurons is tightly regulated by endings of nociceptive neurons since locally applied μOR or μ βγ -opioid receptors through the signaling of G proteins, thereby GABA receptor agonists inhibit TRPM3-dependent pain (24–26).
    [Show full text]
  • The TRPP2-Dependent Channel of Renal Primary Cilia Also Requires TRPM3
    The TRPP2-dependent channel of renal primary cilia also requires TRPM3 Steven J. Kleene1, Brian J. Siroky2, Julio A. Landero-Figueroa3, Bradley P. Dixon4, Nolan W. Pachciarz2, Lu Lu2, and Nancy K. Kleene1 1Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio; 2Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; 3Department of Chemistry, University of Cincinnati, Cincinnati, Ohio; 4Renal Section, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado IntroductIon Primary cilia of renal epithelial cells express several members of the transient receptor potential (TRP) class of cation-conducting channel, including TRPC1, TRPM3, TRPM4, TRPP2, and TRPV4. Some cases of autosomal dominant polycystic kidney disease (ADPKD) are caused by defects in TRPP2 (also called polycystin-2, PC2, or PKD2). A large-conductance, TRPP2- dependent channel in renal cilia has been well described, but it is not known whether this channel includes any other protein subunits. Methods To study this question, we investigated the pharmacology of the TRPP2-dependent channel through electrical recordings from the cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin, results The pharmacology was found to match that of TRPM3 channels. The ciliary TRPP2-dependent channel is known to be activated by depolarization and/or increasing cytoplasmic Ca2+. This activation was greatly enhanced by external pregnenolone sulfate, an agonist of TRPM3 channels. Pregnenolone sulfate did not change the current-voltage relation of the channel. CIM0216, another TRPM3 agonist, modestly increased the activity of the ciliary channels. The channels were effectively blocked by isosakuranetin, a specific inhibitor of TRPM3 channels.
    [Show full text]
  • Allicin Protects Against Lipopolysaccharide-Induced Acute Lung Injury by Up-Regulation of Claudin-4
    Zheng et al Tropical Journal of Pharmaceutical Research July 2014; 13 (7): 1063-1069 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v13i7.8 Original Research Article Allicin Protects against Lipopolysaccharide-Induced Acute Lung Injury by Up-Regulation of Claudin-4 Yue-liang Zheng, Wen-wei Cai, Guang-zhao Yan, Yuan-zhan Xu and Mei-qi Zhang* Department of Emergency, Zhejiang Provincial People's Hospital, Hangzhou 310014, China *For correspondence: Email: [email protected]; Tel: +86-0571-85893631 Received: 8 January 2014 Revised accepted: 31 May 2014 Abstract Purpose: To investigate the effect of allicin, an active component of garlic, on lipopolysaccharide (LPS)- induced acute lung injury. Methods: Wistar rats were subjected to LPS intravenous injection with or without allicin treatment to induce acute lung injury (ALI) model. Also, A549 cells were stimulated with LPS in the presence and absence of allicin. HE staining was used to detect pathological changes in lung tissues. Enzyme-linked immunosorbent assay (ELISA) was performed to measure cytokine content. Cell viability was measured by CCK-8 and EdU incorporation assay. Genes expression was determined by real time polymerase chain reaction (PCR) and Western blot. Flow cytometry was applied to measure cell apoptosis. Results: In vivo data showed that pulmonary edema, inflammatory cytokines expression and pathological changes were significantly attenuated in LPS-induced ALI after treatment with allicin (p < 0.05) while in vitro results indicate that allicin administration significantly improved the A549 cell viability in a dose-dependent manner as measured by CCK-8 and EdU incorporation assay.
    [Show full text]
  • The TRPM4 Channel Inhibitor 9-Phenanthrol
    W&M ScholarWorks Arts & Sciences Articles Arts and Sciences 2014 The TRPM4 channel inhibitor 9-phenanthrol R. Guinamard T. Hof C. A. Del Negro College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/aspubs Recommended Citation Guinamard, R., Hof, T., & Del Negro, C. A. (2014). The TRPM4 channel inhibitor 9‐phenanthrol. British Journal of Pharmacology, 171(7), 1600-1613. This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. British Journal of DOI:10.1111/bph.12582 www.brjpharmacol.org BJP Pharmacology REVIEW Correspondence Romain Guinamard, Groupe Signalisation, Electrophysiologie et Imagerie des Lésions The TRPM4 channel d’Ischémie/Reperfusion Myocardique, EA4650, Université de Caen Basse Normandie, inhibitor 9-phenanthrol Sciences D, Esplande de la Paix, CS 14032, 14032 Caen Cedex 5, R Guinamard1,2, T Hof1 and C A Del Negro2 France. E-mail: [email protected] ---------------------------------------------------------------- 1EA 4650, Groupe Signalisation, Electrophysiologie et Imagerie des Lésions d’Ischémie-Reperfusion Myocardique, UCBN, Normandie Université, Caen, France, 2Department Keywords 9-phenanthrol; TRPM4; of Applied Science, The College of William and Mary, Williamsburg, VA, USA calcium-activated non-selective cation channel; cardioprotection; NSCCa ---------------------------------------------------------------- Received 1 November 2013 Revised 17 December 2013 Accepted 8 January 2014 The phenanthrene-derivative 9-phenanthrol is a recently identified inhibitor of the transient receptor potential melastatin (TRPM) 4 channel, a Ca2+-activated non-selective cation channel whose mechanism of action remains to be determined.
    [Show full text]
  • Investigational Drugs in Early Phase Clinical Trials Targeting Thermotransient Receptor Potential (Thermotrp) Channels
    Expert Opinion on Investigational Drugs ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ieid20 Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels Asia Fernández-Carvajal , Rosario González-Muñiz , Gregorio Fernández- Ballester & Antonio Ferrer-Montiel To cite this article: Asia Fernández-Carvajal , Rosario González-Muñiz , Gregorio Fernández- Ballester & Antonio Ferrer-Montiel (2020): Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels, Expert Opinion on Investigational Drugs, DOI: 10.1080/13543784.2020.1825680 To link to this article: https://doi.org/10.1080/13543784.2020.1825680 Published online: 29 Sep 2020. Submit your article to this journal Article views: 31 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ieid20 EXPERT OPINION ON INVESTIGATIONAL DRUGS https://doi.org/10.1080/13543784.2020.1825680 REVIEW Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels Asia Fernández-Carvajala, Rosario González-Muñizb, Gregorio Fernández-Ballestera and Antonio Ferrer-Montiela aInstituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández, Alicante, Spain; bInstituto De Química Médica, CSIC, Madrid, Spain ABSTRACT ARTICLE HISTORY Introduction: Thermo transient receptor potential (thermoTRP) channels are some of the most inten­ Received 15 June 2020 sely pursued therapeutic targets of the past decade. They are considered promising targets of numer­ Accepted 15 September ous diseases including chronic pain and cancer. Modulators of these proteins, in particular TRPV1-4, 2020 TRPM8 and TRPA1, have reached clinical development, but none has been approved for clinical practice KEYWORDS yet.
    [Show full text]
  • World Journal of Pharmaceutical Research Anjna Et Al
    World Journal of Pharmaceutical Research Anjna et al. World Journal of PharmaceuticalSJIF ImpactResearch Factor 8.074 Volume 8, Issue 10, 741-748. Research Article ISSN 2277– 7105 A PHYTOCHEMICAL STUDY OF ALLIUM SATIVUM – W.S.R TO ALLICIN CONTENT 1*Tak Anjna, 2Thakur Kumar Sudarshan and 3Das Kumar Arun 1Associate Professor, Prasuti Tantra Avum Stri Roga, Main Campus, Uttrakhanda Ayurveda University, Dehradun, Uttarakhanda. 2Lecturer, Ras Shashtra Avum Bhaishajya Kalpana, R.G.G.P.G. Ayurvedic College, Paprola, Himachal Pradesh. 3Principal, Professor & H.O.D, Ras Shashtra Avum Bhaishajya Kalpana, Govt. Ayurvedic College, Bolangir, Orisa. ABSTRACT Article Received on 15 July 2019, Allium sativum has attracted the interest of many researchers due to its Revised on 05 August 2019, wide range of therapeutic effects with minimal adverse reactions. Its Accepted on 25 August 2019, DOI: 10.20959/wjpr201910-15253 role in promoting the female reproductive health can be well understood from the fact Acharya Kashyap in his text has described a full chapter Lashuna Kalpadhyaya mentioning that the woman *Corresponding Author Tak Anjna consuming Lashuna will not suffer from diseases of kati, shroni Associate Professor, Prasuti (pelvis), gramyadharma janya rogas (sexually transmitted diseases) Tantra Avum Stri Roga, and infertility. Its effects are mainly attributed to its chemical Main Campus, Uttrakhanda constituents like Allicin, Ajoene and certain other sulphur compounds Ayurveda University, etc. In the present study, bulbs of Allium sativum were dried and in Dehradun, Uttarakhanda. controlled temperature and fine powder was made. It was filled in capsules and clinical trial was done in the patients of Hypomenorrhoea. In context of this, a phytochemical study of dried powder of Allium sativum was done and various chemical constituents of garlic have been investigated to support its pharmaco-therapeutic actions as per clinical study.
    [Show full text]
  • Allicin Induces Apoptosis Through Activation of Both Intrinsic and Extrinsic Pathways in Glioma Cells
    5976 MOLECULAR MEDICINE REPORTS 17: 5976-5981, 2018 Allicin induces apoptosis through activation of both intrinsic and extrinsic pathways in glioma cells CHENLONG LI1, HANGUANG JING2, GUANGTAO MA3 and PENG LIANG1 1Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086; 2Basic Theory of Chinese Medicine, Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029; 3Department of Neurosurgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163000, P.R. China Received August 12, 2016; Accepted January 4, 2018 DOI: 10.3892/mmr.2018.8552 Abstract. Allicin is an extract purified fromAllium sativum apoptotic cascades. These results implicate Allicin as a (garlic), and previous research has indicated that Allicin novel antitumor agent in treating glioma. has an inhibitory effect on many kinds of tumor cells. The aim of the present study was to explore the anticancer Introduction activity of Allicin on human glioma cells and investigate the underlying mechanism. MTT and colony‑formation Glioblastoma (GBM) is the most aggressive subset of assays were performed to detect glioma cell prolifera- primary brain tumor in adults, and is responsible for ~50% tion, and explore the effect of Allicin at various doses and of all cranial tumors. GBMs are highly infiltrative which time‑points. The apoptosis of glioma cells was measured results in difficulty for them to be resected completely (1-3). by fluorescence microscopy with Hoechst 33258 staining, Comprehensive therapy including radiotherapy and chemo- and then flow cytometry was used to analyzed changes in therapy is the main approach used for treatment; however, glioma cell apoptosis. Reverse transcription‑quantitative the overall survival of glioma patients is only 12‑14 months polymerase chain reaction and western blot analysis were post‑diagnosis (4).
    [Show full text]
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • Involvement of TRPC4 and 5 Channels in Persistent Firing in Hippocampal CA1 Pyramidal Cells
    cells Article Involvement of TRPC4 and 5 Channels in Persistent Firing in Hippocampal CA1 Pyramidal Cells Alberto Arboit 1,2,3, Antonio Reboreda 1,4 and Motoharu Yoshida 1,3,4,5,* 1 German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; [email protected] (A.A.); [email protected] (A.R.) 2 Otto-von-Guericke University, 39120 Magdeburg, Germany 3 Faculty of Psychology, Ruhr University Bochum (RUB), Universitätsstraße 150, 44801 Bochum, Germany 4 Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany 5 Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany * Correspondence: [email protected] Received: 1 December 2019; Accepted: 1 February 2020; Published: 5 February 2020 Abstract: Persistent neural activity has been observed in vivo during working memory tasks, and supports short-term (up to tens of seconds) retention of information. While synaptic and intrinsic cellular mechanisms of persistent firing have been proposed, underlying cellular mechanisms are not yet fully understood. In vitro experiments have shown that individual neurons in the hippocampus and other working memory related areas support persistent firing through intrinsic cellular mechanisms that involve the transient receptor potential canonical (TRPC) channels. Recent behavioral studies demonstrating the involvement of TRPC channels on working memory make the hypothesis that TRPC driven persistent firing supports working memory a very attractive one. However, this view has been challenged by recent findings that persistent firing in vitro is unchanged in TRPC knock out (KO) mice. To assess the involvement of TRPC channels further, we tested novel and highly specific TRPC channel blockers in cholinergically induced persistent firing in mice CA1 pyramidal cells for the first time.
    [Show full text]
  • Ca Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart
    Journal of Cardiovascular Development and Disease Review Ca2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases Jianlin Feng 1, Maria K. Armillei 1, Albert S. Yu 1, Bruce T. Liang 1, Loren W. Runnels 2,* and Lixia Yue 1,* 1 Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; [email protected] (J.F.); [email protected] (M.K.A.); [email protected] (A.S.Y.); [email protected] (B.T.L.) 2 Department of Pharmacology, Rutgers, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA * Correspondence: [email protected] (L.W.R.); [email protected] (L.Y.) Received: 11 August 2019; Accepted: 18 September 2019; Published: 23 September 2019 Abstract: Cardiac fibrosis is the excessive deposition of extracellular matrix proteins by cardiac fibroblasts and myofibroblasts, and is a hallmark feature of most heart diseases, including arrhythmia, hypertrophy, and heart failure. This maladaptive process occurs in response to a variety of stimuli, including myocardial injury, inflammation, and mechanical overload. There are multiple signaling pathways and various cell types that influence the fibrogenesis cascade. Fibroblasts and myofibroblasts are central effectors. Although it is clear that Ca2+ signaling plays a vital role in this pathological process, what contributes to Ca2+ signaling in fibroblasts and myofibroblasts is still not wholly understood, chiefly because of the large and diverse number of receptors, transporters, and ion channels that influence intracellular Ca2+ signaling. Intracellular Ca2+ signals are generated by Ca2+ release from intracellular Ca2+ stores and by Ca2+ entry through a multitude of Ca2+-permeable ion channels in the plasma membrane.
    [Show full text]
  • 4-Hydroxynonenal, an Endogenous Aldehyde, Causes Pain and Neurogenic Inflammation Through Activation of the Irritant Receptor TRPA1
    4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1 Marcello Trevisani*, Jan Siemens†, Serena Materazzi*, Diana M. Bautista†, Romina Nassini*, Barbara Campi‡, Noritaka Imamachi§, Eunice Andre` ‡, Riccardo Patacchini¶, Graeme S. Cottrellʈ, Raffaele Gatti‡, Allan I. Basbaum§, Nigel W. Bunnettʈ, David Julius†**, and Pierangelo Geppetti*‡** *Department of Critical Care Medicine and Surgery, Florence University, 4-50121 Florence, Italy; †Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143; ‡Centre of Excellence for the Study of Inflammation, University of Ferrara, 44100 Ferrara, Italy; §Departments of Anatomy and Physiology and W. M. Keck Center for Integrative Neuroscience, University of California, San Francisco, CA 94143-0444; ¶Department of Pharmacology, Chiesi Pharmaceuticals, 43100 Parma, Italy, and ʈDepartments of Surgery and Physiology, University of California, San Francisco, CA 94143 Contributed by David Julius, July 5, 2007 (sent for review June 14, 2007) TRPA1 is an excitatory ion channel expressed by a subpopulation Recent studies have shown that the wasabi receptor, TRPA1, also of primary afferent somatosensory neurons that contain sub- plays an important role in modulating nociceptor excitability and stance P and calcitonin gene-related peptide. Environmental neurogenic inflammation in the setting of tissue injury (5, 6). This irritants such as mustard oil, allicin, and acrolein activate
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]