Assessing the Tolerance of Three Species of Quercus L. and Iowa Grown Betula Nigra L

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Tolerance of Three Species of Quercus L. and Iowa Grown Betula Nigra L Assessing the Tolerance of Three Species of Quercus L. and Iowa Grown Betula nigra L. Provenances to Foliar Chlorosis in Elevated pH Substrate by Braden Keith Hoch B.S., Kansas State University, 2015 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Horticulture and Natural Resources College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2018 Approved by: Co-Major Professor Dr. Chad T. Miller Approved by: Co-Major Professor Dr. Jason J. Griffin Copyright © Braden Hoch 2018. Abstract Oak trees (Quercus L.) and river birch (Betula nigra L.) are two horticulturally significant crops widely used in landscapes but notorious for developing iron (Fe) induced interveinal foliar chlorosis (IFC) in alkaline soils. Variation in IFC has been observed between species of oak and provenances of river birch suggesting that species and provenances endemic to alkaline soils do not always display this chlorosis. Limited studies investigating the effect of elevated pH on oak and river birch have been conducted. More environmentally tolerant and aesthetically pleasing selections could be used if they are first screened to determine their adaptability to high pH soils. Three experiments were conducted to evaluate Texas red oak (Quercus buckleyi Nixon and Dorr) and Durand oak [Quercus sinuata Walter var. breviloba (Torr.) C.H. Mull.] with landscape collections of pin oak (Quercus palustris L.) to determine the extent of IFC when grown at elevated pH. When grown in an elevated pH substrate, pin oak was unable to maintain elevated leaf total leaf Fe concentrations, consistently developed IFC, and exhibited low total leaf chlorophyll concentrations compared to non-chlorotic pin oak seedlings in the control pH substrate. Texas red oak and Durand in the elevated substrate did not develop IFC and maintained high leaf chlorophyll concentrations compared to controls; they also sequestered greater amounts of substrate Fe in leaves compared to pin oak in the elevated substrates. Another crop of ornamental significance and widely planted in the landscape, river birch (Betula nigra L.), develops IFC in high pH soils. Two experiments evaluated river open- pollinated (OP) seedlings of Iowa provenances, OP ‘BNMTF, and clones from selected Iowa provenances, ‘BNMTF’, ‘Cully’ in an elevated pH substrate. A seed source from Bearbower Sand Prairie, Buchanan Co., IA (BSP3) had greater leaf chlorophyll than ‘BNMTF’OP, and a clone from Clemons Creek WMA, Washington Co., IA (CCWMA3) than the trade standard ‘Cully’. Although differences in total leaf chlorophyll were observed, all sources in elevated pH substrate did not sequester sufficient amounts of leaf Fe compared to their controls. Field evaluations with considerations of provenance performance in different hardiness zones should be used to determine the potential of these Iowa sources as more suitable selections for use in landscapes with alkaline soils. Table of Contents List of Figures .............................................................................................................................. viii List of Tables ............................................................................................................................... xiv Acknowledgements ..................................................................................................................... xvii Chapter 1 - Interveinal Foliar Chlorosis of Species of Oak and River Birch ................................. 1 Introduction ................................................................................................................................. 1 Histories, Native Distributions, and Potential of Two South-Central Texas Species of Oak in the Landscape ............................................................................................................................. 5 Texas red oak (Quercus buckleyi Nixon & Dorr) ................................................................... 5 Durand oak [Quercus sinuata Walter var. breviloba (Torr.) C.H. Mull.] .............................. 7 Abundance, Oxidation Status, and Forms of Soil Fe .................................................................. 8 Factors Affecting Soil Fe Availability ...................................................................................... 10 Soil pH .................................................................................................................................. 10 Lime ...................................................................................................................................... 11 Impact of Bicarbonates on Root and Xylem Tissues ........................................................ 11 Fe Acquisition and Transport ................................................................................................... 12 Uptake ................................................................................................................................... 12 Transport ............................................................................................................................... 15 Literature Cited ......................................................................................................................... 17 Chapter 2 - Assessing the Tolerance of Texas Red Oak, Durand Oak, and Pin Oak to Foliar Chlorosis in High pH Substrate ............................................................................................. 36 Abstract ..................................................................................................................................... 36 Introduction ............................................................................................................................... 37 Materials and Methods.............................................................................................................. 41 Seed Source Collection ......................................................................................................... 41 Expt. 1 (2016 and 2017).................................................................................................... 41 Expt. 2 (2016 to 2017) ...................................................................................................... 42 Study Initiation, Treatments, Experimental Design, and Data Collection ............................ 42 Expt. 1 (2016 and 2017).................................................................................................... 42 Expt. 2 (2016 to 2017) ...................................................................................................... 46 v Pest Control ........................................................................................................................... 48 Results ....................................................................................................................................... 49 Expt. 1 2016 .......................................................................................................................... 49 Expt. 1 2017 .......................................................................................................................... 52 Expt. 2 (2016 to 2017) .......................................................................................................... 55 Discussion and Conclusions ..................................................................................................... 59 Literature Cited ......................................................................................................................... 67 Chapter 3 - Effects of High pH Substrate on Chlorophyll Content, Foliar Chlorosis, and Plant Growth of River Birch from Iowa Grown Provenances ........................................................ 98 Abstract ..................................................................................................................................... 98 Introduction ............................................................................................................................... 99 Materials and Methods............................................................................................................ 102 Source Materials ................................................................................................................. 102 Expt. 1 ............................................................................................................................. 102 Expt. 2 ............................................................................................................................. 104 Design and Treatments........................................................................................................ 105 Expt. 1 ............................................................................................................................. 105 Expt. 2 ............................................................................................................................. 108 Mouse ear disorder and pest control ................................................................................... 109 Results ..................................................................................................................................... 109 Expt. 1 ................................................................................................................................. 109 Expt. 2 ................................................................................................................................
Recommended publications
  • Effect of Acorn Size on the Seedling Growth of Shumard Oak, Quercus Shumardi/, Buckl
    EFFECT OF ACORN SIZE ON THE SEEDLING GROWTH OF SHUMARD OAK, QUERCUS SHUMARDII, BUCKL. By PREMKUMAR THONDIKKATTIL Bachelor of Science University of Calicut Calicut, Kerala, India 1974 Master of Science University of Calicut Calicut. Kerals, India 1976 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1999 EFFECT OF ACORN SIZE ON THE SEEDLING GROWTH OF SHUMARD OAK, QUERCUS SHUMARDfI, BUCKL. Thesis Approved: ¥~Thesis ad VI er ~1W~ oanot the Graduate College ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my major adviser, Dr. Stephen W. Hallgren, Associate Professor, Department of Forestry, for his excellent guidance, constructive criticism, understanding, inspiration, support, and above all, his friendly approach throughout. I would also like to extend my sincere thanks to my other graduate committee members, Dr. Robert F. Wittwer, Professor, Department of Forestry, Dr. Janet C. Cole, Professor, and Dr. Niels O. Maness, Associate Professor, Department of Horticulture, for their kind help, understanding and invaluable suggestions. I am extremely grateful to Mr. Greg Huffman, Nursery Superintendent, and other employees of Forest Regeneration Center (FRC), Washington. OK for providing all the facilities and arrangements for conducting the experiment. My special thanks goes to Mr. David Porterfield, FRC Specialist, who initially suggested the problem of variability experienced among Shumard oak seedlings in the nursery. I also wish to thank the Oklahoma Mesonet for providing climatological data for the period under study. I am very pleased to mention the name of Dr. Mark E.
    [Show full text]
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens
    The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens Francisco Garin Garcia Iturraran Botanical Gardens, northern Spain [email protected] Overview Iturraran Botanical Gardens occupy 25 hectares of the northern area of Spain’s Pagoeta Natural Park. They extend along the slopes of the Iturraran hill upon the former hay meadows belonging to the farmhouse of the same name, currently the Reception Centre of the Park. The minimum altitude is 130 m above sea level, and the maximum is 220 m. Within its bounds there are indigenous wooded copses of Quercus robur and other non-coniferous species. Annual precipitation ranges from 140 to 160 cm/year. The maximum temperatures can reach 30º C on some days of summer and even during periods of southern winds on isolated days from October to March; the winter minimums fall to -3º C or -5 º C, occasionally registering as low as -7º C. Frosty days are few and they do not last long. It may snow several days each year. Soils are fairly shallow, with a calcareous substratum, but acidified by the abundant rainfall. In general, the pH is neutral due to their action. Collections The first plantations date back to late 1987. There are currently approximately 5,000 different taxa, the majority being trees and shrubs. There are around 3,000 species, including around 300 species from the genus Quercus; 100 of them are from Mexico and Central America. Quercus costaricensis photo©Francisco Garcia 48 International Oak Journal No. 22 Spring 2011 Oaks from Mexico and Oaks from Mexico
    [Show full text]
  • Whole-Tree Silvic Identifications and the Microsatellite Genetic Structure of a Red Oak Species Complex in an Indiana Old-Growth Forest
    Color profile: Generic CMYK printer profile Composite Default screen 2228 Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest Preston R. Aldrich, George R. Parker, Charles H. Michler, and Jeanne Romero-Severson Abstract: The red oaks (Quercus section Lobatae) include important timber species, but we know little about their gene pools. Red oak species can be difficult to identify, possibly because of extensive interspecific hybridization, al- though most evidence of this is morphological. We used 15 microsatellite loci to examine the genetic composition of a red oak community in 20.6 ha of an Indiana old-growth forest. The community included northern red oak (Quercus rubra L.), Shumard oak (Quercus shumardii Buckl.), and pin oak (Quercus palustris Muenchh.). Species were identi- fied using whole-tree silvic characters, the approach most often implemented by foresters. We found high genetic diver- sity within species but limited genetic differences between species. Phenetic clustering showed that Q. rubra and Q. shumardii were more genetically similar than either was to Q. palustris, but a neighbor-joining tree revealed that individuals of the different species did not resolve into single-species clusters. We identified four mixed-species subpopulations using Structure, a computer program based on Monte Carlo simulation. The three largest groups are consistent with the following biological interpretations: (i) pure Q. rubra,(ii) Q. rubra, Q. shumardii, and their hy- brids, and (iii) Q. rubra, Q. shumardii, Q. palustris, and their hybrids. We discuss the implications of these findings for the whole-tree silvic approach to selection and for management of the red oak gene pool.
    [Show full text]
  • Checklist of Illinois Native Trees
    Technical Forestry Bulletin · NRES-102 Checklist of Illinois Native Trees Jay C. Hayek, Extension Forestry Specialist Department of Natural Resources & Environmental Sciences Updated May 2019 This Technical Forestry Bulletin serves as a checklist of Tree species prevalence (Table 2), or commonness, and Illinois native trees, both angiosperms (hardwoods) and gym- county distribution generally follows Iverson et al. (1989) and nosperms (conifers). Nearly every species listed in the fol- Mohlenbrock (2002). Additional sources of data with respect lowing tables† attains tree-sized stature, which is generally to species prevalence and county distribution include Mohlen- defined as having a(i) single stem with a trunk diameter brock and Ladd (1978), INHS (2011), and USDA’s The Plant Da- greater than or equal to 3 inches, measured at 4.5 feet above tabase (2012). ground level, (ii) well-defined crown of foliage, and(iii) total vertical height greater than or equal to 13 feet (Little 1979). Table 2. Species prevalence (Source: Iverson et al. 1989). Based on currently accepted nomenclature and excluding most minor varieties and all nothospecies, or hybrids, there Common — widely distributed with high abundance. are approximately 184± known native trees and tree-sized Occasional — common in localized patches. shrubs found in Illinois (Table 1). Uncommon — localized distribution or sparse. Rare — rarely found and sparse. Nomenclature used throughout this bulletin follows the Integrated Taxonomic Information System —the ITIS data- Basic highlights of this tree checklist include the listing of 29 base utilizes real-time access to the most current and accept- native hawthorns (Crataegus), 21 native oaks (Quercus), 11 ed taxonomy based on scientific consensus.
    [Show full text]
  • Native Trees of Mexico: Diversity, Distribution, Uses and Conservation
    Native trees of Mexico: diversity, distribution, uses and conservation Oswaldo Tellez1,*, Efisio Mattana2,*, Mauricio Diazgranados2, Nicola Kühn2, Elena Castillo-Lorenzo2, Rafael Lira1, Leobardo Montes-Leyva1, Isela Rodriguez1, Cesar Mateo Flores Ortiz1, Michael Way2, Patricia Dávila1 and Tiziana Ulian2 1 Facultad de Estudios Superiores Iztacala, Av. De los Barrios 1, Los Reyes Iztacala Tlalnepantla, Universidad Nacional Autónoma de México, Estado de México, Mexico 2 Wellcome Trust Millennium Building, RH17 6TN, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom * These authors contributed equally to this work. ABSTRACT Background. Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. Methods. A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e.
    [Show full text]
  • Thierry Lamant
    l1~ternational Oaks ' ' •• e Probl by Thierry Lamant Office National des Forets Conservatoire de Resources Genetiques Ardon, France and Guy Sternberg Starhill Forest Arboretum NAPPC Oak Reference Collectioit Petersburg, Illinois USA he nomenclature of the genus Quercus is a nightmare for non-taxonomists. It can be very difficult even for skilled scienti. ts to navigate the jungle of Latin names and conflicting authors and some may find their research results, botanical collections, herbaria, or nursery catalogs con1promised by confusion. Here is an overview of the situ­ ation, presented by non-taxonomists for the benefit of other non-taxonomists. One of the main difficulties encountered with oak name involves different authors applying the sa1ne name to differ­ ent species. An exan1ple can be found 1n the trees for1nerly known as Q. prinus L. in the United States. This old name covered at ]east two different species (Q.n1ontana Willd. in common usage, but perhaps more correctI y by priority of publication Q.michauxii Nuttall). It is not clear which speci- lnterncztional Oaks tnen Linna eus used for his type. In cur­ rent literature, the name Q. prinus is be­ ing discarded for thi s reason. These species have a close relative, the dwarf chestnut oak Q. prinoides L. Among other names, it has been cal1 ed Q. prinus var. pu1nila Michx. Q. prinus var. hun1ilis Marshall, and Q. prinus var. chincapin F.Michx. But since Q. prinus itself is a confu ·ed name where does Foliage of 1he Texas oak specie\· Quercus buckelyi Nixon and Dorr (fo rmerly known tf\· Quercus texana) this leave the dwarf chestnut oak? It at rhe New Mexico tv/ i /ita r.v lnstitut e in Roswell, seems closest to the yellow chestnut oak Ne\1' M e.ri('O.
    [Show full text]
  • Quercus ×Coutinhoi Samp. Discovered in Australia Charlie Buttigieg
    XXX International Oaks The Journal of the International Oak Society …the hybrid oak that time forgot, oak-rod baskets, pros and cons of grafting… Issue No. 25/ 2014 / ISSN 1941-2061 1 International Oaks The Journal of the International Oak Society … the hybrid oak that time forgot, oak-rod baskets, pros and cons of grafting… Issue No. 25/ 2014 / ISSN 1941-2061 International Oak Society Officers and Board of Directors 2012-2015 Officers President Béatrice Chassé (France) Vice-President Charles Snyers d’Attenhoven (Belgium) Secretary Gert Fortgens (The Netherlands) Treasurer James E. Hitz (USA) Board of Directors Editorial Committee Membership Director Chairman Emily Griswold (USA) Béatrice Chassé Tour Director Members Shaun Haddock (France) Roderick Cameron International Oaks Allen Coombes Editor Béatrice Chassé Shaun Haddock Co-Editor Allen Coombes (Mexico) Eike Jablonski (Luxemburg) Oak News & Notes Ryan Russell Editor Ryan Russell (USA) Charles Snyers d’Attenhoven International Editor Roderick Cameron (Uruguay) Website Administrator Charles Snyers d’Attenhoven For contributions to International Oaks contact Béatrice Chassé [email protected] or [email protected] 0033553621353 Les Pouyouleix 24800 St.-Jory-de-Chalais France Author’s guidelines for submissions can be found at http://www.internationaloaksociety.org/content/author-guidelines-journal-ios © 2014 International Oak Society Text, figures, and photographs © of individual authors and photographers. Graphic design: Marie-Paule Thuaud / www.lecentrecreatifducoin.com Photos. Cover: Charles Snyers d’Attenhoven (Quercus macrocalyx Hickel & A. Camus); p. 6: Charles Snyers d’Attenhoven (Q. oxyodon Miq.); p. 7: Béatrice Chassé (Q. acerifolia (E.J. Palmer) Stoynoff & W. J. Hess); p. 9: Eike Jablonski (Q. ithaburensis subsp.
    [Show full text]
  • Texas Big Tree Registry a List of the Largest Trees in Texas Sponsored by Texas a & M Forest Service
    Texas Big Tree Registry A list of the largest trees in Texas Sponsored by Texas A & M Forest Service Native and Naturalized Species of Texas: 320 ( D indicates species naturalized to Texas) Common Name (also known as) Latin Name Remarks Cir. Threshold acacia, Berlandier (guajillo) Senegalia berlandieri Considered a shrub by B. Simpson 18'' or 1.5 ' acacia, blackbrush Vachellia rigidula Considered a shrub by Simpson 12'' or 1.0 ' acacia, Gregg (catclaw acacia, Gregg catclaw) Senegalia greggii var. greggii Was named A. greggii 55'' or 4.6 ' acacia, Roemer (roundflower catclaw) Senegalia roemeriana 18'' or 1.5 ' acacia, sweet (huisache) Vachellia farnesiana 100'' or 8.3 ' acacia, twisted (huisachillo) Vachellia bravoensis Was named 'A. tortuosa' 9'' or 0.8 ' acacia, Wright (Wright catclaw) Senegalia greggii var. wrightii Was named 'A. wrightii' 70'' or 5.8 ' D ailanthus (tree-of-heaven) Ailanthus altissima 120'' or 10.0 ' alder, hazel Alnus serrulata 18'' or 1.5 ' allthorn (crown-of-thorns) Koeberlinia spinosa Considered a shrub by Simpson 18'' or 1.5 ' anacahuita (anacahuite, Mexican olive) Cordia boissieri 60'' or 5.0 ' anacua (anaqua, knockaway) Ehretia anacua 120'' or 10.0 ' ash, Carolina Fraxinus caroliniana 90'' or 7.5 ' ash, Chihuahuan Fraxinus papillosa 12'' or 1.0 ' ash, fragrant Fraxinus cuspidata 18'' or 1.5 ' ash, green Fraxinus pennsylvanica 120'' or 10.0 ' ash, Gregg (littleleaf ash) Fraxinus greggii 12'' or 1.0 ' ash, Mexican (Berlandier ash) Fraxinus berlandieriana Was named 'F. berlandierana' 120'' or 10.0 ' ash, Texas Fraxinus texensis 60'' or 5.0 ' ash, velvet (Arizona ash) Fraxinus velutina 120'' or 10.0 ' ash, white Fraxinus americana 100'' or 8.3 ' aspen, quaking Populus tremuloides 25'' or 2.1 ' baccharis, eastern (groundseltree) Baccharis halimifolia Considered a shrub by Simpson 12'' or 1.0 ' baldcypress (bald cypress) Taxodium distichum Was named 'T.
    [Show full text]
  • Checklist of the Genus Quercus (Fagaceae) of Aguascalientes, México
    13 1 2045 the journal of biodiversity data 14 February 2017 Check List LISTS OF SPECIES Check List 13(1): 2045, 14 February 2017 doi: https://doi.org/10.15560/13.1.2045 ISSN 1809-127X © 2017 Check List and Authors Checklist of the genus Quercus (Fagaceae) of Aguascalientes, México Víctor Manuel Martínez-Calderón, María Elena Siqueiros-Delgado1 & Julio Martínez-Ramírez Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Departamento de Biología, Herbario HUAA, Avenida Universidad 940, Ciudad Universitaria, Código Postal 20131, Aguascalientes, AG, México 1 Corresponding author. E-mail: [email protected] Abstract: Twenty-five species of Quercus were collected in none occur in Yucatán (Rzedowski 2006). the state of Aguascalientes, 11 members of Quercus sect. In Aguascalientes, one of the smallest of the Mexican Lobatae (red oak) and 14 members of Quercus sect. Quercus states, two major physiographic units are recognized: (white oak). Ten species were newly recorded. Quercus xerophytic and temperate. The eastern half of the state potosina is the commonest and most widely distributed is a semiarid region where drier conditions predominate. species in the state. Eight species were found only in a single This portion of the state consists of a broad valley bounded municipality, Calvillo or San José de Gracia. The species of by a system of plateaus and low hills in the far east. Plant Quercus are mainly distributed in oak and pine-oak forest communities of this region are typical of a semi-arid in the western part of Aguascalientes. The municipalities climate and include crasicaules or thorny scrub, mesquite with the greatest numbers of species are San José de forests, and grasslands.
    [Show full text]
  • Key to Leaves of Eastern Native Oaks
    FHTET-2003-01 January 2003 Front Cover: Clockwise from top left: white oak (Q. alba) acorns; willow oak (Q. phellos) leaves and acorns; Georgia oak (Q. georgiana) leaf; chinkapin oak (Q. muehlenbergii) acorns; scarlet oak (Q. coccinea) leaf; Texas live oak (Q. fusiformis) acorns; runner oak (Q. pumila) leaves and acorns; background bur oak (Q. macrocarpa) bark. (Design, D. Binion) Back Cover: Swamp chestnut oak (Q. michauxii) leaves and acorns. (Design, D. Binion) FOREST HEALTH TECHNOLOGY ENTERPRISE TEAM TECHNOLOGY TRANSFER Oak Identification Field Guide to Native Oak Species of Eastern North America John Stein and Denise Binion Forest Health Technology Enterprise Team USDA Forest Service 180 Canfield St., Morgantown, WV 26505 Robert Acciavatti Forest Health Protection Northeastern Area State and Private Forestry USDA Forest Service 180 Canfield St., Morgantown, WV 26505 United States Forest FHTET-2003-01 Department of Service January 2003 Agriculture NORTH AMERICA 100th Meridian ii iii ACKNOWLEDGMENTS The authors wish to thank all those who helped with this publication. We are grateful for permission to use the drawings illustrated by John K. Myers, Flagstaff, AZ, published in the Flora of North America, North of Mexico, vol. 3 (Jensen 1997). We thank Drs. Cynthia Huebner and Jim Colbert, U.S. Forest Service, Northeastern Research Station, Disturbance Ecology and Management of Oak-Dominated Forests, Morgantown, WV; Dr. Martin MacKenzie, U.S. Forest Service, Northeastern Area State and Private Forestry, Forest Health Protection, Morgantown, WV; Dr. Steven L. Stephenson, Department of Biology, Fairmont State College, Fairmont, WV; Dr. Donna Ford-Werntz, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV; Dr.
    [Show full text]
  • Assessing Restoration Potential of Fragmented and Degraded Fagaceae Forests in Meghalaya, North-East India
    Article Assessing Restoration Potential of Fragmented and Degraded Fagaceae Forests in Meghalaya, North-East India Prem Prakash Singh 1,2,* , Tamalika Chakraborty 3, Anna Dermann 4 , Florian Dermann 4, Dibyendu Adhikari 1, Purna B. Gurung 1, Saroj Kanta Barik 1,2, Jürgen Bauhus 4 , Fabian Ewald Fassnacht 5, Daniel C. Dey 6, Christine Rösch 7 and Somidh Saha 4,7,* 1 Department of Botany, North-Eastern Hill University, Shillong 793022, India; [email protected] (D.A.); [email protected] (P.B.G.); [email protected] (S.K.B.) 2 CSIR-National Botanical Research Institute, Council of Scientific & Industrial Research, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India 3 Institute of Forest Ecosystems, Thünen Institute, Alfred-Möller-Str. 1, House number 41/42, D-16225 Eberswalde, Germany; [email protected] 4 Chair of Silviculture, University of Freiburg, Tennenbacherstr. 4, D-79085 Freiburg, Germany; anna-fl[email protected] (A.D.); fl[email protected] (F.D.); [email protected] (J.B.) 5 Institute for Geography and Geoecology, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131 Karlsruhe, Germany; [email protected] 6 Northern Research Station, USDA Forest Service, 202 Natural Resources Building, Columbia, MO 65211-7260, USA; [email protected] 7 Institute for Technology Assessment and Systems Analysis, Karlsruhe Institute of Technology, Karlstr. 11, D-76133 Karlsruhe, Germany; [email protected] * Correspondence: prem12fl[email protected] (P.P.S.); [email protected] (S.S.) Received: 5 August 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: The montane subtropical broad-leaved humid forests of Meghalaya (Northeast India) are highly diverse and situated at the transition zone between the Eastern Himalayas and Indo-Burma biodiversity hotspots.
    [Show full text]