Lecture 3 Semiconductor Physics (II) Carrier Transport

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 3 Semiconductor Physics (II) Carrier Transport Lecture 3 Semiconductor Physics (II) Carrier Transport Outline • Thermal Motion •Carrier Drift •Carrier Diffusion Reading Assignment: Howe and Sodini; Chapter 2, Sect. 2.4-2.6 6.012 Spring 2007 Lecture 3 1 1. Thermal Motion In thermal equilibrium, carriers are not sitting still: • Undergo collisions with vibrating Si atoms (Brownian motion) • Electrostatically interact with each other and with ionized (charged) dopants Characteristic time constant of thermal motion: ⇒ mean free time between collisions τc ≡ collison time [s] In between collisions, carriers acquire high velocity: −1 vth ≡ thermal velocity [cms ] …. but get nowhere! 6.012 Spring 2007 Lecture 3 2 Characteristic length of thermal motion: λ≡mean free path [cm] λ = vthτc Put numbers for Si at room temperature: −13 τc ≈ 10 s 7 −1 vth ≈ 10 cms ⇒ λ ≈ 0.01 µm For reference, state-of-the-art production MOSFET: Lg ≈ 0.1 µm ⇒ Carriers undergo many collisions as they travel through devices 6.012 Spring 2007 Lecture 3 3 2. Carrier Drift Apply electric field to semiconductor: E ≡ electric field [V cm-1] ⇒ net force on carrier F = ±qE E Between collisions, carriers accelerate in the direction of the electrostatic field: qE v(t) = a •t =± t mn,p 6.012 Spring 2007 Lecture 3 4 But there is (on the average) a collision every τc and the velocity is randomized: net velocity τc in direction of field time The average net velocity in direction of the field: qE qτc v = vd =± τ c =± E 2mn,p 2mn,p This is called drift velocity [cm s-1] Define: qτ c 2 −1 −1 µn,p = ≡ mobility[cm V s ] 2mn,p Then, for electrons: vdn = −µnE and for holes: vdp = µpE 6.012 Spring 2007 Lecture 3 5 Mobility - is a measure of ease of carrier drift • If τc ↑, longer time between collisions ⇒ µ ↑ • If m ↓, “lighter” particle ⇒ µ ↑ At room temperature, mobility in Si depends on doping: 1400 1200 electrons 1000 Vs) / 2 800 600 mobility (cm holes 400 200 0 1013 1014 1015 1016 1017 1018 1019 1020 + −3 Nd Na total dopant concentration (cm ) • For low doping level, µ is limited by collisions with lattice. As Temp ->INCREASES; µ-> DECREASES • For medium doping and high doping level, µ limited by collisions with ionized impurities • Holes “ heavier” than electrons – For same doping level, µn > µp 6.012 Spring 2007 Lecture 3 6 Drift Current Net velocity of charged particles ⇒ electric current: Drift current density ∝ carrier drift velocity ∝ carrier concentration ∝ carrier charge Drift current densities: drift Jn =−qnvdn = qnµ nE drift J p = qpvdp = qpµ p E Check signs: E E vdn vdp - + drift drift Jn Jp x x 6.012 Spring 2007 Lecture 3 7 Total Drift Current Density : drift drift drift J = Jn + Jp = qn( µ n + pµ p )E Has the form of Ohm’s Law E J = σ E = ρ Where: σ ≡ conductivity [Ω-1 • cm-1] ρ≡resistivity [Ω • cm] Then: 1 σ = = qnµ + pµ ρ ( n p ) 6.012 Spring 2007 Lecture 3 8 Resistivity is commonly used to specify the doping level • In n-type semiconductor: 1 ρn ≈ qNdµn • In p-type semiconductor: 1 ρp ≈ qNaµ p 1E+4 1E+3 1E+2 1E+1 p-Si 1E+0 n-Si 1E-1 Resistivity (ohm.cm) 1E-2 1E-3 1E-4 1E+12 1E+13 1E+14 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 Doping (cm-3) 6.012 Spring 2007 Lecture 3 9 Numerical Example: 16 -3 Si with Nd = 3 x 10 cm at room temperature 2 µn ≈ 1000 cm / V • s ρn ≈ 0.21Ω•cm n ≈ 3X1016 cm−3 Apply E = 1 kV/cm 6 vdn ≈10 cm / s << vth E J drift ≈ qnv = qnµ E = σ E = n dn n ρ drift 3 2 J n ≈ 4.8×10 A/ cm Time to drift through L = 0.1 µm L td = = 10 ps vdn fast! 6.012 Spring 2007 Lecture 3 10 3. Carrier Diffusion Diffusion = particle movement (flux) in response to concentration gradient n x Elements of diffusion: • A medium (Si Crystal) • A gradient of particles (electrons and holes) inside the medium • Collisions between particles and medium send particles off in random directions – Overall result is to erase gradient 6.012 Spring 2007 Lecture 3 11 Fick’s first law- Key diffusion relationship Diffusion flux ∝ - concentration gradient Flux ≡ number of particles crossing a unit area per unit time [cm-2 • s-1] For Electrons: dn F =−D n n dx For Holes: dp F =−D p p dx 2 -1 Dn ≡ electron diffusion coefficient [cm s ] 2 -1 Dp ≡ hole diffusion coefficient [cm s ] D measures the ease of carrier diffusion in response to a concentration gradient: D ↑⇒Fdiff ↑ D limited by vibration of lattice atoms and ionized dopants. 6.012 Spring 2007 Lecture 3 12 Diffusion Current Diffusion current density =charge × carrier flux diff dn Jn = qDn dx dp J diff =−qD p p dx Check signs: n p Fn Fp J Jndiff pdiff x x 6.012 Spring 2007 Lecture 3 13 Einstein relation At the core of drift and diffusion is same physics: collisions among particles and medium atoms ⇒ there should be a relationship between D and µ Einstein relation [will not derive in 6.012] D kT = µ q In semiconductors: D kT D n = = p µn q µ p kT/q ≡ thermal voltage At room temperature: kT ≈ 25mV q 16 -3 For example: for Nd = 3 x 10 cm 2 2 µn ≈ 1000 cm / V • s ⇒ Dn ≈ 25cm / s 2 2 µ p ≈ 400 cm / V • s ⇒ Dp ≈ 10 cm / s 6.012 Spring 2007 Lecture 3 14 Total Current Density In general, total current can flow by drift and diffusion separately. Total current density: dn J = Jdrift + Jdiff = qnµ E + qD n n n n n dx dp J = Jdrift + Jdiff = qpµ E − qD p p p p p dx Jtotal = Jn + Jp 6.012 Spring 2007 Lecture 3 15 What did we learn today? Summary of Key Concepts • Electrons and holes in semiconductors are mobile and charged – ⇒ Carriers of electrical current! • Drift current: produced by electric field dφ Jdrift ∝ EJdrift ∝ dx • Diffusion current: produced by concentration gradient dn dp Jdiffusion ∝ , dx dx • Diffusion and drift currents are sizeable in modern devices • Carriers move fast in response to fields and gradients 6.012 Spring 2007 Lecture 3 16.
Recommended publications
  • Chapter 4 SINGLE PARTICLE MOTIONS
    Chapter 4 SINGLE PARTICLE MOTIONS 4.1 Introduction We wish now to consider the effects of magnetic fields on plasma behaviour. Especially in high temperature plasma, where collisions are rare, it is important to study the single particle motions as governed by the Lorentz force in order to understand particle confinement. Unfortunately, only for the simplest geometries can exact solutions for the force equation be obtained. For example, in a constant and uniform magnetic field we find that a charged particle spirals in a helix about the line of force. This helix, however, defines a fundamental time unit – the cyclotron frequency ωc and a fundamental distance scale – the Larmor radius rL. For inhomogeneous and time varying fields whose length L and time ω scales are large compared with ωc and rL it is often possible to expand the orbit equations in rL/L and ω/ωc. In this “drift”, guiding centre or “adiabatic” approximation, the motion is decomposed into the local helical gyration together with an equation of motion for the instantaneous centre of this gyration (the guiding centre). It is found that certain adiabatic invariants of the motion greatly facilitate understanding of the motion in complex spatio-temporal fields. We commence this chapter with an analysis of particle motions in uniform and time-invariant fields. This is followed by an analysis of time-varying electric and magnetic fields and finally inhomogeneous fields. 4.2 Constant and Uniform Fields The equation of motion is the Lorentz equation dv F = m = q(E + v×B) (4.1) dt 88 4.2.1 Electric field only In this case the particle velocity increases linearly with time (i.e.
    [Show full text]
  • Particle Motion
    Physics of fusion power Lecture 5: particle motion Gyro motion The Lorentz force leads to a gyration of the particles around the magnetic field We will write the motion as The Lorentz force leads to a gyration of the charged particles Parallel and rapid gyro-motion around the field line Typical values For 10 keV and B = 5T. The Larmor radius of the Deuterium ions is around 4 mm for the electrons around 0.07 mm Note that the alpha particles have an energy of 3.5 MeV and consequently a Larmor radius of 5.4 cm Typical values of the cyclotron frequency are 80 MHz for Hydrogen and 130 GHz for the electrons Often the frequency is much larger than that of the physics processes of interest. One can average over time One can not however neglect the finite Larmor radius since it lead to specific effects (although it is small) Additional Force F Consider now a finite additional force F For the parallel motion this leads to a trivial acceleration Perpendicular motion: The equation above is a linear ordinary differential equation for the velocity. The gyro-motion is the homogeneous solution. The inhomogeneous solution Drift velocity Inhomogeneous solution Solution of the equation Physical picture of the drift The force accelerates the particle leading to a higher velocity The higher velocity however means a larger Larmor radius The circular orbit no longer closes on itself A drift results. Physics picture behind the drift velocity FxB Electric field Using the formula And the force due to the electric field One directly obtains the so-called ExB velocity Note this drift is independent of the charge as well as the mass of the particles Electric field that depends on time If the electric field depends on time, an additional drift appears Polarization drift.
    [Show full text]
  • Basic Physics of Magnetoplasmas-I: Single Particle Drift Montions
    310/1749-5 ICTP-COST-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006 _____________________________________________________________________ Basic Physics of Magnetoplasmas-I: Single Particle Drift Montions Vladimir CADEZ Astronomical Observatory Volgina 7 11160 Belgrade SERBIA AND MONTENEGRO ___________________________________________________________________________ These lecture notes are intended only for distribution to participants LECTURE 1 SINGLE PARTICLE DRIFT MOTIONS Vladimir M. Cade·z· Astronomical Observatory Belgrade Volgina 7, 11160 Belgrade, Serbia&Montenegro Email: [email protected] Gaseous plasma is a mixture of moving particles of di®erent species ® having mass m® and charge q®. UsuallyP but not necessarily always, such a plasma is globally electro-neutral, i.e. ® q® = 0. In astrophysical plasmas, we often have mixtures of two species ® = e; p or electron-proton plasmas as protons are the ionized atoms of Hydrogen, the most abundant element in the universe. Another plasma constituent of astrophysical signi¯cance are dust particles of various sizes and charges. For example, the electron-dust and electron-proton-dust plasmas (® = e; d and ® = e; p; d resp.) are now frequently studied in scienti¯c literature. Some astrophysical con¯gura- tions allow for more exotic mixtures like electron-positron plasmas (® = e¡; e+) which are steadily gaining interest among theoretical astrophysicists. In what follows, we shall primarily deal with the electron-proton, electro- neutral plasmas in magnetic ¯eld con¯gurations typical of many solar-terrestrial phenomena. To understand the physics of plasma processes in detail it is necessary to apply complex mathematical treatments of kinetic theory of ionized gases. For practical reasons, numerous approximations are introduced to the full kinetic approach which results in simpli¯ed and more applicable plasma theories.
    [Show full text]
  • The Electron Drift Velocity in the HARP TPC
    HARP Collaboration HARP Memo 08-103 8 October 2008 http://cern.ch/harp-cdp/driftvelocity.pdf The electron drift velocity in the HARP TPC V. Ammosov, A. Bolshakova, I. Boyko, G. Chelkov, D. Dedovitch, F. Dydak, A. Elagin, M. Gostkin, A. Guskov, V. Koreshev, Z. Kroumchtein, Yu. Nefedov, K. Nikolaev, J. Wotschack, A. Zhemchugov Abstract Apart from the electric field strength, the drift velocity depends on gas pressure and temperature, on the gas composition and on possible gas impurities. We show that the relevant gas temperature, while uniform across the TPC volume, depends significantly on the temperature and flow rate of fresh gas. We present the correction algorithms for changes of pressure and temperature, and the precise measurement of the electron drift velocity in the HARP TPC. Contents 1 Introduction 2 2 Theoretical expectation on drift velocity variations 2 3 The TPC gas 3 4 Drift velocity variation with gas temperature 4 5 Drift velocity variation with gas pressure 6 6 The algorithm for temperature and pressure correction 7 7 Drift velocity variation with gas composition and impurities 9 8 Small-radius and large-radius tomographies 12 9 Comparison with ‘Official’ HARP's analysis 15 1 1 Introduction In a TPC, the longitudinal z coordinate is measured via the drift time. Therefore, the drift velocity of electrons in the TPC gas is a centrally important quantity for the reconstruction of charged-particle tracks. Since we are not concerned here with the drift velocity of ions, we will henceforth refer to the drift velocity of electrons simply as `drift velocity'. In this paper, we discuss first the expected dependencies of the drift velocity on temperature, pressure and gas impurities.
    [Show full text]
  • Exam 1 Solutions
    PHY2054 Spring 2009 Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Feb. 4, 2009 Exam 1 Solutions 1. A proton (+e) originally has a speed of v = 2.0 ×105 m/s as it goes through a plate as shown in the figure. It shoots through the tiny +++ +++ holes in the two plates across which 16 V | 100 V | 2 V of electric potential is applied. Find the speed as it leaves the second plate. V − − − − − − Answer: 1.92 × 105 m/s | 1.44 × 105 m/s | 1.99 × 105 m/s Solution: The proton is slowed down by the electric field between v the two plates, so the velocity will be reduced. Conservation of en- 11222 ergy yields 22mvp ipf−Δ eV = mv , so vveVmf =−Δip2/. 2. Five identical charges of +1μC are located on the 5 vertices of a regular hexagon y of 1 m side leaving one vertex empty. A −1μC | −2μC | +2μC point charge is placed at the center of the hexagon. Find the magnitude and direction of the net x Coulomb force on this charge. Answer: 9.0 × 10−3 N −x-direction | 1.8 × 10−2 N −x-direction | 1.8 × 10−2 N +x-direction Solution: Only the charge on the far left contributes to the net force on the charge in the center because its contribution is not cancelled by an opposing charge. If Q represents the charge at each hexagon vertex, q is the charge at the center and d is the length of a hexagon side (note that the distance from each hexagon point to the center is also d), the force on q is kQq/ d 2 along the +x direction if Qq is positive and along the −x direction if Qq is negative.
    [Show full text]
  • LECTURE 18 – Pn DIODE Devices the Pn Junction the First Device We
    LECTURE 18 – pn DIODE Devices The pn Junction The first device we will look at is the pn diode. Junction Formation Thought experiment - consider what happens if n and p type semiconductor samples are placed together. electrons + - n + - p + - holes uncompensated donors uncompensated acceptors (stuck in lattice) metallurgical (stuck in lattice) junction Due to diffusion we have two effects: • electrons pour out of n-type material, leaving behind uncompensated donors (+ ions) • holes pour out of p-type material, leaving behind uncompensated acceptors (- ions) These electrons and holes then recombine, producing a region depleted of free carriers, leaving only fixed charges (ionized donors and acceptors). Lecture 18: pn Diode September, 2000 1 The diffusion process can not continue indefinitely as the space charge creates an electric field that opposes the diffusion of majority carriers (electrons in n-type and holes in p-type), though such diffusion is not prevented altogether. W depletion region n + - p + - ε built in electric field The electric field will sweep minority carriers (holes in n- type and electrons in p-type) across the junction so that there is a drift current of electrons from the p- to the n-type side and of holes from the n- to the p-type side which is in the opposite direction to the diffusion current. The junction field builds up until these two current flows are equal and equilibrium is achieved (no net current flow). It is a basic result of thermodynamics that in equilibrium the Fermi energy must be the same throughout the system. The induced electric field establishes a contact potential (φ) between the two regions and the energy bands of the p-type side are displaced relative to those of the n-type side.
    [Show full text]
  • Physics 1E3 Test Monday, Feb. 8
    Physics 1E3 Test Monday, Feb. 8 Time: 7:00 to 8:20 Locations: see “My Grades” on WebCT. Students with conflicts: early session 5:30 to 6:50. (See “My Grades” on webCT). Unresolved conflicts: e-mail your instructor yesterday. (Conductors NOT in equilibrium; E ≠ 0) Text sections 27.1, 27.2 Current and current density Ohm’s Law, resistivity, and resistance Practice problems: Chapter 27, problems 5, 7, 11, 13 1 CURRENT I is the charge per unit time flowing along a wire: if charge dQ flows past in time dt Units: 1 ampere (A) = 1 C/s Direction: by convention, the direction of movement of positive charge + + + - - - + + + - - - I I + + + + + + A + + + + + + L = vd Δt Charge passing through the shaded circle in time Δt : Q = (number of charges/volume) x (charge on each one) x volume Q = n ·q ·(AL) = nqAvd Δt Current: I = Q/Δt = nqAvd Δt /Δt So, v I = nqAv d = average (“drift”) d velocity of each charge 2 Units: Amps/m2 (Note that the “current through a surface” is the flux of the current density through that surface.) So, J = nqvd (a vector equation) In normal conductors, J is caused by an electric field in the conductor—which is not in equilibrium. Quiz Mobile positively-charged sodium ions in a salt solution carry an electrical current when a battery is connected. There are also some negatively-charged chloride ions in the solution. The presence of mobile chloride ions A) causes the net current to be even larger B) causes the net current to be smaller C) causes the net current to be zero D) has no effect on the net current 3 The mobile charges in most metals are electrons, with about one or two electrons per atom being free to move.
    [Show full text]
  • Number of Electrons/M3 • Drift Velocity • Example: a Copper Wire (2Mm Dia
    From: https://ece.uwaterloo.ca/~dwharder/Analogy/Resistors/ Current = I = dQ/dt, unit is C/Sec which is called Ampere, A w/o proof: I=nqAvd Example: A copper wire (2mm dia) carries 10A current. If 3 =8.9x10 kg/m3, amu = 63.5 gr/mole and there is one electron/atom, calculate: •Number of electrons/m3 •Drift velocity PHYS42-9-24-2015 Page 1 •Drift velocity This is the AVERAGE speed of electrons in the wire. Why is it so low? example: An electron is orbiting in a Circle of radius R. What is the current associated with this motion? Electron is moving with speed of V. PHYS42-9-24-2015 Page 2 Symbol for resistance is Symbol for Battery is Symbol for Capacitor is This means VARIABLE PHYS42-9-24-2015 Page 3 Conductivity Unit of Conductivity? Example: A 8mm diameter plastic wire (L=1m) is coated with gold to a thickness of 1 micron. If for gold is 2.44x10-8 ohms-m, what is the resistance of wire end to end? A wire is drawn to 3 times of it's original Length. what is the ratio of new resistance to the old one? PHYS42-9-24-2015 Page 4 R=R0(1+α(T)) or =0(1+α(T)) NOTE: R0 and 0 are not resistance and resistivity at 0 degrees. They are the constant at the temperature given when α is specified wrong way: PHYS42-9-24-2015 Page 5 Right Way: Current Density Use of Resistance for "strain. Gauge" This section will not be in your test.
    [Show full text]
  • Chapter 2 Motion of Charged Particles in Fields
    Chapter 2 Motion of Charged Particles in Fields Plasmas are complicated because motions of electrons and ions are determined by the electric and magnetic fields but also change the fields by the currents they carry. For now we shall ignore the second part of the problem and assume that Fields are Prescribed. Even so, calculating the motion of a charged particle can be quite hard. Equation of motion: dv m = q ( E + v ∧ B ) (2.1) dt charge E­field velocity B­field � �� � Rate of change of momentum � �� � Lorentz Force Have to solve this differential equation, to get position r and velocity (v= r˙) given E(r, t), B(r, t). Approach: Start simple, gradually generalize. 2.1 Uniform B field, E = 0. mv˙ = qv ∧ B (2.2) 2.1.1 Qualitatively in the plane perpendicular to B: Accel. is perp to v so particle moves in a circle whose radius rL is such as to satisfy 2 2 v⊥ mrLΩ = m = |q | v⊥B (2.3) rL Ω is the angular (velocity) frequency 2 2 2 1st equality shows Ω = v⊥/rL (rL = v⊥/Ω) 17 Figure 2.1: Circular orbit in uniform magnetic field. v⊥ 2 Hence second gives m Ω Ω = |q | v⊥B |q | B i.e. Ω = . (2.4) m Particle moves in a circular orbit with |q | B angular velocity Ω = the “Cyclotron Frequency” (2.5) m v⊥ and radius rl = the “Larmor Radius. (2.6) Ω 2.1.2 By Vector Algebra • Particle Energy is constant. proof : take v. Eq. of motion then � � d 1 2 mv.v˙ = mv = qv.(v ∧ B) = 0.
    [Show full text]
  • Lecture 3 Electron and Hole Transport in Semiconductors Review
    Lecture 3 Electron and Hole Transport in Semiconductors In this lecture you will learn: • How electrons and holes move in semiconductors • Thermal motion of electrons and holes • Electric current via drift • Electric current via diffusion • Semiconductor resistors ECE 315 – Spring 2005 – Farhan Rana – Cornell University Review: Electrons and Holes in Semiconductors holes + electrons + + As Donor A Silicon crystal lattice + impurity + As atoms + ● There are two types of mobile charges in semiconductors: electrons and holes In an intrinsic (or undoped) semiconductor electron density equals hole density ● Semiconductors can be doped in two ways: N-doping: to increase the electron density P-doping: to increase the hole density ECE 315 – Spring 2005 – Farhan Rana – Cornell University 1 Thermal Motion of Electrons and Holes In thermal equilibrium carriers (i.e. electrons or holes) are not standing still but are moving around in the crystal lattice because of their thermal energy The root-mean-square velocity of electrons can be found by equating their kinetic energy to the thermal energy: 1 1 m v 2 KT 2 n th 2 KT vth mn In pure Silicon at room temperature: 7 vth ~ 10 cm s Brownian Motion ECE 315 – Spring 2005 – Farhan Rana – Cornell University Thermal Motion of Electrons and Holes In thermal equilibrium carriers (i.e. electrons or holes) are not standing still but are moving around in the crystal lattice and undergoing collisions with: • vibrating Silicon atoms • with other electrons and holes • with dopant atoms (donors or acceptors) and
    [Show full text]
  • Ionic Drift Velocity and Its Relation with Current Density
    394 A Textbook of Physical Chemistry – Volume I Ionic Drift Velocity and Its Relation with Current Density In this section, we will try to explain how the ionic movement is quantitatively related to current density flowing through an electrolytic solution under the influence of an applied electric field. To do so, we need to understand the ionic drift velocity and then its relationship with current density. Ionic Drift Velocity When an ion in the electrolytic solution is placed under the externally applied electric field, the electric field will make the ion to accelerate as per Newton’s second law. Now if the ion is in the vacuum, it would show an acceleration until it strikes with the respective electrode. However, it will not happen since a large number of other ions also present in the same electrolytic solution along with the solvent as well. Consequently, the ion is almost bound to collide with other ions or solvent particles in its journey. The ion will stop for some time and then will start to accelerate again. This stop-start phenomenon will impart a discontinuity in the speed and direction of this moving ion. It means that ionic movement is not very much smooth but actually a resistance is offered by the surrounding medium. Therefore, we can say that the application of the external electric field will make the ion move towards the oppositely charged electrode but in a stops-starts and zigzag fashion. An ion starts moving towards the positively-charged electrode only after the application of the electric field. The initial velocity before that can simply be neglected because it arises from random collisions which can be in any random direction.
    [Show full text]
  • Key Questions
    2/28/14 Things you should know when you leave… Key Questions ECE 340 • Why do carriers diffuse? Lecture 16 and 17: Diffusion • What happens when we add an electric of Carriers field to our carrier gradient? • How can I visualize this from a band Class Outline: diagram? • What is the general effect of including recombination in our considerations? •Diffusion Processes • What is the relationship between •Diffusion and Drift of Carriers diffusion and mobility? M.J. Gilbert ECE 340 – Lecture 16 and 17 Diffusion Processes Diffusion Processes What happens when we have a concentration discontinuity?? Let’s shine light on a localized part of a semiconductor… Now let’s monitor the system… Consider a situation where we spray perfume in the corner of a room… •Assume thermal motion . • If there is no convection or motion of air, then the scent spreads by diffusion. •Carriers move by interacting with the lattice or impurities. • This is due to the random motion of particles. •Thermal motion causes particles to jump to an •Particles move randomly until they collide with an air molecule which changes adjacent compartment. it’s direction. •After the mean-free time (τ ), half of • c If the motion is truly random, then a particle sitting in some volume has equal particles will leave and half will remain a probabilities of moving into or out of the volume at some time interval. certain volume. 1024 T = 0 512 512 512 256 256 384 384 Shouldn’t the same thing happen T1 = 0 in a semiconductor if we have 1024 t = 3τ t = 0 t =τ c t = 2τ c 128 128 c 256 spatial gradients of carriers? T2 = 0 • 320 256 Process continues until uniform concentration.
    [Show full text]