Review Article Alternanthera Mosaic Potexvirus: Several Features, Properties, and Application

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Alternanthera Mosaic Potexvirus: Several Features, Properties, and Application Hindawi Advances in Virology Volume 2018, Article ID 1973705, 11 pages https://doi.org/10.1155/2018/1973705 Review Article Alternanthera mosaic potexvirus: Several Features, Properties, and Application Ekaterina Donchenko, Ekaterina Trifonova , Nikolai Nikitin , Joseph Atabekov , and Olga Karpova Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia Correspondence should be addressed to Nikolai Nikitin; [email protected] Received 21 March 2018; Accepted 23 May 2018; Published 19 June 2018 Academic Editor: Finn S. Pedersen Copyright © 2018 Ekaterina Donchenko et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Alternanthera mosaic virus (AltMV) is a typical member of the Potexvirus genus in its morphology and genome structure; still it exhibits a number of unique features. Tey allow this virus to be considered a promising object for biotechnology. Virions and virus-like particles (VLPs) of AltMV are stable in a wide range of conditions, including sera of laboratory animals. AltMV VLPs can assemble at various pH and ionic strengths. Furthermore, AltMV virions and VLPs demonstrate high immunogenicity, enhancing the immune response to the target antigen thus ofering the possibility of being used as potential adjuvants. Recently, for the frst time for plant viruses, we showed the structural diference between morphologically similar viral and virus-like particles on AltMV virions and VLPs. In this review, we discuss the features of AltMV virions, AltMV VLP assembly, and their structure and properties, as well as the characteristics of AltMV isolates, host plants, infection symptoms, AltMV isolation and purifcation, genome structure, viral proteins, and AltMV-based vectors. 1. Introduction advantages for successful application in biotechnology [4, 7– 9]. Alternanthera mosaic virus (AltMV) was frst described in 1999 as “isolate 451/1” in the state of Queensland, Australia [1]. Te new virus was isolated from Alternanthera pungens 2. AltMV Isolates and Their Distribution plants of the family Amaranthaceae.AltMVbelongstothe Soon afer AltMV had been discovered in Australia, other iso- genus Potexvirus and the family Alphafexiviridae.TeAltMV lates were derived from plants in Europe [10, 11], USA [2, 12– genome is a positive-sense single-stranded RNA 6604-6607 16], Brazil [17], and Asia [18]. Nowadays AltMV is reported to nt long depending on the isolates. AltMV virions represent be spread all over the world, and capable of infecting plants fexible flamentous particles with helical symmetry made up of various families including ornamental plants and crops of one type of coat protein (CP) subunits. Te mean length [1, 19]. To date, complete nucleotide sequences are deter- of AltMV virions equals 554 nm [1], 536 nm [2], or 570 nm minedforthefollowingAltMVisolates:AltMV-0c (6604 nt [3]. As reported by Mukhamedzhanova et al.[3],thevirions long), AltMV-MU (6606 nt), and AltMV-PA (6607 nt). Four are 13 nm in diameter. Recently AltMV virion diameter was biologically active cDNA of “infectious clones” (3-1, 3-7, 4- corrected to 13.5 nm by means of cryoelectron microscopy 1, and 4-7) were derived from AltMV-SP genome; the com- [4]. plete nucleotide sequences of these clones were established Since plant viruses and virus-like particles (VLPs) are (6607nt).Tenucleotidesequencesoftheotherisolates essentially safe for humans they seem promising for techno- have been only partially determined [2, 14, 20]. logical advances in a broad range of areas from microelec- Te diversity of the obtained isolates both in terms of tronics to developing candidate vaccines and adjuvants [5, 6]. thehostplantsbeingthetargetsforvirulenceandgeograph- AltMV virions and VLPs have a considerable number of ical distribution implies the existence of phylogenetically 2 Advances in Virology Table 1: AltMV isolates. Origin of Virus isolate Accession no. Authors Original host infected plants Phlox-like isolates Geering and Tomas, Alternanthera AltMV-AU AF080448 Australia, QLD 1999 pungens Hammond et al., AltMV-`0 AY863024 Phlox stolonifera USA, PA 2004,2006a,b Hammond et al., Phlox stolonifera cv. AltMV-SP AY850931 USA, MD 2004,2006a,b Sherwood Purple Hammond et al., Phlox stolonifera cv. AltMV-BR AY850928 USA, MD 2004,2006a,b Blue Ridge AltMV-NAN GU126686 Tang et al.,2010 Nandina domestica USA, OK Hammond and Phlox stolonifera cv. AltMV-BW JX457329 USA, MD Reinsel, 2015 Bruce's White Hammond and Phlox divaricata cv. AltMV-LGB JX457330 USA, MD Reinsel, 2015 London Grove Blue Hammond and AltMV-PGL JQ405265 Phlox carolina angusta USA Reinsel, 2015 Portulaca-like isolates Ciufo and Turina, Italy, Liguria, AltMV-IT AY566288 Portulaca grandifora 2004 Albenga Hammond et al., AltMV-Po AY850930 Portulaca grandifora USA, MD 2004,2006a,b South-Eastern AltMV-MU FJ822136 Ivanov et al.,2011 Portulaca grandifora Europe Hammond and AltMV-Port JQ405269 Portulaca grandifora USA Reinsel, 2015 Hammond and AltMV-PLR JQ405266 Phlox hybrid (annual) USA Reinsel, 2015 Hammond and AltMV-CIN JQ405268 Pericallis hybrid USA Reinsel, 2015 Asian isolate AltMV-0c LC107515 Iwabuchi et al., 2016 Achyranthes bidentata Japan, Tokyo Unassigned isolates Portulaca sp. AltMV Florida Scutellaria longifolia DQ393785 Baker et al., 2006 USA, FL isolate Crossandra infundibuliformis FJ232066, AltMV-f Duarte et al., 2008 Torenia sp. Brazil, Sao˜ Paulo FJ232067 AltMV Lockhart and EU679363 Angelonia angustifolia USA, NY angelonia isolate Daughtrey, 2008 AltMV isolate JQ687034 Vitoreli et al.,2011 Tunbergia laurifolia USA, FL G10-00982 diverged groups within the AltMV taxon [11, 20]. Based on AltMV-IT, AltMV-MU, AltMV-Port, AltMV-Po, AltMV- amino acid sequences of RNA-dependent RNA polymerase CIN, and AltMV-PLR (Table 1) were classifed as portulaca- (RdRp, replicase) and CP,Ivanov et al. [11] have distinguished like isolates [20]. Ivanov et al. [11] indicated a close evolu- 2 groups within the AltMV species: phlox-like isolates and tionary relationship among the isolates of this group. Te portulaca-likeisolates.InthestudybyHammondandReinsel amino acid sequences of AltMV-IT, AltMV-MU, and AltMV- [20] this diferentiation was confrmed by means of amino Po CPs difer on substitutions at two sites, methionine acid sequence analysis of the three proteins which are 106 for isoleucine and serine 185 for phenylalanine [11]. products of the “triple gene block” (TGB). Apparently, Asian AltMV-Au, AltMV-PA, AltMV-NAN, and AltMV-SP were AltMV isolate should be regarded as a separate group [18]. classifed as phlox-like isolates. Belonging to diferent groups, Advances in Virology 3 theCPsofAltMV-MUandAltMV-PAarediferentby12 rugosity, veinal necrosis, and interveinal yellowing (Table 2) amino acid residues situated mainly on the N-terminus [1,2,12,15,17]. of CP [11]. Nucleotide sequences determined for AltMV AltMV infection symptoms were shown to depend not isolates obtained from Scutellaria longifolia [12], Torenia [17], only on the host plant species, but also on the duration of Angelonia angustifolia [15], and Tunbergia laurifolia plants infection, virus strain, and environmental factors. For exam- [21] are too short for detailed analysis, yet most likely they ple, symptoms being mostly pronounced in plants grown belong to portulaca-like type [20]. under high light levels and moderate temperature escaped Te reported distribution of isolates may be determined notice in plants grown under low light levels and high temper- by the peculiarities of the host plant cultivation. Annual ature [2]. For AltMV-SP isolates derived from tobacco Nico- phlox, cineraria, angelonia, torenia, thunbergia, and portu- tiana benthamiana the symptom severity was shown to cor- laca are grown mostly in greenhouses as ornamental plants, relate with sequence diferences of the replicase (RdRp) and while perennial phlox and nandina with vegetative repro- Triple Gene Block protein 1 (TGBp1) [23]. Similarly, in case duction are cultivated in open ground. Similar conditions of AltMV-Po isolate, the level of severity in symptom mani- of plant cultivation most likely account for portulaca-like festationwasdemonstratedtogohandinhandwithchanges AltMV detection in greenhouse plants; moreover, portulaca in amino acid sequence of CP [24]. mighthaveservedasaninfectionsourceforthistype Te ability of AltMV to infect a wide host range leading of horticulture. Similarly, the spread of phlox-like AltMV to symptomless infection allows for cross-contamination obtained from plants cultivated in open ground was the result among various species including the cultivated ones. Taking of cross-contamination from infected perennial phlox plants the aforementioned into account, AltMV may be more [20]. widespread than the literature suggests, particularly in nurs- According to serological data as well as nucleotide and eries [12, 20]. amino acid sequence similarity, AltMV is the closest relative of the papaya mosaic virus (PapMV) [1, 2, 20]. AltMV is 4. AltMV Propagation and Purification easily confused with PapMV based on serological analysis or PCR analysis in case of an incorrect primer selection Several methods were developed for AltMV isolation from [2] which leads to AltMV being misinterpreted as PapMV a variety of host plants (Table 3). Geering and Tomas [1] [12, 22]. Hammond et al. [2] argued that AltMV is far followed the procedure previously described by Bancrof et more widespread than
Recommended publications
  • Alternanthera Philoxeroides (Mart.) Griseb
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Alternanthera philoxeroides (Mart.) Griseb. Alligatorweed Family: Amaranthaceae Range: Mainly in the southeastern states, but also in California. Habitat: Shallow water in ditches, marshes, pond margins, and slow- moving waterways. May also be found terrestrially in wet soils. It can tolerate saline conditions up to 10% salt by volume. Alligatorweed requires a warm summer growing condition but can survive cold winters provided there are no prolonged periods of freezing temperatures. Origin: Native to South America. Impact: Alligatorweed forms dense floating mats on the surface of water Photo courtesy of Richard Old that decrease light penetration and change the natural ecology at the site. It also competes with native vegetation, can cause flooding, and has the potential to create anoxic conditions, increase mosquito breeding, and harbor diseases. Western states listed as Noxious Weed: Arizona, California California Invasive Plant Council (Cal-IPC) Inventory: High Invasiveness (Alert) Alligatorweed is an aquatic perennial that also has a terrestrial form. The aquatic form roots in shallow water and rarely grows in water deeper than 6 ft.
    [Show full text]
  • Production of Pathogen-Tested Herbaceous Ornamentals
    EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 4/34 (1) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Schemes for the production of healthy plants for planting Schémas pour la production de végétaux sains destinés à la plantation Production of pathogen-tested herbaceous ornamentals Specific scope Specific approval and amendment This standard describes the production of pathogen-tested First approved in 2007-09. material of herbaceous ornamental plants produced in glasshouse. This standard initially presents a generalized description of the 2. Maintenance and testing of candidate plants performance of a propagation scheme for the production of for nuclear stock pathogen tested plants and then, in the appendices, presents details of the ornamental plants for which it can be used 2.1 Growing conditions together with lists of pathogens of concern and recommended test methods. The performance of this scheme follows the general The candidate plants for nuclear stock should be kept ‘in sequence proposed by the EPPO Panel on Certification of quarantine’, that is, in an isolated, suitably designed, aphid-proof Pathogen-tested Ornamentals and adopted by EPPO Council house, separately from the nuclear stock and other material, (OEPP/EPPO, 1991). According to this sequence, all plant where it can be observed and tested. All plants should be grown material that is finally sold derives from an individual nuclear in individual pots containing new or sterilized growing medium stock plant that has been carefully selected and rigorously that are physically separated from each other to prevent any tested to ensure the highest practical health status; thereafter, direct contact between plants, with precautions against infection the nuclear stock plants and the propagation stock plants by pests.
    [Show full text]
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Helichrysum Persicum (Asteraceae, Inuleae), a New Species from NE Iran
    Ann. Bot. Fennici 42: 73–76 ISSN 0003-3847 Helsinki 16 February 2005 © Finnish Zoological and Botanical Publishing Board 2005 Helichrysum persicum (Asteraceae, Inuleae), a new species from NE Iran Farrokh Ghahremaninejad* & Nasrin Noori Department of Biology, Faculty of Science, Univ. of Tarbiat-Moaallem (Teacher Training Univ. of Tehran), 49 Dr. Mofatteh Avenue, 15614 Tehran, Iran (*e-mail: [email protected]) Received 27 July 2004, revised version received 19 Nov. 2004, accepted 3 Dec. 2004 Ghahremaninejad, F. & Noori, N. 2005: Helichrysum persicum (Asteraceae, Inuleae), a new spe- cies from NE Iran. — Ann. Bot. Fennici 42: 73–76. A new species, Helichrysum persicum F. Ghahremani. & Noori (Asteraceae, Inuleae), is described and illustrated from Iran. It is related to and compared with H. davisianum Rech.f. and H. artemisioides Boiss. & Hausskn. Key words: Asteraceae, Helichrysum, Inuleae, new species, taxonomy We describe a new species of the genus Heli- TYPE: Iran. Khorassan Province, 30 km N Torbat–e Hey- chrysum from Khorassan province, NE Iran. The darieh, 1900 m, 15.VII.1976 M. Assadi & A. A. Maasoumi 21312 (holotype TARI). genus comprises nearly 600 species (Beentje 2000), mostly occurring in warm areas of the Old Perennial, 25–40 cm tall, greyish, glandu- World. According to Georgiadou et al. (1980), lar, white-hairy. Stems erect, unbranched, terete, in Iran there are 19 species, of which eight densely arachnoid-tomentose, arising from a are endemic there. There are 20 species in the short, stout, woody caudex. Resting buds ovoid, Flora Iranica region of which only H. subsimile, basal, ca. 1 cm long, 4–5 mm in diameter, endemic in Afghanistan, does not occur in Iran densely lanate.
    [Show full text]
  • Chemical Profile and Antioxidant Activity of Zinnia Elegans Jacq
    molecules Article Chemical Profile and Antioxidant Activity of Zinnia elegans Jacq. Fractions 1, 2, 3, 4 Ana Flavia Burlec y, Łukasz Pecio y , Cornelia Mircea * , Oana Cioancă , Andreia Corciovă 1,* , Alina Nicolescu 5, Wiesław Oleszek 2 and Monica Hăncianu 4 1 Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania 2 Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland 3 Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania 4 Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania 5 Center of Organic Chemistry “C.D. Nenitescu”, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania * Correspondence: [email protected] (M.C.); [email protected] (A.C.) These authors contributed equally to this work. y Academic Editors: Nazim Sekeroglu, Anake Kijjoa and Sevgi Gezici Received: 30 July 2019; Accepted: 12 August 2019; Published: 13 August 2019 Abstract: Zinnia elegans (syn. Zinnia violacea) is a common ornamental plant of the Asteraceae family, widely cultivated for the impressive range of flower colors and persistent bloom. Given its uncomplicated cultivation and high adaptability to harsh landscape conditions, we investigated the potential use of Z. elegans as a source of valuable secondary metabolites. Preliminary classification of compounds found in a methanolic extract obtained from inflorescences of Z. elegans cv. Caroussel was accomplished using HR LC-MS techniques.
    [Show full text]
  • Downloaded in July 2020
    viruses Article The Phylogeography of Potato Virus X Shows the Fingerprints of Its Human Vector Segundo Fuentes 1, Adrian J. Gibbs 2 , Mohammad Hajizadeh 3, Ana Perez 1 , Ian P. Adams 4, Cesar E. Fribourg 5, Jan Kreuze 1 , Adrian Fox 4 , Neil Boonham 6 and Roger A. C. Jones 7,* 1 Crop and System Sciences Division, International Potato Center, La Molina Lima 15023, Peru; [email protected] (S.F.); [email protected] (A.P.); [email protected] (J.K.) 2 Emeritus Faculty, Australian National University, Canberra, ACT 2600, Australia; [email protected] 3 Plant Protection Department, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran; [email protected] 4 Fera Science Ltd., Sand Hutton York YO41 1LZ, UK; [email protected] (I.P.A.); [email protected] (A.F.) 5 Departamento de Fitopatologia, Universidad Nacional Agraria, La Molina Lima 12056, Peru; [email protected] 6 Institute for Agrifood Research Innovations, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; [email protected] 7 UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia * Correspondence: [email protected] Abstract: Potato virus X (PVX) occurs worldwide and causes an important potato disease. Complete PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop0s main Citation: Fuentes, S.; Gibbs, A.J.; domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK), Hajizadeh, M.; Perez, A.; Adams, I.P.; and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes Fribourg, C.E.; Kreuze, J.; Fox, A.; plus 49 published genomic sequences were analyzed.
    [Show full text]
  • Chloroplast in Plant-Virus Interaction
    REVIEW published: 04 October 2016 doi: 10.3389/fmicb.2016.01565 Chloroplast in Plant-Virus Interaction Jinping Zhao 1, 2, Xian Zhang 3, Yiguo Hong 3 and Yule Liu 1* 1 MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China, 2 State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China, 3 Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active Edited by: Nobuhiro Suzuki, roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins Okayama University, Japan (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus Reviewed by: interaction.
    [Show full text]
  • Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
    www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs.
    [Show full text]
  • The Occurrence of the Viruses in Narcissus L
    Journal of Horticultural Research 2016, vol. 24(2): 19-24 DOI: 10.1515/johr-2016-0016 _______________________________________________________________________________________________________ THE FREQUENCY OF VIRAL INFECTIONS ON TWO NARCISSUS PLANTATIONS IN CENTRAL POLAND Short communication Dariusz SOCHACKI1*, Ewa CHOJNOWSKA2 1Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-767 Warsaw, Poland 2Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice Received: November 2016; Accepted: December 2016 ABSTRACT Viral diseases in narcissus can drastically affect yields and quality of narcissus bulbs and flowers, leading even to a total crop loss. To test the frequency of viral infections in production fields in Central Poland, samples were collected over three years from two cultivars and two plantations, and tested for the presence of Arabis mosaic (ArMV), Cucumber mosaic (CMV), Narcissus latent (NLV), Narcissus mosaic (NMV) and the potyvirus group using the Enzyme Linked ImmunoSorbent Assay. Potyviruses, NLV and NMV were detected in almost all leaf samples in both cultivars, in all three years of testing. Other viruses were detected in a limited number of samples. In most cases mixed infections were present. Tests on bulbs have shown the presence of potyviruses and NMV, with the higher number of positives in cultivar ‘Carlton’. In addition, for most viruses an increase in their detectability was observed on both plantations in subse- quent seasons. Key words: ELISA, flower bulbs, negative selection, viral disease INTRODUCTION (NMV). Many of the most important viruses infect- ing narcissus belongs to the potyvirus group. Viral diseases can drastically affect yield as Asjes (1996) reported that degeneration of nar- well as quality of narcissus bulbs and flowers, some- cissus plants caused by viruses may decrease bulb times resulting in a total crop loss.
    [Show full text]
  • Helichrysum Cymosum (L.) D.Don (Asteraceae): Medicinal Uses, Chemistry, and Biological Activities
    Online - 2455-3891 Vol 12, Issue 7, 2019 Print - 0974-2441 Review Article HELICHRYSUM CYMOSUM (L.) D.DON (ASTERACEAE): MEDICINAL USES, CHEMISTRY, AND BIOLOGICAL ACTIVITIES ALFRED MAROYI* Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa. Email: [email protected] Received: 26 April 2019, Revised and Accepted: 24 May 2019 ABSTRACT Helichrysum cymosum is a valuable and well-known medicinal plant in tropical Africa. The current study critically reviewed the medicinal uses, phytochemistry and biological activities of H. cymosum. Information on medicinal uses, phytochemistry and biological activities of H. cymosum, was collected from multiple internet sources which included Scopus, Google Scholar, Elsevier, Science Direct, Web of Science, PubMed, SciFinder, and BMC. Additional information was gathered from pre-electronic sources such as journal articles, scientific reports, theses, books, and book chapters obtained from the University library. This study showed that H. cymosum is traditionally used as a purgative, ritual incense, and magical purposes and as herbal medicine for colds, cough, fever, headache, and wounds. Ethnopharmacological research revealed that H. cymosum extracts and compounds isolated from the species have antibacterial, antioxidant, antifungal, antiviral, anti-HIV, anti-inflammatory, antimalarial, and cytotoxicity activities. This research showed that H. cymosum is an integral part of indigenous pharmacopeia in tropical Africa, but there is lack of correlation between medicinal uses and existing pharmacological properties of the species. Therefore, future research should focus on evaluating the chemical and pharmacological properties of H. cymosum extracts and compounds isolated from the species. Keywords: Asteraceae, Ethnopharmacology, Helichrysum cymosum, Herbal medicine, Indigenous pharmacopeia, Tropical Africa.
    [Show full text]
  • Comparison of Plant‐Adapted Rhabdovirus Protein Localization and Interactions
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Kathleen Marie Martin University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Martin, Kathleen Marie, "COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS" (2011). University of Kentucky Doctoral Dissertations. 172. https://uknowledge.uky.edu/gradschool_diss/172 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kathleen Marie Martin The Graduate School University of Kentucky 2011 COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Kathleen Marie Martin Lexington, Kentucky Director: Dr. Michael M Goodin, Associate Professor of Plant Pathology Lexington, Kentucky 2011 Copyright © Kathleen Marie Martin 2011 ABSTRACT OF DISSERTATION COMPARISON OF PLANT‐ADAPTED RHABDOVIRUS PROTEIN LOCALIZATION AND INTERACTIONS Sonchus yellow net virus (SYNV), Potato yellow dwarf virus (PYDV) and Lettuce Necrotic yellows virus (LNYV) are members of the Rhabdoviridae family that infect plants. SYNV and PYDV are Nucleorhabdoviruses that replicate in the nuclei of infected cells and LNYV is a Cytorhabdovirus that replicates in the cytoplasm. LNYV and SYNV share a similar genome organization with a gene order of Nucleoprotein (N), Phosphoprotein (P), putative movement protein (Mv), Matrix protein (M), Glycoprotein (G) and Polymerase protein (L).
    [Show full text]
  • Alligatorweed Scientific Name: Alternanthera Philoxeroides Order
    Common Name: Alligatorweed Scientific Name: Alternanthera philoxeroides Order: Caryophyllales Family: Amaranthaceae Wetland Plant Status: Obligatory Ecology & Description The stems of alligatorweed are long (up to 4 ft), hollow, and branched to allow the plant to float. The leaves are opposite, elongated, and elliptical with smooth edges. Leaves have a defined midrib with small pinnate veins. The plant produces a small cluster of white flowers during the warm parts of the year. The flowers are fragrant and consist of 6-10 florets and produce one small seed. Habitat The plant roots in shallow water (less than 6 ½ ft) and then begins to grow out from the anchor. This can be problematic as it can choke off entire waterways. The plant grows in segments and can grow roots or stems out of the nodes that separate each segmented piece. Distribution In the United States, alligatorweed is found from the southern marshes of Virginia to southern Florida and westward to Texas and is found in some parts of California. Native/Invasive Status Alligatorweed is a perennial non-native species of plant from South America that was accidentally introduced in the state of Florida. It is considered invasive in the United States, New Zealand, China, Australia, and Thailand. Alligatorweed is also considered to be a noxious plant because it disrupts water flow and aeration when it becomes thick. In times of high rain fall it can lead to flooding due to its clogging of the waterways. Wildlife Uses Mats of alligatorweed can be good habitat for many aquatic invertebrates and small fish that may serve as a food source for wildlife.
    [Show full text]