Uu Donghua1 and Gao Xinzeng2 Materials and Methods Sieve

Total Page:16

File Type:pdf, Size:1020Kb

Uu Donghua1 and Gao Xinzeng2 Materials and Methods Sieve IAWA Journal, Vol. 14 (3), 1993: 289-298 COMPARATIVE ANATOMY OF THE SECONDARY PHLOEM OF TEN SPECIES OF ROSACEAE by Uu Donghua1 and Gao Xinzeng2 Summary Materials and Methods The anatomy of the secondary phloem of The barks used for this investigation were species belonging to four genera in Rosaceae obtained from the trees grown on the campus is described. The three genera of the Maloi­ of Peking University, Peking, China. The deae studied are more or less similar in their collection of materials began September 15, phloem anatomy; tangential bands of fibre­ 1991. All the sampies were taken from trunks sclereids alternate with bands of sieve ele­ (3 trees each species) at 1 m height of appar­ ments, companion cells and parenchyma ently healthy trees over 10 years in age. Sci­ cells; superficially, the nonconducting and entific names of the trees studied are shown conducting phloem are not distinct from one in Table 1. another; sieve plates are compound and there Small pieces of about 5 mm 3 were re­ are conspicuous sieve areas on lateral walls; moved from bark sampies (15 mm3 ), fixed rays are uniseriate and multiseriate, and homo­ in FAA, and then embedded in paraffin. From cellular. In the five species of Prunus (Prun­ representative bark of each specimen, trans­ oideae) studied, there are no fibre-sclereids in verse, radial and tangential seetions of 10-12 the conducting phloem, end walls bearing sim­ 11m thickness were obtained with a sliding ple sieve plates are oblique to nearly horizon­ microtome. The seetions were stained with tal; and rays are uniseriate and multiseriate, safranine and fast green. homocellular. Macerations were obtained with a solution of 1 part 10% chromic acid and 1 part 10% Key words: Rosaceae, secondary phloem, nitric acid, and then stained with star blue. sieve elements, rays, phloem anatomy, Quantitative data were obtained from 30 cells crystals, fibre-sclereids. of each species. Introduction Results From an anatomical point of view, both The results show that the genera of Maloi­ phloem and xylem are considered important deae are similar to each other in the structure and useful for identification and evaluating of their secondary phloem and that there are the taxonomie position of plant species. Many differences between Prunus and the genera of studies have been published on phloem anat­ Maloideae (Figs. 1-6). omy (e.g., Esau 1939, 1950, 1979; Evert 1960, 1961, 1963a, b; Davis & Evert 1968, Sieve elements and companion cells 1970; Derr & Evert 1967; Furuno 1990). Sieve plates are divided into two types, This study is aimed at increasing our un­ compound sieve plates and simple sieve derstanding of the anatomical features of the plates, according to the degree of specialisa­ secondary phloem in ten species in four gen­ tion of the end walls of sieve elements. The era of the Rosaceae. three genera of the Maloideae show the fol- 1) Departrnent of Biology, Tianjin Normal University, Tianjin 300 074, People's Republic of China. 2) Department of Biology, Peking University, Peking 100 871, People's Republic of China. Downloaded from Brill.com09/27/2021 08:11:32PM via free access IV'0 Table 1. Anatomical characters ofthe secondary phloem of 10 species ofthe family Rosaceae from China. 0 Sieve elements Ray parenchyma cells Parenchyma cells Sclerenchyma I I I I cells Uniseriate rays Multiseriate rays Fibre-sclereids 11 S- ~ .:; 'il ~ E I S- -;;- oS .:; -a ~ ,,~ ~ .:; I ~ I !l 1l I I ] j !l > .., .., '" ~ ~ oS -a " ~ .!I .... -5 -5 ...." (;' co .~ 0 .~ " !;j .;"f~ :9 0 e ~ ::~ & .0 ~ Jj '6 " ..c:~ ci Ii o " S 1 JJ " '6 a'. a'. ~8 ! ~ " .~ '"~ :2 " .ll.~ .., " 1l ~ ~ .*" ~ e'O ~ -5 " I ~ " :l ~ e ~ ~ s : ~ "~ " ~ ~ "0 § .E ~ ~ .~ . ] ~ " .!2 1 I0 > "> 0 > ~ .t:: > .( .( CI) .( .( .( u iE. < :I: <s < ~ 1:I: :I: " 8 P'l a 8 < (/)" '" "" Prunoideae Prunus armeniaca L. 272 35 + 144 2-12 11 670 5-62 67 2-6 + + 7.3 + + + 862 15 Prunus cerasifera Ehrh. var. pissardii Koehn. 461 26 + 153 2-16 12 638 7-78 63 2-5 + 9.8 + + + 714 16 Prunus davidiana Franch. 262 24 + 138 2-17 15 599 8-80 53 2-6 + + 8.3 + + + 1097 16 ..... Prunus persica Batch. 243 33 + 159 2-17 20 562 5-60 101 2-7 + + 5.6 + + + 740 24 > Downloaded fromBrill.com09/27/2021 08:11:32PM var. rubro-plena Schneid. 268 24 + 145 1- 9 18 579 6-55 111 2-4 + 5.4 + 845 16 + + ~ ..... 0 Maloideae $::: ::I Malus pumiUa Mill. 409 23 + 12.2 90 1- 8 12 189 3-21 27 2-3 + 10.8 + + 419 18 ~ Malus spectabilis Borkh. 476 25 + 12.5 84 2-12 17 208 4-37 32 2-3 + 9.3 + + 812 17 <: ~ Pyrus betulaefolia Bunge 470 20 + 12.5 128 2-17 12 184 4-24 21 2-3 + 10.3 + + 460 19 + ...... ./>0. Pyrus bretschneideri Rehd. 424 30 + 12.2 147 2-25 16 299 4-31 32 2-3 + 10.7 + + 621 22 ,-... ~ Crataegus pinnatifida Bunge 316 24 + 11.4 123 2-18 14 244 8-40 28 2-3 + 12.5 + + 290 19 + via freeaccess I~ Liu Donghua & Gao Xinzeng - Phloem of Rosaceae 291 lowing features: the length of sieve elements parenchyma cells occur in more or less regu­ is over 316 Jlm on average (Table 1); the end lar tangential bands one celllayer in depth, walls, which bear compound sieve plates, are altemating with uniseriate layers of sieve ele­ extremely inclined and can hardly be distin­ ments and their companion cells (Fig. 5). The guished from lateral walls so that the cells are parenchyma cells in Prunus are irregular in truly fusiform; the sieve plates bear many arrangement (Fig. 9). sieve areas, ranging from 11.4 to 12.5 Jlm on With the cessation of function of the sieve average (Table 1); the lateral sieve areas are elements and the companion cells, the paren­ conspicuous, rounded or elliptical in appear­ chyma cells continue to increase in size both ance, and scalariformly arranged (Fig. 7); and radially and tangentially in nonconducting the sieve elements of the conducting phloem phloem. Some parenchyma cells develop into are squarish or nearly rounded in transection fibre-scJereids. In the species of Maloideae, (Figs. 2, 4, 5), while those of the noncon­ the parenchyma cells and the rays form a net­ ducting phloem become irregular in outline as like pattern in transection (Fig. 5). their radial walls gradually collapse (Fig. 4). Crystal-conraining cells - Crystal-con­ The sieve elements in the Prunus species taining cells were found in all the sampies in­ are mostly cylindrical and the end walls, which vestigated. There are some regularities in their bear simple sieve plates, are oblique to nearly morphology, arrangement and distribution. horizontal, and rare compound sieve plates Prismatic and styloid crystal-containing cells are found in P. cerasifera var. pissardii and occur in the three Maloideae genera, but druse P. persica. The lateral sieve areas are incon­ crystal-containing cells characterise the Pru­ spicuous (Fig. 8). The average length of sieve nus species. The prismatic and styloid crystal­ elements is much shorter than that of the sieve containing cells are distributed in two ways: elements of the species of Maloideae, except I) linked in strands where each chamber con­ that of P. cerasifera var. pissardii (Table 1). tains a solitary prismatic crystal which is The sieve elements of the conducting phloem slightly longer than wide and parallel to the appear almost rounded in transection (Fig. 9). sieve elements in arrangement, as seen in ra­ The sieve tubes of the nonconducting phloem dial section (Fig. 10); 2) spatially associated collapse and are obliterated soon after becom­ with the tangential bands of phloem fibre­ ing nonfunctional and the nonconducting scJereids (Fig. 11). The druse crystal-con­ phloem contains large intercellular spaces taining cells appear scattered in transection. (Figs. 6, 9). Ray parenchyma cells - Phloem rays are The companion cells are shorter than the mostly uniseriate and multiseriate and homo­ sieve elements in all species examined. They cellular in all species investigated. There are appear nearly triangular in transection and are differences in height and width of rays among located on one side of the sieve elements. the genera (Figs. 12, 13). Multiseriate rays in Generally , each sieve element has one to two the three genera of Maloideae range from 21 companion cells in species of the Maloideae, Jlm to 32 Jlm in width (2- or 3-seriate) and or two to three companion cells are arranged 184 Jlm to 299 Jlffi (21 to 40 cells) in height, in strands in Prunus. The companion cells but those in the Prunus species are much die when the sieve element protoplasts are larger (Table 1). Uniseriate rays in Prunus disorganised and the walls common to both are composed of procumbent cells. Druse cells collapse. crystal-containing cells were found only in the multiseriate rays of Prunus. In addition, Parenchyma in Pyrus some ray parenchyma cells adjacent Axial parenchyma cells - In the three gen­ to the fibre bands are sclerified Pits are clear­ era of Maloideae the phloem parenchyma cells ly discernible in the thickened cell walls. The in the conducting phloem appear rounded in rays do not become dilated in the nonconduct­ transection. The phloem parenchyma cells ing phloem, but rather become curved to that are relatively dark in appearance occur in varying degrees. The rays of the Maloideae the late phloem, and those with relatively light curve slightly (Fig. 4) and those of Prunus contents are located in the early phloem. The strongly (Fig. 6). Downloaded from Brill.com09/27/2021 08:11:32PM via free access 292 IAWA Journal, Vol.
Recommended publications
  • Parenchyma Cell Respiration and Survival in Secondary Xylem: Does Metabolic Activity Decline with Cell Age?
    Plant, Cell and Environment (2007) 30, 934–943 doi: 10.1111/j.1365-3040.2007.01677.x Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? R. SPICER1 & N. M. HOLBROOK2 1Rowland Institute at Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA and 2Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA ABSTRACT defines (and arguably drives) heartwood formation, a form of tissue senescence during which the oldest, non- Sapwood respiration often declines towards the sapwood/ functional xylem is compartmentalized in the centre of the heartwood boundary, but it is not known if parenchyma stem. The cause of parenchyma cell death is not known, metabolic activity declines with cell age. We measured but evidence for decreased metabolic activity in the inner- sapwood respiration in five temperate species (sapwood age most sapwood has led to a view of parenchyma ageing as range of 5–64 years) and expressed respiration on a live cell a gradual, passive decline in metabolism that terminates in basis by quantifying living parenchyma. We found no effect cell death. of parenchyma age on respiration in two conifers (Pinus Multiple reports suggest that sapwood respiration strobus, Tsuga canadensis), both of which had signifi- declines towards the sapwood/heartwood boundary cant amounts of dead parenchyma in the sapwood. In (Goodwin & Goddard 1940; Higuchi, Shimada & Watanabe angiosperms (Acer rubrum, Fraxinus americana, Quercus 1967; Pruyn, Gartner & Harmon 2002a,b; Pruyn, Harmon & rubra), both bulk tissue and live cell respiration were Gartner 2003; Pruyn, Gartner & Harmon 2005), although reduced by about one-half in the oldest relative to the there have been reports of no change (Bowman et al.
    [Show full text]
  • Does the Distance to Normal Renal Parenchyma (DTNRP) in Nephron-Sparing Surgery for Renal Cell Carcinoma Have an Effect on Survival?
    ANTICANCER RESEARCH 25: 1629-1632 (2005) Does the Distance to Normal Renal Parenchyma (DTNRP) in Nephron-sparing Surgery for Renal Cell Carcinoma have an Effect on Survival? Z. AKÇETIN1, V. ZUGOR1, D. ELSÄSSER1, F.S. KRAUSE1, B. LAUSEN2, K.M. SCHROTT1 and D.G. ENGEHAUSEN1 Departments of 1Urology and 2Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Germany Abstract. Background: The effect of the distance to normal renal solitary kidneys. Additionally, organ preservation in the parenchyma (DTNRP) on survival after nephron-sparing surgery presence of an intact contralateral kidney can be performed (NSS) for renal cell cancer (RCC) was analyzed. Additionally, for small localized tumors with nearly equivalent results for the role of T-classification, tumor diameter and tumor grading tumor-specific survival, compared to nephrectomy (1). The was considered. Patients and Methods: NSS was performed on question of whether a small safety margin in intraoperative 126 patients with RCC between 1988 and 2000. Eighty-six patients histology may be adequate for favorable outcome of the were submitted to annual follow-up. These 86 patients were sub- patient constitutes an everyday issue for the practitioner classified into statistical groups according to the distance performing nephron-sparing surgery. In this context, the to normal renal parenchyma (≤ 2mm; > 2mm – ≤ 5mm; clinical impact of defined surgical margin widths for >5 mm), T-classification, tumor diameter (≤ 20mm; > 20mm - avoiding local tumor recurrence and, therefore, improved ≤ 30 mm; >30 mm – ≤ 50mm; >50mm) and tumor grading. survival after nephron-sparing surgery has been discussed The effect of belonging to one of these groups on survival was but still remains controversial.
    [Show full text]
  • Tissues and Other Levels of Organization MODULE - 1 Diversity and Evolution of Life
    Tissues and Other Levels of Organization MODULE - 1 Diversity and Evolution of Life 5 Notes TISSUES AND OTHER LEVELS OF ORGANIZATION You have just learnt that cell is the fundamental structural and functional unit of organisms and that bodies of organisms are made up of cells of various shapes and sizes. Groups of similar cells aggregate to collectively perform a particular function. Such groups of cells are termed “tissues”. This lesson deals with the various kinds of tissues of plants and animals. OBJECTIVES After completing this lesson, you will be able to : z define tissues; z classify plant tissues; z name the various kinds of plant tissues; z enunciate the tunica corpus theory and histogen theory; z classify animal tissues; z describe the structure and function of various kinds of epithelial tissues; z describe the structure and function of various kinds of connective tissues; z describe the structure and function of muscular tissue; z describe the structure and function of nervous tissue. 5.1 WHAT IS A TISSUE Organs such as stem, and roots in plants, and stomach, heart and lungs in animals are made up of different kinds of tissues. A tissue is a group of cells with a common origin, structure and function. Their common origin means they are derived from the same layer (details in lesson No. 20) of cells in the embryo. Being of a common origin, there are similar in structure and hence perform the same function. Several types of tissues organise to form an organ. Example : Blood, bone, and cartilage are some examples of animal tissues whereas parenchyma, collenchyma, xylem and phloem are different tissues present in the plants.
    [Show full text]
  • Squamous Cell Carcinoma of the Renal Parenchyma
    Zhang et al. BMC Urology (2020) 20:107 https://doi.org/10.1186/s12894-020-00676-5 CASE REPORT Open Access Squamous cell carcinoma of the renal parenchyma presenting as hydronephrosis: a case report and review of the recent literature Xirong Zhang1,2, Yuanfeng Zhang1, Chengguo Ge1, Junyong Zhang1 and Peihe Liang1* Abstract Background: Primary squamous cell carcinoma of the renal parenchyma is extremely rare, only 5 cases were reported. Case presentation: We probably report the fifth case of primary Squamous cell carcinoma (SCC) of the renal parenchyma in a 61-year-old female presenting with intermittent distending pain for 2 months. Contrast-enhanced computed tomography (CECT) revealed hydronephrosis of the right kidney, but a tumor cannot be excluded completely. Finally, nephrectomy was performed, and histological analysis determined that the diagnosis was kidney parenchyma squamous cell carcinoma involving perinephric adipose tissue. Conclusions: The present case emphasizes that it is difficult to make an accurate preoperative diagnosis with the presentation of hidden malignancy, such as hydronephrosis. Keywords: Kidney, Renal parenchyma, Squamous cell carcinoma, Hydronephrosis, Malignancy Background Case presentation Squamous cell carcinoma (SCC) of the renal pelvis is a The patient is a 61-year-old female. After suffering from rare neoplasm, accounting for only 0.5 to 0.8% of malig- intermittent pain in the right flank region for 2 months nant renal tumors [1], SCC of the renal parenchyma is she was referred to the urology department at an outside even less common. A review of the literature shows that hospital. The patient was diagnosed with hydronephrosis only five cases of primary SCC of the renal parenchyma of the right kidney and underwent a right ureteroscopy have been reported to date [2–6].
    [Show full text]
  • Anatomical Traits Related to Stress in High Density Populations of Typha Angustifolia L
    http://dx.doi.org/10.1590/1519-6984.09715 Original Article Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae) F. F. Corrêaa*, M. P. Pereiraa, R. H. Madailb, B. R. Santosc, S. Barbosac, E. M. Castroa and F. J. Pereiraa aPrograma de Pós-graduação em Botânica Aplicada, Departamento de Biologia, Universidade Federal de Lavras – UFLA, Campus Universitário, CEP 37200-000, Lavras, MG, Brazil bInstituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – IFSULDEMINAS, Campus Poços de Caldas, Avenida Dirce Pereira Rosa, 300, CEP 37713-100, Poços de Caldas, MG, Brazil cInstituto de Ciências da Natureza, Universidade Federal de Alfenas – UNIFAL, Rua Gabriel Monteiro da Silva, 700, CEP 37130-000, Alfenas, MG, Brazil *e-mail: [email protected] Received: June 26, 2015 – Accepted: November 9, 2015 – Distributed: February 28, 2017 (With 3 figures) Abstract Some macrophytes species show a high growth potential, colonizing large areas on aquatic environments. Cattail (Typha angustifolia L.) uncontrolled growth causes several problems to human activities and local biodiversity, but this also may lead to competition and further problems for this species itself. Thus, the objective of this study was to investigate anatomical modifications on T. angustifolia plants from different population densities, once it can help to understand its biology. Roots and leaves were collected from natural populations growing under high and low densities. These plant materials were fixed and submitted to usual plant microtechnique procedures. Slides were observed and photographed under light microscopy and images were analyzed in the UTHSCSA-Imagetool software. The experimental design was completely randomized with two treatments and ten replicates, data were submitted to one-way ANOVA and Scott-Knott test at p<0.05.
    [Show full text]
  • How Long Do Wood Parenchyma Cells Live in the Stem of a Scots Pine (Pinus Sylvestris L.)? Studies on Cell Nuclei Status Along the Radial and Longitudinal Stem Axes
    Article How Long Do Wood Parenchyma Cells Live in the Stem of a Scots Pine (Pinus sylvestris L.)? Studies on Cell Nuclei Status along the Radial and Longitudinal Stem Axes Mirela Tulik 1,* , Joanna Jura-Morawiec 2, Anna Bieniasz 1 and Katarzyna Marciszewska 1 1 Department of Forest Botany, Institute of Forest Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska Str., 02-776 Warsaw, Poland; [email protected] (A.B.); [email protected] (K.M.) 2 Polish Academy of Sciences Botanical Garden—Centre for Biological Diversity Conservation in Powsin, 2 Prawdziwka Str., 02-973 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-593-8032 Received: 9 September 2019; Accepted: 1 November 2019; Published: 4 November 2019 Abstract: This paper deals with the spatial distribution of heartwood in Scots pine stems (Pinus sylvestris L.), determined on the basis of the absence of nuclei in parenchyma cells. Samples were collected at several heights from two Scots pine stems growing in fresh coniferous stand as codominant trees. Transverse and radial sections were cut from the samples and stained with acetocarmine to detect the nuclei and with I2KI to show starch grains. Unstained sections were also observed under ultraviolet (UV) light to reveal cell wall lignification. The shapes of the nuclei in ray and axial parenchyma cells differed: the axial parenchyma cells had rounded nuclei, while the nuclei of the ray parenchyma cells were elongated. The lifespan of the parenchyma cells was found to be 16–42 years; the longest-lived were cells from the base of the stem, and the shortest-lived were from the base of the crown.
    [Show full text]
  • Histological Investigations of the Secondary Phloem of Gymnosperms
    /\/A/fz#/ ^ *"/ S HISTOLOGICAL INVESTIGATIONS OF THE SECONDARY PHLOEM OF GYMNOSPERMS R. W. DEN OUTER N08201,41 1 WAGENINGEN 582.42/.47:581.824.2 634.0.174.2:634.0.168 HISTOLOGICAL INVESTIGATIONS OF THE SECONDARY PHLOEM OF GYMNOSPERMS PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE LANDBOUWKUNDE OP GEZAG VAN DE RECTOR MAGNIFICUS, IR. F. HELLINGA, HOOGLERAAR IN DE CULTUURTECHNIEK, TE VERDEDIGEN TEGEN DE BEDENKINGEN VAN DE SENAAT VAN DE LANDBOUWHOGESCHOOL TE WAGENINGEN OP VRIJDAG 23 JUNI 1967 TE 16.00 UUR DOOR R. W. DEN OUTER H. VEENMAN & ZONEN N.V. - WAGENINGEN - 1967 STELLINGEN I De differentiatie van het vertikale systeem van de bast, loopt parallel met de reductie van de baststralen. Dit proefschrift II De eiwitcellen in debas t van het Chamaecyparispisifera type,vertone n meer overeenkomst metd e begeleidende cellen vand e Angiospermen, dan de eitwitcellen in de bast van hetPseudotsuga taxifolia type. Dit proefschrift III Deter mmergstrale n moet uitsluitend gebruikt worden voor primaire stralen, terwijl secundaire stralen, baststralen genoemd moeten worden, wanneerzi j in het secundaire phloeem voorkomen en houtstralen wanneer zij in het secun­ daire xyleem voorkomen. IV Bij de bast van Gymnospermen is, in tegenstelling met de bast van Angio­ spermen, de mate van aanwezigheid van bastvezels karakteristiek voorhe t ontwikkelingsstadium van het vertikale systeem. ZAHUR, M.S., Cornell Univ. Agr. Exp. St. Mem. 358 (1959) V De opvatting van STRASBURGERda tstippel stusse neiwithoudende -e nzetmeel - houdende systemen zouden ontbreken, isgebleke n onjuist te zijn. STRASBURGER, E., Ober denBa u undde nVerrichtunge n der Leitungsbahnen inde n Pfianzen. Jena (1891) VI De criteria, welke GREGUSS aanlegt bij de rangschikkingvan de houtstralen van de Gymnospermen in verschillende ontwikkelingsstadia, gelden niet voor de baststralen.
    [Show full text]
  • OCCURRENCE of SIEVE ELEMENTS in PHLOEM RAYS Kishore S. Rajput & K. S. Rao Solitary Sieve Elements Or Groups of Sieve Element
    lAWA Journal, Vol. 18 (2),1997: 197-201 OCCURRENCE OF SIEVE ELEMENTS IN PHLOEM RAYS by Kishore S. Rajput & K. S. Rao Department of Botany, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390 002, India SUMMARY Solitary sieve elements or groups of sieve elements were encountered in the rays of secondary phloem of Erythrina indica, Guazuma tomentosa, Acacia nilotica, Azadirachta indica, and Tectona grandis trees. These elements were short and possessed simple and compound sieve plates on their transverse to slightly oblique end walls. Each sieve tube ele­ ment was associated with a single companion cell at their comers. Like axial sieve tube elements, the sieve tube elements of the rays showed slime (P-protein) plugs and cytoplasmic strands when functional and massive deposition of callose on sieve plates in nonfunctional sieve tube elements. The distribution pattern of these ray sieve elements differed among the species studied. The detailed structure and possible signifi­ cance of these elements are discussed. Key words: Sieve elements, phloem rays, Erythrina indica, Guazuma tomentosa, Acacia nilotica, Azadirachta indica, Tectona grandis. INTRODUCTION Occurrence of sieve elements in the rays of secondary phloem is a rare feature and has been reported in Cucurbitaceae (Fischer 1884) and Compositae (Chavan et al. 1983). They have also been reported in mesocarpic as well as endocarpic regions of fruits (Thanki 1978; Shah et al. 1983). However, in the aforementioned plants they are slightly oblique to the axial sieve tube elements and developed mostly in the regions of ray splitting and ray fusion. Meagre information is available on naturally occurring sieve tube elements in the rays of secondary phloem (Chavan et al.
    [Show full text]
  • Complex Tissue : Phloem: Sieve Elements
    Complex Tissue : Phloem: The other specialised complex tissue forming a part of the vascular bundle is phloem It is composed of sieve elements, companion cells, parenchyma and some fibres. Sclerotic cells may also be present.Phloem is for translocation of organic solutes—the elaborated food materials in solution. The elements of phloem originate from the procambium of apical meristem or the vascular cambium. Phloem tissue consists offour types of cells, namely: sieve tubes, companion cells, phloem fibres and phloem parenchyma Sieve Elements: The most important constituents of phloem are the sieve elements, the sieve tubes and sieve cells. From ontogenetic point of view a sieve tube resembles a vessel and a sieve cell a tracheid. Sieve tubes are long tube-like bodies formed from a row of cells arranged in longitudinal series where the end-walls are perforated in a sieve-like manner. The perforated end-walls are called the sieve plates, through which cytoplasmic connections are established between adjacent cells. A sieve plate is called simple, if it has only one sieve area, whereas the plate may be compound with several sieve areas arranged in scalariform, reticulate or other manners. Though rare, the sieve areas may occur on the side walls as well. Companion Cells: Companion cells remain associated with the sieve tubes of angiosperms, both ontogenetically and physiologically. These are smaller elongate cells, having dense cytoplasm and prominent nuclei. Starch grains are never present.They occur along the lateral walls of the sieve tubes. A companion cell may be equal in length to the accompanying sieve tube element or the mother cell may be divided transversely forming a series of companion cells .
    [Show full text]
  • Observations on Functional Wood Histology of Vines and Lianas Sherwin Carlquist Pomona College; Rancho Santa Ana Botanic Garden
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 11 | Issue 2 Article 3 1985 Observations on Functional Wood Histology of Vines and Lianas Sherwin Carlquist Pomona College; Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1985) "Observations on Functional Wood Histology of Vines and Lianas," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 11: Iss. 2, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol11/iss2/3 ALISO 11(2), 1985, pp. 139-157 OBSERVATIONS ON FUNCTIONAL WOOD HISTOLOGY OF VINES AND LlANAS: VESSEL DIMORPHISM, TRACHEIDS, V ASICENTRIC TRACHEIDS, NARROW VESSELS, AND PARENCHYMA SHERWIN CARLQUIST Rancho Santa Ana Botanic Garden and Department of Biology, Pomona College Claremont, California 91711 ABSTRACT Types of xylem histology in vines, rather than types of cambial activity and xylem conformation, form the focus of this survey. Scandent plants are high in conductive capability, but therefore have highly vulnerable hydrosystems; this survey attempts to see what kinds of adaptations exist for safety and in which taxa. A review of scandent dicotyledons reveals that a high proportion possesses vasi­ centric tracheids (22 families) or true tracheids (24 families); the majority of scandent families falls in these categories. Other features for which listings are given include vascular tracheids, fibriform vessel elements, helical sculpture in vessels, starch-rich parenchyma adjacent to vessels, and other parenchyma distributions. The high vulnerability of wide vessels is held to be countered by various mechanisms. True tracheids and vasicentric tracheids potentially safeguard the hydrosystem by serving when large vessels are embolized.
    [Show full text]
  • Xylem Parenchyma—Role and Relevance in Wood Functioning in Trees
    plants Review Xylem Parenchyma—Role and Relevance in Wood Functioning in Trees Aleksandra Słupianek * , Alicja Dolzblasz and Katarzyna Sokołowska Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; [email protected] (A.D.); [email protected] (K.S.) * Correspondence: [email protected] Abstract: Woody plants are characterised by a highly complex vascular system, wherein the sec- ondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field. Keywords: carbohydrates storage; CODIT; contact cells; embolism; hydraulic conductance; trees; vessel-associated cells; water storage; xylem parenchyma Citation: Słupianek, A.; Dolzblasz, A.; Sokołowska, K. Xylem 1. Introduction Parenchyma—Role and Relevance in Vascular plants have developed a sophisticated and efficient transport system that Plants Wood Functioning in Trees. supplies water and various other substances, including photoassimilates, ions, and hor- 2021, 10, 1247. https://doi.org/ mones, to all plant organs.
    [Show full text]
  • Tissuesissuesissues
    Chapter 6 TISSUESISSUESISSUES From the last chapter, we recall that all living There are noticeable differences between organisms are made of cells. In unicellular the two. Plants are stationary or fixed – they organisms, a single cell performs all basic don’t move. Since they have to be upright, they functions. For example, in Amoeba, a single have a large quantity of supportive tissue. The cell carries out movement, intake of food, supportive tissue generally has dead cells. gaseous exchange and excretion. But in multi- Animals on the other hand move around cellular organisms there are millions of cells. in search of food, mates and shelter. They Most of these cells are specialised to carry out consume more energy as compared to plants. specific functions. Each specialised function Most of the tissues they contain are living. is taken up by a different group of cells. Since Another difference between animals and these cells carry out only a particular function, they do it very efficiently. In human beings, plants is in the pattern of growth. The growth muscle cells contract and relax to cause in plants is limited to certain regions, while this movement, nerve cells carry messages, blood is not so in animals. There are some tissues in flows to transport oxygen, food, hormones and plants that divide throughout their life. These waste material and so on. In plants, vascular tissues are localised in certain regions. Based tissues conduct food and water from one part on the dividing capacity of the tissues, various of the plant to other parts. So, multi-cellular plant tissues can be classified as growing or organisms show division of labour.
    [Show full text]