Academic Genealogy of Ted Loch-Temzelides Andreas Von Ettingshausen H

Total Page:16

File Type:pdf, Size:1020Kb

Academic Genealogy of Ted Loch-Temzelides Andreas Von Ettingshausen H Sharaf al-Dīn al-Ṭūsī Kamal al Din Ibn Yunus Nasir al-Din al-Tusi Shams ad-Din Al-Bukhari Maragheh Observatory Gregory Chioniadis 1296 Ilkhans Court at Tabriz Manuel Bryennios Theodore Metochites 1315 Gregory Palamas Nilos Kabasilas Nicole Oresme 1363 Heinrich von Langenstein Demetrios Kydones Elissaeus Judaeus 1363 Université de Paris 1375 Université de Paris Georgios Plethon Gemistos Johannes von Gmunden 1380, 1393 1406 Universität Wien Manuel Chrysoloras Basilios Bessarion Georg von Peuerbach 1436 Mystras 1440 Universität Wien Johannes Müller Regiomontanus Guarino da Verona Johannes Argyropoulos 1457 Universität Wien 1408 1444 Università degli Studi di Padova 1457 Universität Leipzig Vittorino da Feltre Marsilio Ficino Cristoforo Landino 1416 Università degli Studi di Padova 1462 Università degli Studi di Firenze Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Paolo (Nicoletti) da Venezia Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote 1433 Università di Mantova Università di Mantova 1477 Università degli Studi di Firenze 1433 Constantinople Demetrios Chalcocondyles Leo Outers Sigismondo Polcastro Gaetano da Thiene Moses Perez Rudolf Agricola Scipione Fortiguerra Thomas von Kempen à Kempis Georgius Hermonymus Jacob ben Jehiel Loans 1452 Accademia Romana 1485 Université Catholique de Louvain 1478 Università degli Studi di Ferrara 1493 Università degli Studi di Firenze 1452 Mystras Jacques (Jacobus Faber) Lefèvre d'Étaples Jan Standonck Johann (Johannes Kapnion) Reuchlin Maarten (Martinus Dorpius) van Dorp Pelope Pietro Roccabonella Nicoletto Vernia Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Alexander Hegius Matthaeus Adrianus 1480 Accademia Romana 1474 Collège Sainte-Barbe 1477 Universität Basel 1504, 1515 Université Catholique de Louvain Università degli Studi di Padova Università degli Studi di Padova 1516 Université de Paris 1472 Università degli Studi di Padova 1499, 1508 Università degli Studi di Padova 1474 1480 Université de Paris 1490 Collège de Montaigu 1481 Université de Poitiers Niccolò Leoniceno Jacobus (Jacques Dubois) Sylvius Guillaume Budé Desiderius Erasmus Jacobus (Jacques Masson) Latomus Jan (Johannes Campensis) van Campen Petrus (Pieter de Corte) Curtius Pietro Pomponazzi Marco Musuro Rutger Rescius François Vatable Ulrich Zasius 1446 Scuola Pubblica di Vicenza Université de Montpellier 1486, 1491 Université de Paris 1497 /1506 Collège de Montaigu 1502 Collège de Montaigu Universität Ingolstadt 1513, 1530 Université Catholique de Louvain 1487 Università degli Studi di Padova 1486 Università degli Studi di Firenze 1513 Université de Paris 1511, 1513 Université de Paris 1501 Albert-Ludwigs-Universität Freiburg im Breisgau 1453 Università degli Studi di Padova 1530 Université de Paris 1486, 1491 Université d'Orléans 1506 University of Turin 1519 Katholieke Universiteit Leuven 1519 Université Catholique de Louvain Giovanni Battista della Monte Johannes Winter von Andernach Wolfgang Fabricius Capito Jakob Milich Antonio Musa Brasavola Gemma (Jemme Reinerszoon) Frisius Vittore Trincavelli Elijah ben Asher Levita Nicolas (Nicolaes Cleynaerts) Clénard Johannes Stöffler Luca Pacioli Università degli Studi di Padova 1527 Université Catholique de Louvain 1506 Universität Ingolstadt 1520 Albert-Ludwigs-Universität Freiburg im Breisgau 1520 Università degli Studi di Ferrara 1529, 1536 Université Catholique de Louvain Università degli Studi di Padova 1515, 1521 Université Catholique de Louvain 1476 Universität Ingolstadt Università degli Studi di Ferrara 1532 Collège de Tréguier 1515 Albert-Ludwigs-Universität Freiburg im Breisgau 1524 Universität Wien Andreas (Andries van Wesel) Vesalius Thomas Cranmer Paul (Paul Büchlein) Fagius Philipp Melanchthon Balthasar Kaeuffelin Bassiano Landi Guillaume Rondelet Jacques Toussain Johannes (Johann Sturm) Sturmius Erasmus Reinhold Bonifazius Erasmi Leonhard (Leonard Vitreatoris z Dobczyc) von Dobschütz Domenico Maria Novara da Ferrara 1537 Università degli Studi di Padova 1515 University of Cambridge 1527 Ruprecht-Karls-Universität Heidelberg 1511 Ruprecht-Karls-Universität Heidelberg 1521 Eberhard-Karls-Universität Tübingen 1542 Università degli Studi di Padova Université de Paris 1521 Université de Paris 1527 Université Catholique de Louvain 1535 Martin-Luther-Universität Halle-Wittenberg 1509 Martin-Luther-Universität Halle-Wittenberg 1489 Uniwersytet Jagielloński 1483 Università degli Studi di Firenze 1537 Université Catholique de Louvain 1526 University of Cambridge 1537 Collège Saint-Guillaume à Strasbourg 1514 Eberhard-Karls-Universität Tübingen Nicolaus (Mikołaj Kopernik) Copernicus Immanuel Tremellius Raoul (Rodolphus Cavellerius) le Chevalier Valentine Naibod Simon Grynaeus Johannes Caselius 1499 Università degli Studi di Padova Matteo Realdo (Renaldus Columbus) Colombo Jakob Beuerlin Felix Plater Petrus (Pierre de La Ramée) Ramus Adrien Turnèbe Samuel Heyland Johannes Hommel Michael Beuther Johannes Volmar 1549 University of Cambridge University of Oxford Universität Erfurt 1511 Eberhard-Karls-Universität Tübingen 1560 Martin-Luther-Universität Halle-Wittenberg 1499 Università degli Studi di Ferrara 1544 Università degli Studi di Padova 1551 Eberhard-Karls-Universität Tübingen 1557 Université de Montpellier 1536 Collège de Navarre 1532 Collège de France 1554 Collège Saint-Guillaume à Strasbourg 1543 Martin-Luther-Universität Halle-Wittenberg 1542 Martin-Luther-Universität Halle-Wittenberg 1515 Martin-Luther-Universität Halle-Wittenberg 1561 Ruprecht-Karls-Universität Heidelberg Collège de France Martin-Luther-Universität Halle-Wittenberg 1523 Martin-Luther-Universität Halle-Wittenberg 1566 Universität Leipzig 1499 Università di Bologna 1499 Uniwersytet Jagielloński Philipp Apian Gabriele Falloppio Theodor Zwinger Rudolph (Snel van Royen) Snellius Simon Sulzer Jacob Andreae Petrus Ryff Joseph Justus Scaliger Ludolph van Ceulen Johannes (van den Driesche) Drusius Johann Hoffmann Valentin Thau 1549, 1551 Université Paris IV-Sorbonne Georg Joachim von Leuchen Rheticus 1547 Università degli Studi di Ferrara 1553 Collège de France 1572 Ruprecht-Karls-Universität Heidelberg 1531 Collège Saint-Guillaume à Strasbourg 1553 Eberhard-Karls-Universität Tübingen 1584 Universität Basel 1563 Collège de France 1572 University of Cambridge 1555 Universität Leipzig 1549, 1551 Collège Saint-Guillaume à Strasbourg 1535 Martin-Luther-Universität Halle-Wittenberg 1547 Università degli Studi di Padova 1559 Università degli Studi di Padova 1572 Universität zu Köln 1532 Universität Basel 1549, 1551 Universität Ingolstadt Johann Jacob Grynaeus Paul Wittich Johannes Nicolaus Stupanus Hieronymus (Girolamo Fabrici d'Acquapendente) Fabricius John Craig Thomas Erpenius Willebrord (Snel van Royen) Snellius Constantijn l’Empereur van Oppyck Moritz Valentin Steinmetz Sebastian (Theodoricus) Dietrich Nikolaus Selnecker Reinhard Bachoff von Echt Michael Maestlin Caspar Peucer Valentin (Valentinus Otho) Otto 1559 Universität Basel 1566 Martin-Luther-Universität Halle-Wittenberg 1569 Universität Basel 1559 Università degli Studi di Padova 1580 Universität Basel 1608 Universiteit Leiden 1607 Universiteit Leiden 1617 Universiteit Franeker 1550, 1567 Universität Leipzig 1544 Martin-Luther-Universität Halle-Wittenberg 1570 Martin-Luther-Universität Halle-Wittenberg 1598 Ruprecht-Karls-Universität Heidelberg 1571, 1576 Evangelischen Stift Tübingen 1545 Martin-Luther-Universität Halle-Wittenberg 1570 Martin-Luther-Universität Halle-Wittenberg 1564 Eberhard-Karls-Universität Tübingen 1566 Universität Leipzig Duncan Liddel Tycho (Tyge Ottesen) Brahe Jacobus (Jacob Harmensz.) Arminius Salomon Alberti Marin Mersenne Jacobus Golius Sebastian Beck Johann Möller 1582 Universität Breslau Christoph Meurer Petrus Otto Sethus Calvisius Albert Clampius 1562, 1565 Martin-Luther-Universität Halle-Wittenberg 1582 Universiteit Leiden 1564 Martin-Luther-Universität Halle-Wittenberg 1611 Université de Paris 1612, 1621 Universiteit Leiden 1610 Universität Basel 1582 Europa-Universität Viadrina Frankfurt an der Oder 1582 Universität Leipzig 1582 Universität Leipzig Ruprecht-Karls-Universität Heidelberg 1562, 1565 Universität Leipzig 1582 Philipps-Universität Marburg 1574 Università degli Studi di Padova 1596 Universität Helmstedt 1562, 1565 Københavns Universitet Gilbert Jacchaeus Adriaan van den Spieghel Hiob Ludolf Cornelius Martini Jan Jansz Stampioen, Jr. Frans van Schooten, Jr. Theodor Zwinger, Jr. 1601 University of St. Andrews Friedrich Leibniz August Hermann Francke Philipp Müller Andreas Schato Erasmus Schmidt Leonhard Etzler Johannes Kepler 1603 Università degli Studi di Padova 1645 Universität Erfurt 1591 Universität Helmstedt 1635 Universiteit Leiden 1630 Universität Basel 1603 Universität Helmstedt 1622 Universität Leipzig 1604 Universität Leipzig 1562, 1578 Martin-Luther-Universität Halle-Wittenberg 1592 Martin-Luther-Universität Halle-Wittenberg 1591 Evangelischen Stift Tübingen 1603 Université Catholique de Louvain 1646 Universiteit Leiden 1592 Universität Helmstedt 1611 Universiteit Leiden Adolph Vorstius Jan Jessenius Christiaan Huygens Johann Heinrich Michaelis Bartholomäus Leonhard Schwendendörffer Jakob Thomasius Erhard Weigel Jacobus Martini Abraham Heinecke Ernestus Hettenbach Anton Euonymus Melchior Jöstel Georg Calixt 1619 Universiteit Leiden 1588 Universität Leipzig 1647 Universiteit Leiden 1694 Martin-Luther-Universität Halle-Wittenberg 1656 Universität Leipzig 1643 Universität Leipzig 1650 Universität Leipzig
Recommended publications
  • FINITE ADDITIVITY VERSUS COUNTABLE ADDITIVITY: De FINETTI and SAVAGE
    FINITE ADDITIVITY VERSUS COUNTABLE ADDITIVITY: De FINETTI AND SAVAGE N. H. BINGHAM Electronic J. History of Probability and Statistics 6.1 (2010), 33p R´esum´e L'arri`ere-planhistorique, d'abord de l'additivit´ed´enombrable et puis de l'additivit´efinie, est ´etudi´eici. Nous discutons le travail de de Finetti (en particulier, son livre posthume, de Finetti (2008)), mais aussi les travaux de Savage. Tous deux sont surtout (re)connus pour leurs contributions au domaine des statistiques; nous nous int´eressonsici `aleurs apports du point de vue de la th´eoriedes probabilit´es.Le probl`emede mesure est discut´e{ la possibilit´ed'´etendreune mesure `a tout sous-ensemble d'un espace de proba- bilit´e. La th´eoriedes jeux de hasard est ensuite pr´esent´eepour illustrer les m´eritesrelatifs de l'additivit´efinie et d´enombrable. Puis, nous consid´eronsla coh´erencedes d´ecisions,o`uun troisi`emecandidat apparait { la non-additivit´e. Nous ´etudionsalors l’influence de diff´erents choix d'axiomes de la th´eoriedes ensembles. Nous nous adressons aux six raisons avanc´espar Seidenfeld (2001) `al'appui de l'additivit´efinie, et faisons la critique des plusi`eresapproches `a la fr´equencelimite. Abstract The historical background of first countable additivity, and then finite ad- ditivity, in probability theory is reviewed. We discuss the work of the most prominent advocate of finite additivity, de Finetti (in particular, his posthu- mous book de Finetti (2008)), and also the work of Savage. Both were most noted for their contributions to statistics; our focus here is more from the point of view of probability theory.
    [Show full text]
  • Bachelier and His Times: a Conversation with Bernard Bru ∗†‡
    First appeared in FINANCE AND STOCHASTICS (2001) Appears in the book MATHEMATICAL FINANCE -- BACHELIER CONGRESS 2000 H. Geman et al. editors, 2002, Springer Verlag Bachelier and his Times: A Conversation with Bernard Bru ¤yz Murad S. Taqqu Boston University April 25, 2001 Abstract Louis Bachelier defended his thesis \Theory of Speculation" in 1900. He used Brownian motion as a model for stock exchange performance. This conversation with Bernard Bru illustrates the scienti¯c climate of his times and the conditions under which Bachelier made his discover- ies. It indicates that Bachelier was indeed the right person at the right time. He was involved with the Paris stock exchange, was self-taught but also took courses in probability and on the theory of heat. Not being a part of the \scienti¯c establishment," he had the opportunity to develop an area that was not of interest to the mathematicians of the period. He was the ¯rst to apply the trajectories of Brownian mo- tion, and his theories pre¯gure modern mathematical ¯nance. What follows is an edited and expanded version of the original conversation with Bernard Bru. Bernard Bru is the author, most recently, of Borel, L¶evy, Neyman, Pearson et les autres [38]. He is a professor at the University of Paris V where he teaches mathematics and statistics. With Marc Barbut and Ernest Coumet, he founded the seminars on the history of Probability at the EHESS (Ecole¶ des Hautes Etudes¶ en Sciences Sociales), which bring together researchers in mathematics, philosophy and the human- ities. ¤This article ¯rst appeared in Finance and Stochastics [119].
    [Show full text]
  • Once in a Lifetime March 29, 2020
    Once In A Lifetime March 29, 2020 The Moving Finger writes; and, having writ, Moves on: nor all thy Piety nor Wit Shall lure it back to cancel half a Line, Nor all thy Tears wash out a Word of it. - Rubaiyat of Omar Khayyam (c. 1080) That's a poem attributed to Omar Khayyam, an 11th century Persian philosopher and all-around genius who lived near the modern-day city of Qom, the epicenter of the COVID-19 plague wracking Iran today. Here's another philosopher and all-around genius, David Byrne, saying the same thing one thousand years later. And you may ask yourself Am I right? Am I wrong? And you may say to yourself "My God! What have I done?" - Once In A Lifetime (1981) ©2020 Ben Hunt 1 All rights reserved. David Byrne lives in the modern-day city of New York, the epicenter of the COVID-19 plague wracking the United States today. It's all the same, you know. The dad in Qom coughing up a lung who loves his kids and is loved by them is exactly the same as the dad in New York coughing up a lung who loves his kids and is loved by them. I know we don't think of it that way. Hell, I know plenty of people in my home state of Alabama who don't even think a dad in Montgomery is the same as a dad in New York, much less a dad in freakin' Qom, Iran. But they are. The same, that is.
    [Show full text]
  • Leonard Savage, the Ellsberg Paradox and the Debate on Subjective Probabilities: Evidence from the Archives
    LEONARD SAVAGE, THE ELLSBERG PARADOX AND THE DEBATE ON SUBJECTIVE PROBABILITIES: EVIDENCE FROM THE ARCHIVES. BY CARLO ZAPPIA* Abstract This paper explores archival material concerning the reception of Leonard J. Savage’s foundational work of rational choice theory in its subjective-Bayesian form. The focus is on the criticism raised in the early 1960s by Daniel Ellsberg, William Fellner and Cedric Smith, who were supporters of the newly developed subjective approach, but could not understand Savage’s insistence on the strict version he shared with Bruno de Finetti. The episode is well-known, thanks to the so-called Ellsberg Paradox and the extensive reference made to it in current decision theory. But Savage’s reaction to his critics has never been examined. Although Savage never really engaged with the issue in his published writings, the private exchange with Ellsberg and Fellner, and with de Finetti about how to deal with Smith, shows that Savage’s attention to the generalization advocated by his correspond- ents was substantive. In particular, Savage’s defence of the normative value of rational choice the- ory against counterexamples such as Ellsberg’s did not prevent him from admitting that he would give careful consideration to a more realistic axiomatic system, should the critics be able to provide one. * Dipartimento di Economia, Universita degli Studi di Siena. Contact: [email protected] This “preprint” is the peer-reviewed and accepted typescript of an article that is forthcoming in revised form, after minor editorial changes, in the Journal of the History of Economic Thought (ISSN: 1053-8372), issue TBA.
    [Show full text]
  • Bayesian Statistics: Thomas Bayes to David Blackwell
    Bayesian Statistics: Thomas Bayes to David Blackwell Kathryn Chaloner Department of Biostatistics Department of Statistics & Actuarial Science University of Iowa [email protected], or [email protected] Field of Dreams, Arizona State University, Phoenix AZ November 2013 Probability 1 What is the probability of \heads" on a toss of a fair coin? 2 What is the probability of \six" upermost on a roll of a fair die? 3 What is the probability that the 100th digit after the decimal point, of the decimal expression of π equals 3? 4 What is the probability that Rome, Italy, is North of Washington DC USA? 5 What is the probability that the sun rises tomorrow? (Laplace) 1 1 1 My answers: (1) 2 (2) 6 (3) 10 (4) 0.99 Laplace's answer to (5) 0:9999995 Interpretations of Probability There are several interpretations of probability. The interpretation leads to methods for inferences under uncertainty. Here are the 2 most common interpretations: 1 as a long run frequency (often the only interpretation in an introductory statistics course) 2 as a subjective degree of belief You cannot put a long run frequency on an event that cannot be repeated. 1 The 100th digit of π is or is not 3. The 100th digit is constant no matter how often you calculate it. 2 Similarly, Rome is North or South of Washington DC. The Mathematical Concept of Probability First the Sample Space Probability theory is derived from a set of rules and definitions. Define a sample space S, and A a set of subsets of S (events) with specific properties.
    [Show full text]
  • Ronald A. Thisted April, 1997
    Ronald A. Thisted April, 1997 (revised) Department of Statistics Robert Wood Johnson Clinical Scholars Program The University of Chicago Department of Health Studies 5734 University Avenue 5841 South Maryland Avenue (MC 2007) Chicago, IL 60637 Chicago, Illinois 60637 (773) 702-8332 (773) 702-2313 email: [email protected] http://www.stat.uchicago.edu/~thisted Education: Ph.D. (Statistics) Stanford University, 1976. M.S. (Statistics) Stanford University, 1973. B.A. (Mathematics, Philosophy) Pomona College, 1972. Magna cum laude Professional: All at the University of Chicago: 1996- Professor, Department of Health Studies 1993- Co-Director, Robert Wood Johnson Clinical Scholars Program 1993- Professor, Committee on Clinical Pharmacology 1992- Professor, Departments of Statistics, Anesthesia & Critical Care, and the College 1989-1992 Associate Professor, Department of Anesthesia and Critical Care 1982-1992 Associate Professor, Department of Statistics and the College 1979-1982 Leonard Jimmie Savage Assistant Professor, Department of Statistics and the College 1976-1982 Assistant Professor, Department of Statistics and the College Honors: Phi Beta Kappa, Pomona College, 1972. National Science Foundation Graduate Fellow, 1973-1976. Sigma Xi, The University of Chicago, 1977. The Llewellyn John and Harriet Manchester Quantrell Award for Excellence in Undergraduate Teaching, 1981. Faculty, National Center for Advanced Medical Education, 1990-1992. Professional Societies: American Association for the Advancement of Science (Elected Fellow,
    [Show full text]
  • Léon Walras, Irving Fisher and the Cowles Approach to General Equilibrium Analysis
    LÉON WALRAS, IRVING FISHER AND THE COWLES APPROACH TO GENERAL EQUILIBRIUM ANALYSIS By Robert W. Dimand December 2019 COWLES FOUNDATION DISCUSSION PAPER NO. 2205 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY Box 208281 New Haven, Connecticut 06520-8281 http://cowles.yale.edu/ Léon Walras, Irving Fisher and the Cowles Approach to General Equilibrium Analysis Robert W. Dimand Department of Economics, Brock University, St. Catharines, ON L2S 3A1, Canada E-mail: [email protected] Abstract: This paper explores the relationship of Walras’s work to a particularly influential tradition of general equilibrium, that associated with the Cowles Commission for Research in Economics in Colorado in the 1930s and at the University of Chicago from 1939 to 1955, and its successor, the Cowles Foundation, at Yale University from 1955. Irving Fisher introduced general equilibrium analysis into North America with his 1891 Yale dissertation Mathematical Investigations in the Theory of Value and Prices (published 1892) and was responsible in 1892 for the first English translation of a monograph by Walras. Fisher was only able to obtain copies of books by Walras and Edgeworth when his thesis was almost ready for submission, discovering that he had independently reinvented a general equilibrium approach already developed by others, but went beyond Walras in constructing a hydraulic mechanism to simulate computation of general equilibrium and, before Pareto, in using indifference curves. Fisher was closely involved with Alfred Cowles in the Cowles Commission, the Econometric Society and Econometrica in the 1930s, promoting formal mathematical and statistical methods in economics, including drawing attention to the contributions of Walras, Edgeworth and Pareto.
    [Show full text]
  • When Did Bayesian Inference Become “Bayesian”?
    Bayesian Analysis (2003) 1, Number 1, pp. 1–41 When Did Bayesian Inference Become “Bayesian”? Stephen E. Fienberg Department of Statistics, Cylab, and Center for Automated Learning and Discovery Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A. Abstract. While Bayes’ theorem has a 250-year history and the method of in- verse probability that flowed from it dominated statistical thinking into the twen- tieth century, the adjective “Bayesian” was not part of the statistical lexicon until relatively recently. This paper provides an overview of key Bayesian develop- ments, beginning with Bayes’ posthumously published 1763 paper and continuing up through approximately 1970, including the period of time when “Bayesian” emerged as the label of choice for those who advocated Bayesian methods. Keywords: Bayes’ Theorem; Classical statistical methods; Frequentist methods; Inverse probability; Neo-Bayesian revival; Stigler’s Law of Eponymy; Subjective probability. 1 Introduction What’s in a name? It all depends, especially on the nature of the entity being named, but when it comes to statistical methods, names matter a lot. Whether the name is eponymous (as in Pearson’s chi-square statistic1, Student’s t-test, Hotelling’s T 2 statistic, the Box-Cox transformation, the Rasch model, and the Kaplan-Meier statistic) or “generic” (as in correlation coefficient or p-value) or even whimsical (as in the jackknife2 or the bootstrap3), names in the statistical literature often signal the adoption of new statistical ideas or shifts in the acceptability of sta- tistical methods and approaches.4 Today statisticians speak and write about Bayesian statistics and frequentist or classical statistical methods, and there is even a journal of Bayesian Analysis, but few appear to know where the descriptors “Bayesian” and “frequentist” came from or how they arose in the history of their field.
    [Show full text]
  • The Experiment in the History of Economics
    The Experiment in the History of Economics Throughout the evolution of economic ideas, it has often been asserted that experimentation in economics is impossible. Yet, the historical record shows that the idea of “experimentation” has, in fact, been important in the field of economics, and has been interpreted and put to use in many ways. These range from the “thought experiment”, where counterfactuals are explored in the mind of the theorist, to social experiments, where alternative economic arrangements have been tried out historically, and laboratory experimentation, which is currently a burgeoning field of empirical research. This book provides testament to the great variety of ways in which experimentation has mattered in the creation of economic knowledge. The accessible essays contained within this volume will interest all those seeking to broaden their historical understanding of the discipline and will be essential reading for students who wish to acquire a greater knowledge of how economics has grown and developed. Philippe Fontaine is a historian of postwar social science. He has pub- lished in various journals, such as Economics and Philosophy, History of Political Economy, and Isis, and is co-editor with Albert Jolink of Histor- ical Perspectives on Macroeconomics (Routledge, 1998). Robert Leonard is a historian of game theory and contemporary economics. His work has appeared in various journals in economics and in the history of science, and he is author of the forthcoming From Red Vienna to Santa Monica: von Neumann, Morgenstern and the Creation of Game Theory, 1900–1960 (Cambridge University Press). Routledge studies in the history of economics 1 Economics as Literature 8 The History of Game Theory, Willie Henderson Vol.
    [Show full text]
  • From Theories of Human Behavior to Rules of Rational Choice: Tracing a Normative Turn at the Cowles Commission, 1943-1954
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Herfeld, Catherine Working Paper From theories of human behavior to rules of rational choice: Tracing a normative turn at the cowles commission, 1943-1954 CHOPE Working Paper, No. 2017-15 Provided in Cooperation with: Center for the History of Political Economy at Duke University Suggested Citation: Herfeld, Catherine (2017) : From theories of human behavior to rules of rational choice: Tracing a normative turn at the cowles commission, 1943-1954, CHOPE Working Paper, No. 2017-15, Duke University, Center for the History of Political Economy (CHOPE), Durham, NC This Version is available at: http://hdl.handle.net/10419/172307 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]
  • The Origins and Legacy of Kolmogorov's Grundbegriffe
    The origins and legacy of Kolmogorov’s Grundbegriffe Glenn Shafer Rutgers School of Business [email protected] Vladimir Vovk Royal Holloway, University of London [email protected] arXiv:1802.06071v1 [math.HO] 5 Feb 2018 The Game-Theoretic Probability and Finance Project Working Paper #4 First posted February 8, 2003. Last revised February 19, 2018. Project web site: http://www.probabilityandfinance.com Abstract April 25, 2003, marked the 100th anniversary of the birth of Andrei Nikolaevich Kolmogorov, the twentieth century’s foremost contributor to the mathematical and philosophical foundations of probability. The year 2003 was also the 70th anniversary of the publication of Kolmogorov’s Grundbegriffe der Wahrschein- lichkeitsrechnung. Kolmogorov’s Grundbegriffe put probability’s modern mathematical formal- ism in place. It also provided a philosophy of probabilityan explanation of how the formalism can be connected to the world of experience. In this article, we examine the sources of these two aspects of the Grundbegriffethe work of the earlier scholars whose ideas Kolmogorov synthesized. Contents 1 Introduction 1 2 The classical foundation 3 2.1 The classical calculus . 3 2.1.1 Geometric probability . 5 2.1.2 Relative probability . 5 2.2 Cournot’s principle . 7 2.2.1 The viewpoint of the French probabilists . 8 2.2.2 Strong and weak forms of Cournot’s principle . 10 2.2.3 British indifference and German skepticism . 11 2.3 Bertrand’s paradoxes . 13 2.3.1 The paradox of the three jewelry boxes . 13 2.3.2 The paradox of the great circle . 14 2.3.3 Appraisal .
    [Show full text]
  • Fisher and Mathematical Statistics
    Fisher and Mathematical Statistics John Aldrich University of Southampton R. A. Fisher Commemoration RSS June 2012 Fisher and Mathematical Statistics In 1923 Ronald Fisher proposed that Cambridge University create a Chair in Mathematical Statistics. Four decades later and largely through his influence mathematical statistics was an established discipline, particularly in the United States. But Fisher did not like the result “I believe sanity and realism can be restored to the teaching of Mathematical Statistics most easily and directly by entrusting such teaching largely to men and women who have had personal experience of research in the Natural Sciences.” (1956) I trace Fisher’s disenchantment by recalling his relations with eight individuals. Parts of these personal stories appear in Joan Fisher Box’s R. A. Fisher: The Life of a Scientist though mainly as background noise. Some relevant letters appear in J. H. Bennett’s Statistical Inference and Analysis. The bigger story involves changes in the nature of mathematics in the course of the twentieth century and in the scientific power of the United States. The mathematical statisticians— emphasising American connections Harold Hotelling Samuel Wilks Jerzy Neyman Daniel Dugué Harald Cramér Abraham Wald John Tukey Jimmie Savage. Fisher’s mathematics training In the nineteenth century Cambridge mathematics had been centred on applied mathematics—mathematical physics. Fisher recalled that as an undergraduate he was “out of sympathy with the recent passage of control in mathematical
    [Show full text]