Magnitude–Frequency Distribution of Volcanic Explosion Earthquakes

Total Page:16

File Type:pdf, Size:1020Kb

Magnitude–Frequency Distribution of Volcanic Explosion Earthquakes Nishimura et al. Earth, Planets and Space (2016) 68:125 DOI 10.1186/s40623-016-0505-2 LETTER Open Access Magnitude–frequency distribution of volcanic explosion earthquakes Takeshi Nishimura1*, Masato Iguchi2, Mohammad Hendrasto3, Hiroshi Aoyama4, Taishi Yamada4, Maurizio Ripepe5 and Riccardo Genco5 Abstract Magnitude–frequency distributions of volcanic explosion earthquakes that are associated with occurrences of vulcan- ian and strombolian eruptions, or gas burst activity, are examined at six active volcanoes. The magnitude–frequency distribution at Suwanosejima volcano, Japan, shows a power-law distribution, which implies self-similarity in the system, as is often observed in statistical characteristics of tectonic and volcanic earthquakes. On the other hand, the magnitude–frequency distributions at five other volcanoes, Sakurajima and Tokachi-dake in Japan, Semeru and Lokon in Indonesia, and Stromboli in Italy, are well explained by exponential distributions. The statistical features are consid- ered to reflect source size, as characterized by a volcanic conduit or chamber. Earthquake generation processes asso- ciated with vulcanian, strombolian and gas burst events are different from those of eruptions ejecting large amounts of pyroclasts, since the magnitude–frequency distribution of the volcanic explosivity index is generally explained by the power law. Keywords: Magnitude, Exponential distribution, Power law, Explosion Introduction magnitude–frequency distributions are often termed Volcanic explosion earthquakes (hereafter termed EXs) power laws, which are interpreted to be related to fractal are earthquakes that are observed in vulcanian and properties and self-similar systems. strombolian eruptions, or gas bursts, which often accom- Since Minakami’s pioneering work in 1960, magnitude– pany strong air shocks or infrasonic signals. A pioneer frequency distributions have been investigated at active study by Minakami (1960) first defined EXs, classifying volcanoes (e.g., Tanaka 1967; Shimozuru et al. 1971; Tan- volcanic earthquakes into four types: A-, B-type, explo- aka et al. 1972; Del Pezzo et al. 1974; Rowe et al. 2000). sion earthquake, and tremor. He indicated that EXs These previous studies often plotted the number of EXs at Sakurajima, Japan, follow Ishimoto–Iida’s formula versus amplitude in double-logarithmic graphs to esti- −m of n(A) = kA , where n(A) represents the number of mate m values. However, most of the figures presented earthquakes with a maximum amplitude of A, m is the seem not to be well matched with the Ishimoto–Iida’s coefficient called Ishimoto–Iida’s m value, and k is a formula (power law). For example, Tanaka (1967) pointed proportional coefficient (Ishimoto and Iida 1939). This out a break in the Ishimoto-Iida’s formula at large ampli- relationship is linked to the Gutenberg–Richter equa- tudes for EXs at Sakurajima and interpreted the break as tion (G–R eq.) that explains the magnitude–frequency related to crater size. Magnitude–frequency distributions distribution of earthquakes in general, and the m value of EXs associated with strombolian eruptions at Akita- is related to the b value in the G–R eq. as m = b + 1 Komagatake, Japan, were explained by combinations of (Asada et al. 1950; Suzuki 1953). These observed two power laws using two m values (Tanaka et al. 1972). Rowe et al. (2000) examined the magnitude–frequency distribution of EXs associated with frequent strombo- *Correspondence: [email protected] lian explosions within the summit crater lake at Erebus 1 Department of Geophysics, Graduate School of Science, Tohoku University, 6‑3 Aramaki‑aza Aoba, Aoba‑ku, Sendai 980‑8578, Japan volcano, Antarctica. They showed that the distribution Full list of author information is available at the end of the article follows an approximate power law with b value of about © 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Nishimura et al. Earth, Planets and Space (2016) 68:125 Page 2 of 12 1.7 and pointed out that an inflection in the cumulative Tokachi-dake. The Sakurajima Volcano Research Center distribution curve may be due to low detection level of (SVRC) of Kyoto University started seismic observation small events, distinct source populations or a preferred at Sakurajima in 1968. Since then, seismic signals have median bubble size. These previous studies indicate that been recorded with an S-1000 seismometer at Haruta- EXs do not follow a simple relation as represented by the yama (HRT) station, which is 2.7 km from the active Ishimoto–Iida’s formula or G–R eq. Such divergence of crater at Minami-dake. The amplitudes of seismic and the magnitude–frequency distribution is also found for acoustic signals for vulcanian explosions have been con- volcanic tremors. Benoit and McNutt (2003) analyzed tinuously cataloged; here we analyze the 49-year period duration times and amplitudes of volcanic tremors and from 1963 to 2011. Vulcanian explosions frequently followed exponential rather than power-law scaling. occurred at Minami-dake crater until 2007; however, the Although magnitude–frequency distributions provide volcanic activity reduced after 2000 (Iguchi 2013). Since some of the most basic and important information to 2008, Showa crater, which is about 0.5 km southeast of understanding explosive eruption processes, investiga- Minami-dake, has been activated, while there have been tions of the statistical characteristics of EXs are limited few explosions at Minami-dake (Iguchi et al. 2013). In the in number. In the present study, therefore, we examine following analysis, therefore, we separate Sakurajima data the magnitude–frequency distribution characteristics of into two periods, from 1968 to 1999 and from 2008 to EXs at different volcanoes. The EXs we analyze are those 2011. The former represents the characteristics of explo- associated with vulcanian and strombolian eruption sions at Minami-dake, while the latter represents Showa styles and gas bursts at Sakurajima, Suwanosejima, and crater. Tokachi-dake in Japan, Semeru and Lokon in Indonesia, Figure 2 shows frequency distributions of the maxi- and Stromboli in Italy. Note that Plinian style explosive mum amplitudes of EXs at Minami-dake and Showa cra- eruptions are associated with eruption tremors (e.g., ter. For Minami-dake, maximum amplitude of EXs ranges McNutt and Nishimura 2008) rather than EXs, and they up to 0.3 mm and the cumulative number of events is are not the target of the present study. Since EXs are con- 2584, while for Showa crater, maximum amplitude is sidered to be caused by rapid conduit pressure changes in about 0.1 mm, and the total number of events is 2633. volcanic explosions, magnitude–frequency distributions The double-logarithmic graphs for both craters are con- provide us with the basic statistical attributes of erup- vex, indicating that the Ishimoto–Iida’s formula may not tions and clues to understanding eruption dynamics. We explain the observed magnitude–frequency distributions. examine the magnitude–frequency distribution of EXs at On the other hand, the cumulative number of EXs plot- the six volcanoes identified above and discuss their rela- ted in semilogarithmic graphs is well fitted by a straight tionship to the volcanic systems. line. This suggests that the EX magnitude–frequency dis- tributions at Sakurajima follow exponential rather than Magnitude–frequency distributions power-law scaling. Vulcanian eruptions at volcanoes in Japan We analyze seismic data from Suwanosejima vol- Figure 1a shows the locations of the volcanoes we cano for the period from January to June 2010, during analyzed in Japan: Sakurajima, Suwanosejima and which time about 120 small vulcanian eruptions were ab c Fig. 1 Locations of volcanoes analyzed. a Japan, b Indonesia, and c Italy Nishimura et al. Earth, Planets and Space (2016) 68:125 Page 3 of 12 a b Fig. 2 Magnitude–frequency distributions of explosion earthquakes at Sakurajima volcano, Japan, for a 1963–1999 (Minami-dake crater) and b 2008–2011 (Showa crater). Left-hand graphs have log–log scale, and right-hand ones semilogarithmic. Parameters of Nb, r and a0 represent the num- ber of bins, correlation coefficients and characteristic amplitude of the exponential distribution. Regression lines and correlation coefficients are in red. Regression lines and correlation coefficients in blue are determined from data with the five lowest-amplitude bins removed observed. We examine raw seismograms from a broad- their maximum amplitudes from the raw broadband band seismometer (STS-2, Streckeisen) located at SWA seismometer records. Figure 3 plots the cumulative station, about 500 m south of the active crater (Iguchi number of EXs versus maximum seismic amplitude in et al. 2008). Volcanic tremors associated with continu- double-logarithmic and semilogarithmic graphs. Con- ous ash emission were often observed during the explo- trary to the Sakurajima, the magnitude–frequency dis- sive activity at Suwanosejima, and eruptive activities tribution plots as linear in the double-logarithmic graph sometimes ceased for several weeks or more (Nishimura for Suwanosejima, suggesting a power-law relationship et al. 2013).
Recommended publications
  • Analysis of Spattering Activity at Halema'uma'u In
    ANALYSIS OF SPATTERING ACTIVITY AT HALEMA‘UMA‘U IN 2015 A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS May 2017 By Bianca G. Mintz Thesis Committee: Bruce F. Houghton, Chairperson Tim Orr Robert Wright Keywords: spattering, lava lake, outgassing, Kīlauea, Hawaiian, Strombolian i Acknowledgments First, I must thank the faculty and staff at the Department of Geology & Geophysics at the University of Hawai‘i at Mānoa. From when I first entered the department as a freshman in August, 2012, to now as I complete up my masters’ degree the entire department has provided overwhelming amounts of guidance, encouragement, and inspiration. I was truly touched to see so many of my professors attend my oral defense in February, 2017. The professors in this department have created an environment for students to learn the skills for becoming successful scientists. Their encouragement and guidance molded me into the geologist I am today and for that I am very grateful. I would like to thank my advisor Bruce Houghton. When I first met Bruce I was interviewing for an undergraduate position in his lab (as a “lab rat”), and he told me that his goal was to have me love volcanoes. Bruce supported me both during my undergraduate degree and throughout my graduate degree as an advisor, mentor, leader, and role model. He continuously inspired me to push myself harder, to produce a higher level of quality results, and to accomplish my tasks efficiently.
    [Show full text]
  • Basaltic Explosive Volcanism: Constraints from Deposits and Models B.F
    ARTICLE IN PRESS Chemie der Erde 68 (2008) 117–140 www.elsevier.de/chemer INVITED REVIEW Basaltic explosive volcanism: Constraints from deposits and models B.F. HoughtonÃ, H.M. Gonnermann Department of Geology and Geophysics, University of Hawai’i at Manoa, Honolulu, HI 96822, USA Received 13 March 2008; accepted 10 April 2008 Abstract Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian 2 3 1 7 8 1 explosions ( 10 –10 kg sÀ ) to Plinian eruptions of moderate intensity (10 –10 kg sÀ ). Recent well-documented historical eruptions from Etna, Kı¯lauea and Stromboli typify this diversity. Etna is Europe’s largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kı¯lauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (4400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions. The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments.
    [Show full text]
  • Week 1 - Terrestrial Volcanism Overview
    8/30/2011 Week 1 - Terrestrial Volcanism Overview • Some definitions • Eruption products • Eruption triggers • Eruption styles • The role of water • Where do volcanoes occur • Monogenetic vs polygenetic • Some volcano and eruption examples GG711, Fall 2011 1 8/30/2011 Volcanoes: Places where molten Mid-ocean ridge schematic rock and gasses exit Earth’s (or another planet’s) surface Volcanic construction materials Magma molten or partially molten rock beneath the Earth's surface. When magma erupts onto the surface, it is called lava, or Magma chamber cinders, ash, tephra or other pyroclasts Sketch by B. Myers http://volcanoes.usgs.gov/Products/Pglossary/magma.html GG711, Fall 2011 2 8/30/2011 Eruption Products The relative proportion of these materials occur as a function of magma type, tectonic setting and local variables. Source: USGS Eruption Triggering Some important factors • Tectonic triggers (changes in stress field) • Tectonic setting (compressive or extensional) • Vent opening (pressure increase from new magma input and/or gas exsolution) • Vent plugging/clogging may promote flank eruptions • Closed-system magma differentiation (pressure increase) GG711, Fall 2011 3 8/30/2011 Eruption Styles Important Magmatic factors These work together to affect eruption style • Viscosity • Magma composition • crystallinity • gas content • temperature • pressure Hot runnier Mafic (Magnesium and iron rich) cold stickier silicic (Silicon-dioxide rich) Temperature vs. Magmatic water Crystallinity vs. viscosity vs. viscosity viscosity silicic (Silicon-dioxide
    [Show full text]
  • ~Xplosive Volcanism
    STUDIES IN GEOPHYSICS ~xplosive4' Volcanism: - Inception, Evolution, and Hazards Geophysics Study Committee Geophysics Research Forum Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1984 Experimental Studies of Hydromagmatic Volcanism KESSETH H. WOHLETZ and ROBERT C. MCQL'EES Los Alamos Xational Laboratory ABSTRACT Hydromagmatic volcanism was modeled in experiments in which thermite melt fFe + AtOj explosively interacted with water. Several designs were explored using different contact geometries, water-melt ratios. and confinement pressures. The explosions featured ejection of steam and fragmented melt. The modeled volcanic phenomena includes melt fountains IStrombolian!, dq and wet b.apor explosions (Surtseyan!, and passive chilling of flour (submarine pillow formation!. The pertinent experimental parameters are: (1) ejection velocities of 20 to 100 dsec. (2) confining pressures of 10 to 40 MPa. :3! melt ejecta sizes of microns to centimeters in diameter, (4) steam production at temperatures of 10(PC to high levels of superheating (300 to WC!. and:{5)ejection.modes that are both ballistic and surging flow in a turbulent expanding cbud of . - vapor &id fragments. l'he.resultsindicate that explosive efficiency is strongly controlled by water-melt mass ratio and confining pressure. Optimum thermodynamic eBciency measured as the ratio of mechanical to thermal energy occurs at water-melt ratios between 0.3 and 1.0. Fragmentation increases with explosive energy and degree of water superheating. the magma by rapid decompression. These h~oprocesses may INTRODUCTION operate simultaneously during an eruption if thd magma corn- The understanding of explosive volcanism has been limited by position and environmental factors permit.
    [Show full text]
  • Dynamic and Extensive Risk Arising from Volcanic Ash Impacts On
    1 Dynamic and Extensive Risk Arising from Volcanic Ash Impacts on Agriculture Dr Jeremy Phillips, School of Earth Sciences, University of Bristol, UK Prof. Jenni Barclay, School of Environmental Sciences, University of East Anglia, UK Prof. David Pyle, Department of Earth Sciences, University of Oxford, UK Dr Maria Teresa Armijos, School of International Development, University of East Anglia, UK Prof. Roger Few, School of International Development, University of East Anglia, UK Dr Anna Hicks, British Geological Survey, UK 2 Summary Volcanic Ash is an excellent archetype of an ‘extensive hazard’. Ash fall occurs frequently and intermittently during volcanic eruptions, and populations in close proximity to persistently-active volcanoes report ash impacts and distribution that have complex spatial patterns. This is reflected in high-resolution modelling of ash dispersion that integrates local atmospheric and topographic effects. We review three case study long-lasting eruptions in the Caribbean and Ecuador, to highlight the extensive characteristics of ash eruption, deposition, and impacts. Over the long term, attritional effects of volcanic ash create negative impacts on livelihood trajectories via loss of income and nutrition from agriculture, and damage to, and increased maintenance of, critical infrastructure. There are also benefits; communities report that over short time periods following eruptions, there is often increased agricultural productivity. Recognition of the extensive nature of volcanic ash impacts has direct implications for disaster risk reduction policy and practice. These include the need to: anticipate long-lasting costs of relief and potentially severe impacts on people’s wellbeing; plan flexibly to respond to high spatial and temporal variability in impacts; and to be cognisant of communities’ adaptations and actions to maintain livelihoods when undertaking external interventions.
    [Show full text]
  • Integrated Monitoring of Volcanic Ash and Forecasting at Sakurajima Volcano, Japan
    https://doi.org/10.20965/jdr.2019.p0798 Iguchi, M. et al. Paper: Integrated Monitoring of Volcanic Ash and Forecasting at Sakurajima Volcano, Japan Masato Iguchi∗1,†, Haruhisa Nakamichi∗1, Hiroshi Tanaka∗2, Yusaku Ohta∗3, Atsushi Shimizu∗4, and Daisuke Miki∗1 ∗1Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University 1722-19 Sakurajima-Yokoyama-cho, Kagoshima 891-1419, Japan †Corresponding author, E-mail: [email protected] ∗2University of Tsukuba, Ibaraki, Japan ∗3Tohoku University, Miyagi, Japan ∗4National Institute for Environmental Studies, Ibaraki, Japan [Received February 8, 2019; accepted May 9, 2019] The Sakurajima volcano is characterized by frequent 1. Introduction vulcanian eruptions at the Minamidake or Showa crater in the summit area. We installed an integrated At the Sakurajima volcano in Japan, vulcanian erup- monitoring system for the detection of volcanic ash tions frequently occur at Minamidake crater or Showa (composed of remote sensing sensors XMP radars, li- crater 500 m east of Minamidake. This activity, which dar, and GNSS with different wave lengths) and 13 op- has occurred continuously at the Minamidake crater since tical disdrometers on the ground covering all direc- 1955, features frequent vulcanian and strombolian erup- tions from the crater to measure drop size distribu- tions and the continuous emission of ash. The crater was tion and falling velocity. Campaign sampling of vol- relatively active from 1972 to 1992, with 4,919 vulcanian canic ash supports the conversion of particle counts eruptions and the emission of 240 M tons of volcanic ash. measured by the disdrometer to the weight of volcanic After 1993, this activity gradually decreased and the an- ash.
    [Show full text]
  • Behavior of Fluorine and Chlorine in Volcanic Ash of Sakurajima Volcano
    Earth Planets Space, 58, 595–600, 2006 Behavior of fluorine and chlorine in volcanic ash of Sakurajima volcano, Japan in the sequence of its eruptive activity Kenji Nogami1, Masato Iguchi2, Kazuhiro Ishihara2, Jun-ichi Hirabayashi1, and Daisuke Miki2 1Volcanic Fluid Research Center, Tokyo Institute of Technology, 641-36 Kusatsu, Agatsuma, Gunma 377-1711, Japan 2Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University, 1722-19 Yokoyama, Sakurajima, Kagoshima 891-1419, Japan (Received November 12, 2004; Revised December 22, 2005; Accepted December 22, 2005; Online published May 12, 2006) At Sakurajima volcano, strombolian eruptions forerun vulcanian explosions, and volcanian explosions are often followed by continuous ash eruptions. Change in the mode of its eruptive activity is drastic and release of volatiles from magma corresponding to its eruptive activity is examined by determination of fluorine and chlorine in volcanic ash. The F contents of all the ash samples are markedly higher than the arithmetic mean value of Japanese volcanic rocks (ca. 300 μg/g). Further, the water-soluble Cl contents of almost all the ash samples are also extremely higher than those of Japanese volcanic rocks (less than 50 μg/g). This is attributed to fixation of F and Cl in hot gas onto the volcanic ash particles in the crater and/or eruption plumes. The differences in those contents among the “strombolian eruption”-, “vulcanian explosion”- and “continuous ash eruption” groups are significant, which implies that hot gas rich in F and Cl are issued during strombolian eruptions, while those halogens are less concentrated in hot gas after strombolian eruptions. The water-insoluble Cl content of the “strombolian eruption” group is significantly higher than those of the other groups.
    [Show full text]
  • (Vei): Pacaya and Fuego Volcanoes, Guatemala
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2015 INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA Nicola Mari Michigan Technological University, [email protected] Copyright 2015 Nicola Mari Recommended Citation Mari, Nicola, "INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA", Open Access Master's Thesis, Michigan Technological University, 2015. https://digitalcommons.mtu.edu/etdr/30 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Volcanology Commons INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA By Nicola Mari A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2015 © 2015 Nicola Mari This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Department of Geological and Mining Engineering and Sciences Thesis Advisor: William I. Rose Committee Member: Chad D. Deering Committee Member: Gregory P. Waite Committee Member: Alessandro Tibaldi Department Chair: John S. Gierke Table of Contents Page List of Figures ..................................................................................................................
    [Show full text]
  • Chapter 8 the Dynamics of Hawaiian
    Characteristics of Hawaiian Volcanoes Editors: Michael P. Poland, Taeko Jane Takahashi, and Claire M. Landowski U.S. Geological Survey Professional Paper 1801, 2014 Chapter 8 The Dynamics of Hawaiian-Style Eruptions: A Century of Study By Margaret T. Mangan1, Katharine V. Cashman2, and Donald A. Swanson1 Abstract This chapter, prepared in celebration of the Hawaiian Of endless fascination to the observers of Hawaiian eruptions Volcano Observatoryʼs centennial, provides a historical lens is the “marvelous. superlative mobility” of molten lava (Perret, through which to view modern paradigms of Hawaiian-style 1913a). This observation is fundamental, for ultimately the fluidity eruption dynamics. The models presented here draw heavily of basaltic magma is what distinguishes the classic Hawaiian-style from observations, monitoring, and experiments conducted on eruption from other forms of volcanism. Eruption of free-flowing Kīlauea Volcano, which, as the site of frequent and accessible tholeiitic basalt feeds the iconic images of Hawaiian curtains of eruptions, has attracted scientists from around the globe. fire, lava fountains, lava lakes, Pele’s hair, and thread-lace scoria Long-lived eruptions in particular—Halema‘uma‘u 1907–24, (fig. 1). Moreover, thin flows of fluid basalt are central to Hawaiian Kīlauea Iki 1959, Mauna Ulu 1969–74, Pu‘u ‘Ō‘ō-Kupaianaha shield building, requiring quasi-steady-state magma supply and 1983–present, and Halema‘uma‘u 2008–present—have offered throughput for hundreds of thousands of years. incomparable opportunities to conceptualize and constrain Early observations of the eruptive activity at Kīlauea and theoretical models with multidisciplinary data and to field- Mauna Loa volcanoes demonstrated that their broad, shield-like test model results.
    [Show full text]
  • How Volcanoes Work: a 25 Year Perspective 1888 2013
    How volcanoes work: A 25 year perspective 1888 2013 CELEBRATING ADVANCES IN GEOSCIENCE Katharine V. Cashman† and R. Stephen J. Sparks School of Earth Sciences, University of Bristol, Bristol BS81RJ, UK Invited Review ABSTRACT eruption triggers. Finally, we look at eruptions Hawaiian volcanism is associated with the themselves, from the ascent of magma through eponymous Hawaiian eruptive style, which is Over the past 25 years, our understanding the crust to the physical controls on eruption dominated by fl uid lava fl ows. Lava fl ows often of the physical processes that drive volcanic styles and generation of eruptive products. We emerge directly from dike-fed fi ssure systems; eruptions has increased enormously thanks recognize that it is impossible to do justice to all for this reason, shield volcanoes tend to be to major advances in computational and of these topics—or all of the scientists who have elongated along the fi ssure direction. Hawai- analytical facilities, instrumentation, and col- contributed to the contemporary understanding ian shield volcanoes are built of stacks of these lection of comprehensive observational, geo- of volcanism—in a single article. In this regard, fl ows; their low slopes refl ect both the fl uidity physical, geochemical, and petrological data we note that a thorough review of the fi eld was of the initial lava and the tendency for lava fl ows sets associated with recent volcanic activity. completed in 2000 with the publication of the En- to thicken (because of cooling, crystallization, Much of this work has been motivated by the cyclopedia of Volcanoes (Sigurdsson et al., 2000).
    [Show full text]
  • Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and Their Bearing on Explosive Eruptions of a Basalt Volcano
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 8-11-2017 Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and their Bearing on Explosive Eruptions of a Basalt Volcano Syegi Lenarahmi Kunrat Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons Let us know how access to this document benefits ou.y Recommended Citation Kunrat, Syegi Lenarahmi, "Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and their Bearing on Explosive Eruptions of a Basalt Volcano" (2017). Dissertations and Theses. Paper 3828. https://doi.org/10.15760/etd.5722 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and Their Bearing on Explosive Eruptions of a Basalt Volcano by Syegi Lenarahmi Kunrat A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science In Geology Thesis Committee: Martin J. Streck, Chair Nancy A. Price Heather Wright Portland State University 2017 ABSTRACT Soputan volcano is one of the few basaltic volcanoes among 127 active volcanoes in Indonesia. It is part of the Sempu-Soputan volcanic complex located south of Tondano Caldera, North Sulawesi and commonly produces both explosive eruptions with VEI 2-3 and effusive lava dome and flow eruptions. Over the last two decades, Soputan had thirteen eruptions, the most recent in 2016. Most eruptions started explosively, followed by dome growth and in some cases pyroclastic flows.
    [Show full text]
  • Volcanic Explosions: Classification and Physics
    Volcanic Explosions: Classification and Physics EAS 458 Volcanology Introduction . Volcanic explosions result from the catastrophic expansion of a gas phase. Direct observations are difficult (except from afar) and limited - for obvious reasons. Underlying physics of volcanic explosions must therefore be deduced from: . Geologic observations - results of past explosions . First principles - laws of physics 1 Lacroix’s (1908) Classification of Explosive Eruptions . Hawaiian . Continuous lava fountaining . Strombolian Energy . Pulsed bursts . Vulcanian . Intermittent explosions . Plinian . Large, continuous explosion with large plume Hawaiian . Hawaiian “Explosions” . Perhaps not an explosion, but does involve an eruption driven by rapid expansion of volcanic gas. “Hawaiian” eruption refers to fountaining, where magma is propelled above the surface by expanding gas Pu`u O`o, 1983 2 Hawaiian Style Eruptions . Fountains may reach 500 m, but 10-100m is more typical. High fountaining commonly announces a new eruption or eruptive phase in Hawaii, when comparatively undegassed magma arrives at the surface. Subsequent phases show much smaller fountains or none at all. Gas disrupts magma into “clots” . Ratio of clot:gas was 1:70 . in Pu’u O’o . Typically produces Scoria Cones . Unsolidified clots may coalesce to form flows. Hawaiian Fountaining of Etna 3 Stromboli, Eolian Islands, Italy Strombolian Eruption Style 4 Strombolian Eruptions . Strombolian style refers to discontinuous individual explosions repeated at intervals of a few per minute to a few per hour. Gas:clot ratio 105:1 . 10-2 m3 to 102 m3 erupted/explosion . Muzzle velocities <100m/s . Results from single large bubble reaching the surface and bursting Strombolian Eruption of Etna 5 Vulcano, Eolian Islands, Italy Vulcanian Eruption Style 6 Vulcanian Eruptions .
    [Show full text]