https://doi.org/10.20965/jdr.2019.p0798 Iguchi, M. et al. Paper: Integrated Monitoring of Volcanic Ash and Forecasting at Sakurajima Volcano, Japan Masato Iguchi∗1,†, Haruhisa Nakamichi∗1, Hiroshi Tanaka∗2, Yusaku Ohta∗3, Atsushi Shimizu∗4, and Daisuke Miki∗1 ∗1Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University 1722-19 Sakurajima-Yokoyama-cho, Kagoshima 891-1419, Japan †Corresponding author, E-mail:
[email protected] ∗2University of Tsukuba, Ibaraki, Japan ∗3Tohoku University, Miyagi, Japan ∗4National Institute for Environmental Studies, Ibaraki, Japan [Received February 8, 2019; accepted May 9, 2019] The Sakurajima volcano is characterized by frequent 1. Introduction vulcanian eruptions at the Minamidake or Showa crater in the summit area. We installed an integrated At the Sakurajima volcano in Japan, vulcanian erup- monitoring system for the detection of volcanic ash tions frequently occur at Minamidake crater or Showa (composed of remote sensing sensors XMP radars, li- crater 500 m east of Minamidake. This activity, which dar, and GNSS with different wave lengths) and 13 op- has occurred continuously at the Minamidake crater since tical disdrometers on the ground covering all direc- 1955, features frequent vulcanian and strombolian erup- tions from the crater to measure drop size distribu- tions and the continuous emission of ash. The crater was tion and falling velocity. Campaign sampling of vol- relatively active from 1972 to 1992, with 4,919 vulcanian canic ash supports the conversion of particle counts eruptions and the emission of 240 M tons of volcanic ash. measured by the disdrometer to the weight of volcanic After 1993, this activity gradually decreased and the an- ash.