HD45364, a Pair of Planets in a 3: 2 Mean Motion Resonance

Total Page:16

File Type:pdf, Size:1020Kb

HD45364, a Pair of Planets in a 3: 2 Mean Motion Resonance Astronomy & Astrophysics manuscript no. 0774 c ESO 2018 November 11, 2018 The HARPS search for southern extra-solar planets⋆ XVI. HD 45364, a pair of planets in a 3:2 mean motion resonance A.C.M. Correia1, S. Udry2, M. Mayor2, W. Benz3, J.-L. Bertaux4, F. Bouchy5, J. Laskar6, C. Lovis2, C. Mordasini3, F. Pepe2, and D. Queloz2 1 Departamento de F´ısica, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] 2 Observatoire de Gen`eve, Universit´ede Gen`eve, 51 ch. des Maillettes, 1290 Sauverny, Switzerland e-mail: [email protected] 3 Physikalisches Institut, Universit¨at Bern, Silderstrasse 5, CH-3012 Bern, Switzerland 4 Service d’A´eronomie du CNRS/IPSL, Universit´ede Versailles Saint-Quentin, BP3, 91371 Verri`eres-le-Buisson, France 5 Institut d’Astrophysique de Paris, CNRS, Universit´ePierre et Marie Curie, 98bis Bd Arago, 75014 Paris, France 6 IMCCE, CNRS-UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France Received ; accepted To be inserted later ABSTRACT Precise radial-velocity measurements with the HARPS spectrograph reveal the presence of two planets orbiting the solar-type star HD 45364. The companion masses are m sin i = 0.187 MJup and 0.658 MJup, with semi-major axes of a = 0.681 AU and 0.897 AU, and eccentricities of e = 0.168 and 0.097, respectively. A dynamical analysis of the system further shows a 3:2 mean motion resonance between the two planets, which prevents close encounters and ensures the stability of the system over 5 Gyr. This is the first time that such a resonant configuration has been observed for extra-solar planets, although there is an analogue in our Solar System formed by Neptune and Pluto. This singular planetary system may provide important constraints on planetary formation and migration scenarios. Key words. stars: individual: HD 45364 – stars: planetary systems – techniques: radial velocities – methods: observational 1. Introduction Ganymede system in a 4:2:1 resonance, or the Neptune-Pluto system in a 3:2 resonance. While the satellites are believed to At present, about 25% of the known exoplanets are in multi- achieve resonant configurations after tidal evolution of their or- planetary systems. The older the radial-velocity planet-search bits, the resonances between planets and asteroids were probably surveys, the higher the fraction of multi-planet families detected formed after the inward or outward migration of the planets dur- in these programs. Taking into account the still strong bias ing the early stages of the evolution of the Solar System. against long-period and/or low-mass planet detection, and the enhanced difficulty of fully characterizing systems with more The presence of two or more interacting planets in a system than one planet, the fraction of known multi-planet systems is dramatically increases our potential ability to constrain and un- certainly still a lower limit. It appears likely that a high number, derstand the processes of planetary formation and evolution. The if not the majority, of planet-host stars form systems of planets dynamical analysis of such systems is then very useful, first for arXiv:0902.0597v1 [astro-ph.EP] 3 Feb 2009 rather than isolated, single planetary companions. constraining the system evolution history and second for deter- Among the known multi-planet systems, a significant frac- mining the system “structure” in terms of orbital content. tion are in mean motion resonances, the majority of which are in low-order resonances. The 2:1 resonance is the most com- Multi-planet systems are naturally found in planet-search mon (HD73526,HD82943,HD128311,GJ876), but other con- programs. However, improving the precision of the radial- figurations are observed as well, such as the 3:1 resonance in velocity measurements greatly helps their detection and com- HD75732 or the 5:1 resonance in HD202206. These resonances plete characterization. The HARPS search for southern extra- most probably arise from evolutionary processes as migrating solar planet is an extensive radial-velocity survey of some 2000 planets forming in the protoplanetary disc become trapped. In stars of the solar neighborhoodconductedwith the HARPS spec- our Solar System, we also find mean motion resonances in the trograph on the ESO 3.6-m telescope at LaSilla (Chile) in the satellites of the giant planets, or between these planets and sev- framework of the Guaranteed Time Observations granted to the eral asteroids. The most well-known example is the Io-Europa- HARPS building consortium (Mayor et al. 2003). About half of the HARPS GTO time is dedicated to very high-precision Send offprint requests to: A.C.M. Correia measurements of non-active stars selected from the CORALIE ⋆ Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory un- planet-search program (Udry et al. 2000) and stars with already der the GTO programme ID 072.C-0488. The table with the known giant planets, while searching for lower mass compan- radial velocities is available in electronic form at the CDS ions. This program reveals itself as very efficient in finding via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via multi-Neptune (Lovis et al. 2006) and multi-Super Earth sys- http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/???? tems (Mayor et al. 2008). 2 A.C.M. Correia et al.: HD 45364, a pair of planets in a 3:2 mean motion resonance Table 1. Observed and inferred stellar parameters of HD45364. Table 2. Orbital parameters for the two bodies orbiting HD45364, obtained with a 3-body Newtonian fit to observa- tional data (Fig. 1). Parameter HD 40307 Sp K0V V [mag] 8.08 Param. [unit] HD 45364 b HD 45364 c B − V [mag] 0.72 Date [JD-2400000] 53500.00 (fixed) π [mas] 30.69 ± 0.81 V [km/s] 16.4665 ± 0.0002 MV [mag] 5.51 P [day] 226.93 ± 0.37 342.85 ± 0.28 Teff [K] 5434 ± 20 λ [deg] 105.76 ± 1.41 269.52 ± 0.58 log g [cgs] 4.38 ± 0.03 e 0.1684 ± 0.0190 0.0974 ± 0.012 [Fe/H] [dex] −0.17 ± 0.01 ω [deg] 162.58 ± 6.34 7.41 ± 4.30 L [L⊙] 0.57 K [m/s] 7.22 ± 0.14 21.92 ± 0.43 M∗ [M⊙] 0.82 ± 0.05 i [deg] 90 (fixed) 90 (fixed) −1 v sin i [km s ] 1 a sin i [10−3 AU] 0.1485 0.6874 ′ 1 log R −4.94 −9 HK f (M) [10 M⊙] 0.0085 0.3687 P (log R′ ) [day] 32 rot HK M sin i [MJup] 0.1872 0.6579 a [AU] 0.6813 0.8972 Photometric and astrometric data are from the Hipparcos catalogue (ESA 1997) and the stellar physical quantities from Sousa et al. (2008). Nmeas 58 Span [day] 1583 rms [m/s] 1.417 From the HARPS high-precision survey, we present an in- pχ2 2.789 teresting system of two planets in a 3:2 mean motion reso- nance around HD45364, a configuration not observed previ- Errors are given by the standard deviation σ and λ is the mean longitude ously among extra-solar planet, but similar to the Neptune-Pluto of the date (λ = ω + M). The orbits are assumed co-planar. pair in the Solar System. Section 2 gathers useful stellar infor- mation about HD45364, its derived orbital solution is described HD 45364 HARPS 16.50 in Sect.3, and the dynamical analysis of the system is discussed in Sect. 4. Finally, conclusions are drawn in Sect. 5. 16.49 16.48 2. Stellar characteristics of HD 45364 The basic photometric (K0V, V = 8.08, B − V = 0.72) and as- 16.47 trometric (π = 30.69mas) properties of HD45364 were taken 16.46 from the Hipparcos catalogue (ESA 1997). They are recalled in Table1 with inferred quantities such as the absolute magnitude Radial velocity [km/s] 16.45 (MV = 5.51) and the stellar physical characteristics derived from the HARPS spectra by Sousa et al. (2008). For the complete 16.44 high-precision HARPS sample (including HD45364), these au- thors provided homogeneous estimates of effective temper- 10 5 ature (Teff = 5434 ± 20 K), metallicity ([Fe/H] = −0.17 ± 0.01), and surface gravity (log g = 4.38 ± 0.03) of the stars. A projected 0 − 1 O-C [m/s] low rotational velocity of the star, v sin i = 1kms was derived -5 from a calibration of the width of the cross-correlation function -10 used in the radial-velocity estimate (Santos et al. 2002). 53000 53200 53400 53600 53800 54000 54200 54400 54600 HD45364 is a non-active star in our sample with an activ- JD-2400000 [days] ′ ity indicator log RHK of −4.94. No significant radial-velocity Fig. 1. HARPS radial velocities for HD45364, superimposed on jitter is thus expected for the star. From the activity indicator, a 3-body Newtonian orbital solution (Table2). we also derive a stellar rotation period Prot = 32day (following Noyes et al. 1984). HD45364 has a subsolar metallicity with [Fe/H] = −0.17 un- the first stages of the observations, peculiar variations in the like most of the gaseous giant-planet host stars (Santos et al. radial velocities (Fig.1) have shown the presence of one or 2004). According to simulations of planet formation based more companions in the system. After 58 measurements, we on the core-accretion paradigm, moderate metal-deficiency are now able to determine the nature of these bodies. Using does not, however, prevent planet formation (Ida & Lin 2004; a genetic algorithm combined with the iterative Levenberg- Mordasini et al.
Recommended publications
  • Miniature Exoplanet Radial Velocity Array I: Design, Commissioning, and Early Photometric Results
    Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results Jonathan J. Swift Steven R. Gibson Michael Bottom Brian Lin John A. Johnson Ming Zhao Jason T. Wright Paul Gardner Nate McCrady Emilio Falco Robert A. Wittenmyer Stephen Criswell Peter Plavchan Chantanelle Nava Reed Riddle Connor Robinson Philip S. Muirhead David H. Sliski Erich Herzig Richard Hedrick Justin Myles Kevin Ivarsen Cullen H. Blake Annie Hjelstrom Jason Eastman Jon de Vera Thomas G. Beatty Andrew Szentgyorgyi Stuart I. Barnes Downloaded From: http://astronomicaltelescopes.spiedigitallibrary.org/ on 05/21/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx Journal of Astronomical Telescopes, Instruments, and Systems 1(2), 027002 (Apr–Jun 2015) Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results Jonathan J. Swift,a,*,† Michael Bottom,a John A. Johnson,b Jason T. Wright,c Nate McCrady,d Robert A. Wittenmyer,e Peter Plavchan,f Reed Riddle,a Philip S. Muirhead,g Erich Herzig,a Justin Myles,h Cullen H. Blake,i Jason Eastman,b Thomas G. Beatty,c Stuart I. Barnes,j,‡ Steven R. Gibson,k,§ Brian Lin,a Ming Zhao,c Paul Gardner,a Emilio Falco,l Stephen Criswell,l Chantanelle Nava,d Connor Robinson,d David H. Sliski,i Richard Hedrick,m Kevin Ivarsen,m Annie Hjelstrom,n Jon de Vera,n and Andrew Szentgyorgyil aCalifornia Institute of Technology, Departments of Astronomy and Planetary Science, 1200 E. California Boulevard, Pasadena, California 91125, United States bHarvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States cThe Pennsylvania State University, Department of Astronomy and Astrophysics, Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, University Park, Pennsylvania 16802, United States dUniversity of Montana, Department of Physics and Astronomy, 32 Campus Drive, No.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Characterization of the K2-19 Multiple-Transiting Planetary
    Characterization of the K2-19 Multiple-Transiting Planetary System via High-Dispersion Spectroscopy, AO Imaging, and Transit Timing Variations Norio Narita1,2,3, Teruyuki Hirano4, Akihiko Fukui5, Yasunori Hori1,2, Roberto Sanchis-Ojeda6,7, Joshua N. Winn8, Tsuguru Ryu2,3, Nobuhiko Kusakabe1,2, Tomoyuki Kudo9, Masahiro Onitsuka2,3, Laetitia Delrez10, Michael Gillon10, Emmanuel Jehin10, James McCormac11, Matthew Holman12, Hideyuki Izumiura3,5, Yoichi Takeda1, Motohide Tamura1,2,13, Kenshi Yanagisawa5 [email protected] ABSTRACT K2-19 (EPIC201505350) is an interesting planetary system in which two tran- siting planets with radii 7R⊕ (inner planet b) and 4R⊕ (outer planet c) have ∼ ∼ 1Astrobiology Center, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 2National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 3SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 4Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro- ku, Tokyo 152-8551, Japan 5Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232, Japan 6Department of Astronomy, University of California, Berkeley, CA 94720, USA 7 arXiv:1510.01060v2 [astro-ph.EP] 28 Oct 2015 NASA Sagan Fellow 8Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 9Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720, USA 10Institut dAstrophysique et de G´eophysique, Universit´ede Li`ege, All´ee du 6 Aoˆut 17, Bat. B5C, 4000 Li`ege, Belgium 11Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK 12Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138, USA 13Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan –2– orbits that are nearly in a 3:2 mean-motion resonance.
    [Show full text]
  • Gliese 4/2010
    GL IESE Časopis o exoplanetách a astrobiologii Číslo 4/2010 Ročník III Časopis Gliese přináší 4krát ročně ucelené informace z oblasti výzkumu exoplanet, protoplanetárních disků, hnědých trpaslíků a astrobiologie. Gliese si můžete stáhnout ze stránek časopisu, nebo si ho nechat zasílat emailem (více na www.exoplanety.cz/gliese/zasilani/). GLIESE 4/2010 Vydavatel: Petr Kubala Web: www.exoplanety.cz/gliese/ E-mail: [email protected] Šéfredaktor: Petr Kubala Jaz. korektury: Květoslav Beran Návrh layoutu: Michal Hlavatý, Scribus Návrh Loga: Petr Valach Uzávěrka: 30. září 2010 Vyšlo: 5. října 2010 Další číslo: 13. ledna 2011 ISSN: 1803-151X OBSAH Úvodník 5 Téma: Gliese 581 g: první obyvatelná exoplaneta? 6 Téma: Systém se sedmi planetami? 11 Komentáře 15 Život na Marsu pohledem Vikingů: víme stále více, že nic nevíme 15 NASA hasila skandál, který se nestal 16 Exoplanety 19 Rozhovor: David Kipping (University of London) o exoměsících 19 Pandoru u horkých Jupiterů nehledejme 21 Obyvatelné měsíce 23 Sen o přímém spektru exoplanety se rozplývá 45 Planetožravá hvězda aneb babička s dudlíkem 48 Exoplanety z druhého břehu I.: 83 900 Zemí a příliš vysoká teplota 49 Exoplaneta s kometárními manýry a žárlivý Hubblův dalekohled 51 Planetární hřbitov, křišťálová koule a exoplanetky 53 Výzkum exoplanet, jednou z priorit americké astronomie? 55 Dvě slunce a kosmické karamboly 58 Zatmění Měsíce a hledání obyvatelných exoplanet 58 Nafouknuté exoplanety, které se vysmály teoriím 61 Budeme objevovat sopky na planetách u cizích hvězd? 65 Metanová záhada exoplanety
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • AMD-Stability and the Classification of Planetary Systems
    A&A 605, A72 (2017) DOI: 10.1051/0004-6361/201630022 Astronomy c ESO 2017 Astrophysics& AMD-stability and the classification of planetary systems? J. Laskar and A. C. Petit ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 7 November 2016 / Accepted 23 January 2017 ABSTRACT We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general 1. Introduction motion resonances (MMR, Wisdom 1980; Deck et al. 2013; Ramos et al. 2015) could justify the Hill-type criteria, but the The increasing number of planetary systems has made it nec- results on the overlap of the MMR island are valid only for close essary to search for a possible classification of these planetary orbits and for short-term stability.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Density Estimation for Projected Exoplanet Quantities
    Density Estimation for Projected Exoplanet Quantities Robert A. Brown Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 [email protected] ABSTRACT Exoplanet searches using radial velocity (RV) and microlensing (ML) produce samples of “projected” mass and orbital radius, respectively. We present a new method for estimating the probability density distribution (density) of the un- projected quantity from such samples. For a sample of n data values, the method involves solving n simultaneous linear equations to determine the weights of delta functions for the raw, unsmoothed density of the unprojected quantity that cause the associated cumulative distribution function (CDF) of the projected quantity to exactly reproduce the empirical CDF of the sample at the locations of the n data values. We smooth the raw density using nonparametric kernel density estimation with a normal kernel of bandwidth σ. We calibrate the dependence of σ on n by Monte Carlo experiments performed on samples drawn from a the- oretical density, in which the integrated square error is minimized. We scale this calibration to the ranges of real RV samples using the Normal Reference Rule. The resolution and amplitude accuracy of the estimated density improve with n. For typical RV and ML samples, we expect the fractional noise at the PDF peak to be approximately 80 n− log 2. For illustrations, we apply the new method to 67 RV values given a similar treatment by Jorissen et al. in 2001, and to the 308 RV values listed at exoplanets.org on 20 October 2010. In addition to an- alyzing observational results, our methods can be used to develop measurement arXiv:1011.3991v3 [astro-ph.IM] 21 Mar 2011 requirements—particularly on the minimum sample size n—for future programs, such as the microlensing survey of Earth-like exoplanets recommended by the Astro 2010 committee.
    [Show full text]
  • Chemical Abundance Study of Planetary Hosting Stars P
    CHEMICAL ABUNDANCE STUDY OF PLANETARY HOSTING STARS P. Rittipruk and Y. W. Kang Department of Astronomy and Space Science Sejong University, Korea Planetary Hosting Stars Metallicity ∝ Probability of Hosting Planets Planetary Hosting Stars Planetary Hosting Stars 0.8 0.6 with planet 0.4 without planet 0.2 0.0 -0.2 -0.4 -0.6 Corr-Coef of [X/H] vs EP -0.8 -1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 [M/H] Chemical abundances of 1111 FGK stars (Adibekyan et al, 2012) 1.2 c 0.8 0.4 0.0 -0.4 -0.8 Corr-Coef of [X/H] vs T with planet without planet -1.2 -1.5 -1.0 -0.5 0.0 0.5 1.0 [M/H] Chemical abundances of 1111 FGK stars (Adibekyan et al, 2012) HD 20794 ‘s Planets Earth to Sun = 1 AU Mass = 0.70 Msun Radius = 0.92 Rsun Distance = 6.06 pc Age = 14±6 Gyr (Bernkopf+2012) = 5.76±0.66 (Gyr)(Pepe+ 2011) bcde M sin i 0.0085 0.0076 0.0105 0.0150 (MJ) (2.7) (2.4) (4.8) (4.7) a(AU) 0.1207 0.2036 0.3499 0.509 P(days) 18.315 40.114 90.309 147.2 HD 47536 ‘s Planets ■ Mass = 0.94 Msun Earth to Sun = 1AU ■ Radius = 23.47 Rsun ■ Distance = 121.36 pc ■ Age = 9.33 Gyr (Silva+2006) HD 47536b HD 47536c** M sin i (MJ) 4.96 6.98 a(AU) 1.61 3.72 P(days) 430 2500 Observation CHIRON Echelle Spectrometer Wavelength cover : 4200 – 8800 A Narrow Slit (R = 120,000) SMART-1.5m at CTIO, La Serena, Chile Observed Spectrum Echelle Spectrum of HD20794 obtained using CHIRON Spectrometers Reduced Spectrum Spectrum of HD20794 after reduction plotted with synthesis spectrum Algorithms Rotational Velocity (v sin i) Determination Reiners & Schmitt (2003) ⁄ sin 0.610 0.062 0.027 0.012 0.004
    [Show full text]
  • Transit Spectroscopy of a Temperate Jupiter Abstract 1. Introduction 2
    EPSC Abstracts Vol. 11, EPSC2017-775, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Transit spectroscopy of a temperate Jupiter T. Encrenaz (1), G. Tinetti (2) and A. Coustenis (1) (1) LESIA, Paris Observatory, Meudon, France, (2) Dept. of Physics and Astronomy, University College London, UK ([email protected]) Abstract Name MP(MJ) P(d) D(AU) TP In this study, we consider the expected infrared (K) transmission spectrum of a temperate Jupiter, with an HD 134113 b 47 202 0.64 295 equilibrium temperature ranging between 350 and 500 HD 233604 b 6.6 192 0.747 434 K, and we analyse the best conditions for the host star HD 28185 b 5.7 383 1.03 320 to be filled in order to optimize the S/N ratio of its HD 32518 b 3.04 157 0.59 395 transmission spectrum. According to our analysis, HD 159243 c 1.9 248 0.8 338 temperate Jupiters around M stars could have an HD 9446 c 1.82 193 0.654 342 -4 amplitude signal higher than 10 in primary transits, HD 141399 c 1.33 202 0.69 390 with revolution periods of a few tens of days and HD 231701 b 1.08 142 0.53 419 transit durations of a few hours. In order to enlarge the Kepler-11 g 0.95 118 0.46 392 sampling of exoplanets to be observed with ARIEL HD 92788 c 0.9 162 0.6 392 (presently focussed on objects warmer than 500 K) [1], HD 37124 b 0.675 154 0.53 331 some of these objects could be considered as HD 45364 c 0.66 343 0.897 252 additional possible targets for the mission.
    [Show full text]
  • Arxiv:1601.04417V1 [Astro-Ph.EP] 18 Jan 2016 Ailvlct Uvy Aedsoee Bu 2 Sub- 120 Precise About Planetary Discovered Phase
    A Preprint typeset using LTEX style emulateapj v. 05/12/14 A PAIR OF GIANT PLANETS AROUND THE EVOLVED INTERMEDIATE-MASS STAR HD 47366: MULTIPLE CIRCULAR ORBITS OR A MUTUALLY RETROGRADE CONFIGURATION Bun’ei Sato1, Liang Wang2, Yu-Juan Liu2, Gang Zhao2, Masashi Omiya3, Hiroki Harakawa3, Makiko Nagasawa4, Robert A. Wittenmyer5,6, Paul Butler7, Nan Song2, Wei He2, Fei Zhao2, Eiji Kambe8, Kunio Noguchi3, Hiroyasu Ando3, Hideyuki Izumiura8,9, Norio Okada3, Michitoshi Yoshida10, Yoichi Takeda3,9, Yoichi Itoh11, Eiichiro Kokubo3,9, and Shigeru Ida12 ABSTRACT We report the detection of a double planetary system around the evolved intermediate-mass star HD 47366 from precise radial-velocity measurements at Okayama Astrophysical Observatory, Xin- glong Station, and Australian Astronomical Observatory. The star is a K1 giant with a mass of 1.81±0.13 M⊙, a radius of 7.30 ± 0.33 R⊙, and solar metallicity. The planetary system is composed of +0.20 +0.16 +2.5 two giant planets with minimum mass of 1.75−0.17 MJ and 1.86−0.15 MJ, orbital period of 363.3−2.4 d +5.0 +0.079 +0.067 and 684.7−4.9 d, and eccentricity of 0.089−0.060 and 0.278−0.094, respectively, which are derived by a double Keplerian orbital fit to the radial-velocity data. The system adds to the population of multi- giant-planet systems with relatively small orbital separations, which are preferentially found around evolved intermediate-mass stars. Dynamical stability analysis for the system revealed, however, that the best-fit orbits are unstable in the case of a prograde configuration.
    [Show full text]
  • The Dynamical Origin of the Multi-Planetary System HD 45364
    A&A 510, A4 (2010) Astronomy DOI: 10.1051/0004-6361/200913208 & c ESO 2010 Astrophysics The dynamical origin of the multi-planetary system HD 45364 H. Rein1,J.C.B.Papaloizou1,andW.Kley2 1 University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK e-mail: [email protected] 2 University of Tübingen, Institute for Astronomy and Astrophysics, Auf der Morgenstelle 10, 72076 Tübingen, Germany Received 30 August 2009 / Accepted 26 October 2009 ABSTRACT The recently discovered planetary system HD 45364, which consists of a Jupiter and Saturn-mass planet, is very likely in a 3:2 mean motion resonance. The standard scenario for forming planetary commensurabilities is convergent migration of two planets embedded in a protoplanetary disc. When the planets are initially separated by a period ratio larger than two, convergent migration will most likely lead to a very stable 2:1 resonance. Rapid type III migration of the outer planet crossing the 2:1 resonance is one possible way around this problem. In this paper, we investigate this idea in detail. We present an estimate of the required convergent migration rate and confirm this with N-body and hydrodynamical simulations. If the dynamical history of the planetary system had a phase of rapid inward migration that forms a resonant configuration, we predict that the orbital parameters of the two planets will always be very similar and thus should show evidence of that. We use the orbital parameters from our simulation to calculate a radial velocity curve and compare it to observations.
    [Show full text]