FT8 Operating Tips
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Dxer's Handbook
DXer’s Handbook CHAPTER ‐ 1 Listening – The key to successful DXing: The humble student approached the Zen Master, bowing and slowly gaining the courage to ask: "Master….. What is the secret of working DX?" The Master smiled and simply replied: "Listen. Always listen, Grasshopper." Listen? Why? Listen for what? In the most literal sense an accomplished DXer is truly a hunter. Great hunters know what they are hunting, what it looks like, what it sounds like, and where it is likely to be found. They don’t just tromp through the woods hoping that their prize will just stand in front of them saying "Hey, shoot me!" They know when and where to look to improve their odds and they keep a keen eye open to find the big game before someone else does. That is why we listen. We are scouting the band for stations that just came on the air. The weak ones from far away that no one else has noticed yet. If you are the first to find a great DX station, you will probably get him. You will have no competition. Also, some openings to the most remote places on Earth are only a few minutes long. You have to be there at just the right time. Sometimes propagation can be very selective in who can contact who. You might just be the only one hearing that rare DX station. Oh! I don’t need to do that! I’ll just wait for him to come up on the DX Cluster system. OK. If you are "THE T‐REX" of 20M this might work out fine. -
Amateur Contact Log
The Definitive Guide to Amateur Contact Log 1st Edition - 2004 Preface: Early in 2004, Royce Bell, KX7Q, floated the idea of writing a comprehensive manual for Amateur Contact Log on the N3FJP_Software_Users e-mail reflector, but he threw in a twist. Instead of Kimberly and me creating the manual, Royce suggested that the bulk of the writing should be done by Amateur Contact Log users. Before we knew it, Royce had set up an e-mail reflector for this project, and 37 hams joined the group! I can’t thank everyone enough who participated in this project. There was input from many, and I appreciate all your contributions very much. I’d like to offer a special word of thanks to Royce Bell, KX7Q, for putting the project in gear, Ed Leicester, KG4QMI, who went far beyond the call in writing, and Kimberly, KA3SEQ, who helped edit and fit all the pieces together. You all did an outstanding job, and I can’t thank you enough. If you are just getting familiar with Amateur Contact Log, I know that you’ll find this resource very valuable, but don’t start here. First enter a couple of contacts and try some of the settings to see what happens. I think that you will find Amateur Contact Log very intuitive, and the best way to learn is by experience. What follows is The Definitive Guide to Amateur Contact Log. We hope this information will add to your enjoyment of using the software. As you use the guide, if you find areas requiring additional explanation, you have an idea for a sidebar (humorous or otherwise), user tip or a suggested graphic, please feel free to put your writer’s cap on and submit your text. -
A Guide to Radio Communications Standards for Emergency Responders
A GUIDE TO RADIO COMMUNICATIONS STANDARDS FOR EMERGENCY RESPONDERS Prepared Under United Nations Development Programme (UNDP) and the European Commission Humanitarian Office (ECHO) Through the Disaster Preparedness Programme (DIPECHO) Regional Initiative in Disaster Risk Reduction March, 2010 Maputo - Mozambique GUIDE TO RADIO COMMUNICATIONS STANDARDS FOR EMERGENCY RESPONDERS GUIDE TO RADIO COMMUNICATIONS STANDARDS FOR EMERGENCY RESPONDERS Table of Contents Introductory Remarks and Acknowledgments 5 Communication Operations and Procedures 6 1. Communications in Emergencies ...................................6 The Role of the Radio Telephone Operator (RTO)...........................7 Description of Duties ..............................................................................7 Radio Operator Logs................................................................................9 Radio Logs..................................................................................................9 Programming Radios............................................................................10 Care of Equipment and Operator Maintenance...........................10 Solar Panels..............................................................................................10 Types of Radios.......................................................................................11 The HF Digital E-mail.............................................................................12 Improved Communication Technologies......................................12 -
Unit – 1 Overview of Optical Fiber Communication
www.getmyuni.com Optical Fiber Communication 10EC72 Unit – 1 Overview of Optical Fiber communication 1. Historical Development Fiber optics deals with study of propagation of light through transparent dielectric waveguides. The fiber optics are used for transmission of data from point to point location. Fiber optic systems currently used most extensively as the transmission line between terrestrial hardwired systems. The carrier frequencies used in conventional systems had the limitations in handling the volume and rate of the data transmission. The greater the carrier frequency larger the available bandwidth and information carrying capacity. First generation The first generation of light wave systems uses GaAs semiconductor laser and operating region was near 0.8 μm. Other specifications of this generation are as under: i) Bit rate : 45 Mb/s ii) Repeater spacing : 10 km Second generation i) Bit rate: 100 Mb/s to 1.7 Gb/s ii) Repeater spacing: 50 km iii) Operation wavelength: 1.3 μm iv) Semiconductor: In GaAsP Third generation i) Bit rate : 10 Gb/s ii) Repeater spacing: 100 km iii) Operating wavelength: 1.55 μm Fourth generation Fourth generation uses WDM technique. i) Bit rate: 10 Tb/s ii) Repeater spacing: > 10,000 km Iii) Operating wavelength: 1.45 to 1.62 μm Page 5 www.getmyuni.com Optical Fiber Communication 10EC72 Fifth generation Fifth generation uses Roman amplification technique and optical solitiors. i) Bit rate: 40 - 160 Gb/s ii) Repeater spacing: 24000 km - 35000 km iii) Operating wavelength: 1.53 to 1.57 μm Need of fiber optic communication Fiber optic communication system has emerged as most important communication system. -
Intro to Contesting What Is Contesting
Intro To Contesting What is Contesting Contesting (also known as radiosport) is a competitive activity pursued by amateur radio operators. In a contest, an amateur radio station, seeks to contact as many other amateur radio stations as possible in a given period of time and exchange information. Rules for each competition define the amateur radio bands, the mode of communication that may be used, and the kind of information that must be exchanged. The contacts made during the contest contribute to a score by which stations are ranked. Contests were formed to provide opportunities for amateur radio operators to practice their message handling skills, used for routine or emergency communications across long distances. Over time, the number and variety of radio contests has increased, and many amateur radio operators today pursue the sport as their primary amateur radio activity. During a radio contest, each station attempts to establish two-way contact with other licensed amateur radio stations and exchange information specific to that contest. The information exchanged could include a signal report, a name, the location of the operator, and any other information defined in the contest rules. For each contact, the radio operator must correctly receive the call sign of the other station, as well as the information in the "exchange", and record this data, along with the time of the contact and the band or frequency that was used to make the contact, in a log. How is it done An operator can set up on a frequency and call other stations (called running) and wait for other stations to answer their query to exchange information. -
AN INTRODUCTION to DGPS DXING V2.3
AN INTRODUCTION TO DGPS DXING: Version 2.3 January 2019 Since this guide first appeared around eighteen years ago, then bearing the title of “ DGPS, QRM OR A NEW FORM OF DX?” it has undergone a number of updates and has been renamed as “ AN INTRODUCTION TO DGPS DXING ”. This has appeared in several versions, with a few minor updates to various listings etc. It is now 2019, and the DGPS DXing hobby has become well established and a regular pastime for many DXers, the article has been updated at regular intervals, but the title remains the same, and hopefully the contents are now more appropriate for DGPS DXers (and newcomers to this mode) in the current period. What is a DGPS Beacon? Differential GPS systems are used to help overcome the limitations in the accuracy of conventional GPS systems. By using a fixed reference point as a comparison and comparing this with positions obtained from a conventional GPS receiver, a more precise and accurate reading can be obtained by the user. A hand-held GPS receiver may be fine if you are on land, but if you're a mariner trying to navigate your way around a rocky Coast in poor weather conditions, an error of 50 feet or more can be life threatening. Of course, that is a greatly simplified summary of what is a complex system, and for most beacon enthusiasts, all you will be aware of is hearing a sound that resembles a RTTY/Navtex signal and appears at various points on the LF Bands band between 283.5 and 325 kHz. -
Know Your Alerts and Warnings
KNOW YOUR ALERTS AND WARNINGS Receiving timely information about weather conditions or other emergency events can make all the difference in knowing when to take action to be safe. Local police and fire departments, emergency managers, the National Weather Service (NWS), the Federal Emergency Management Agency (FEMA), the Federal Communications Commission (FCC), the National Oceanic and Atmospheric Administration (NOAA), and private industry are working together to make sure you can receive alerts and warnings quickly through several different technologies no matter where you are–at home, at school, at work, or in the community. For those with access and functional needs, many messages are TTY/TDD compatible and many devices have accessible accommodations. Review this fact sheet to make sure you will receive critical information as soon as possible so you can take action to be safe. Be sure to share this information with your family, friends, and colleagues. And remember to keep extra batteries for your mobile phone or radio in a safe place or consider purchasing other back-up power supplies such as a car, solar-powered, or hand crank charger. Organized by FEMA, the Integrated Public Alert and Warning System (IPAWS) is the Nation’s alert and warning infrastructure. IPAWS It provides an effective way to alert and warn the public about INTEGRATED emergencies using the Emergency Alert System (EAS), Wireless PUBLIC ALERT AND Emergency Alerts (WEA), NOAA Weather Radio All Hazards, WARNING SYSTEM and other public alerting systems from a single interface. IPAWS is used to send notifications for three alert categories— Presidential, AMBER, and Imminent Threat. -
Distributed Algorithm Primitives: Broadcast & Agreement
Fault-Tolerant Computer System Design ECE 60872/CS 590001 Topic 6: Distributed Algorithm Primitives: Broadcast & Agreement Saurabh Bagchi ECE/CS Purdue University ECE 60872/CS 590001 1 Outline Specific issues in design and implementation of networked/distributed systems Broadcast protocols Agreement protocols Commit protocols ECE 60872/CS 590001 2 1 Networked/Distributed Systems Key Questions How do we integrate components (often heterogeneous) with varying fault tolerance characteristics into a coherent high availability networked system? How do you guarantee reliable communication (message delivery)? How do you synchronize actions of dispersed processors and processes? How do you ensure that replicated services with independently executing components have a consistent view of the overall system? How do you contain errors (or achieve fail-silent behavior of components) to prevent error propagation? How do you adapt the system architecture to changes in availability requirements of the application(s)? ECE 60872/CS 590001 3 Failure Classification Necessity to cope with machine (node), process, and network failures A process A process stops A process A process stops prematurely prematurely or responds response and does nothing intermittently incorrectly: is functionally from that point on omits to send/ either output A process correct but Crash receive messages or the state behaves untimely randomly or Omission transition is incorrect arbitrarily Timing Incorrect Computation Byzantine (malicious) ECE 60872/CS 590001 4 2 What Do -
Beidou Short-Message Satellite Resource Allocation Algorithm Based on Deep Reinforcement Learning
entropy Article BeiDou Short-Message Satellite Resource Allocation Algorithm Based on Deep Reinforcement Learning Kaiwen Xia 1, Jing Feng 1,*, Chao Yan 1,2 and Chaofan Duan 1 1 Institute of Meteorology and Oceanography, National University of Defense Technology, Changsha 410005, China; [email protected] (K.X.); [email protected] (C.Y.); [email protected] (C.D.) 2 Basic Department, Nanjing Tech University Pujiang Institute, Nanjing 211112, China * Correspondence: [email protected] Abstract: The comprehensively completed BDS-3 short-message communication system, known as the short-message satellite communication system (SMSCS), will be widely used in traditional blind communication areas in the future. However, short-message processing resources for short-message satellites are relatively scarce. To improve the resource utilization of satellite systems and ensure the service quality of the short-message terminal is adequate, it is necessary to allocate and schedule short-message satellite processing resources in a multi-satellite coverage area. In order to solve the above problems, a short-message satellite resource allocation algorithm based on deep reinforcement learning (DRL-SRA) is proposed. First of all, using the characteristics of the SMSCS, a multi-objective joint optimization satellite resource allocation model is established to reduce short-message terminal path transmission loss, and achieve satellite load balancing and an adequate quality of service. Then, the number of input data dimensions is reduced using the region division strategy and a feature extraction network. The continuous spatial state is parameterized with a deep reinforcement learning algorithm based on the deep deterministic policy gradient (DDPG) framework. The simulation Citation: Xia, K.; Feng, J.; Yan, C.; results show that the proposed algorithm can reduce the transmission loss of the short-message Duan, C. -
“R.M.S. Titanic” Hanson W
“R.M.S. Titanic” Hanson W. Baldwin I The White Star liner Titanic, largest ship the world had ever known, sailed from Southampton on her maiden voyage to New York on April 10, 1912. The paint on her strakes was fair and bright; she was fresh from Harland and Wolff’s Belfast yards, strong in the strength of her forty-six thousand tons of steel, bent, hammered, shaped, and riveted through the three years of her slow birth. There was little fuss and fanfare at her sailing; her sister ship, the Olympic—slightly smaller than the Titanic— had been in service for some months and to her had gone the thunder of the cheers. But the Titanic needed no whistling steamers or shouting crowds to call attention to her superlative qualities. Her bulk dwarfed the ships near her as longshoremen singled up her mooring lines and cast off the turns of heavy rope from the dock bollards. She was not only the largest ship afloat, but was believed to be the safest. Carlisle, her builder, had given her double bottoms and had divided her hull into sixteen watertight compartments, which made her, men thought, unsinkable. She had been built to be and had been described as a gigantic lifeboat. Her designers’ dreams of a triple-screw giant, a luxurious, floating hotel, which could speed to New York at twenty-three knots, had been carefully translated from blueprints and mold loft lines at the Belfast yards into a living reality. The Titanic’s sailing from Southampton, though quiet, was not wholly uneventful. -
Ethics and Operating Procedures for the Radio Amateur 1
EETTHHIICCSS AANNDD OOPPEERRAATTIINNGG PPRROOCCEEDDUURREESS FFOORR TTHHEE RRAADDIIOO AAMMAATTEEUURR Edition 3 (June 2010) By John Devoldere, ON4UN and Mark Demeuleneere, ON4WW Proof reading and corrections by Bob Whelan, G3PJT Ethics and Operating Procedures for the Radio Amateur 1 PowerPoint version: A PowerPoint presentation version of this document is also available. Both documents can be downloaded in various languages from: http://www.ham-operating-ethics.org The PDF document is available in more than 25 languages. Translations: If you are willing to help us with translating into another language, please contact one of the authors (on4un(at)uba.be or on4ww(at)uba.be ). Someone else may already be working on a translation. Copyright: Unless specified otherwise, the information contained in this document is created and authored by John Devoldere ON4UN and Mark Demeuleneere ON4WW (the “authors”) and as such, is the property of the authors and protected by copyright law. Unless specified otherwise, permission is granted to view, copy, print and distribute the content of this information subject to the following conditions: 1. it is used for informational, non-commercial purposes only; 2. any copy or portion must include a copyright notice (©John Devoldere ON4UN and Mark Demeuleneere ON4WW); 3. no modifications or alterations are made to the information without the written consent of the authors. Permission to use this information for purposes other than those described above, or to use the information in any other way, must be requested in writing to either one of the authors. Ethics and Operating Procedures for the Radio Amateur 2 TABLE OF CONTENT Click on the page number to go to that page The Radio Amateur's Code ............................................................................. -
ABSTRACT AWA Review Wireless Comes of Age on the West Coast1
Lee AWA Review Wireless Comes of Age on the West Coast1 !2011 Bartholomew Lee ABSTRACT This is a story primarily about young men and what they accomplished in a remarkable Radio as we know it time, the fi rst two decades of the 20th Century, had many fathers. Cali- and in remarkable places – especially in Cali- fornia enjoyed unique fornia in the Western United States. Guglielmo circumstances that gave (William) Marconi, in his early twenties, elec- rise to independent de- trifi ed the technical world of the late 19th Cen- velopment. Young men tury with his successes using Hertzian electro- explored and advanced magnetic waves to communicate at distance, devices and means of what we now call “radio.” He did this without communication as soon the wired connections to which the world had as they read about ear- turned with enthusiasm earlier in the century. lier advances, especially The telegraph, including undersea cables, and Marconi’s use of wireless the telephone, needed wire, and lots of it. Com- spark systems. The arc munication without such wires, at fi rst wireless as a generator of high telegraphy, opened new vistas. This was par- power continuous wave ticularly so looking out to the world’s oceans. energy for communica- Communication with ships at sea (Marconi’s tions came to California primary initial interest) was now possible. Then, and then the world. Doc a challenge to the expensive cable monopolies Herrold began the fi rst could be mounted. This was so because the new regular broadcasting to a “wireless” meant exactly that: no expensive, known audience around capital-intensive investments in cables, only 1912 in California, using in terminal stations.